§9.4[1]三重积分的概念和计算方法
- 格式:ppt
- 大小:1.32 MB
- 文档页数:22
三重积分和多重积分方法在第三节中我们讨论了二重积分,本节将之推广到一般的n 维空间中去.类似于第三节,我们先定义一个R 3中集合的可求体积性. 同样可以给出一列类似的结论. 读者自己推广. 这里将不再赘述. 一、 引例设一个物体在空间R 3中占领了一个有界可求体积的区域V ,它的点密度为()z y x f ,,,现在要求这个物体的质量.假设密度函数是有界的连续函数,可以将区域V 分割为若干个可求体积的小区域n V V V ,...,,21,其体积分别是n V V V ∆∆∆,...,,21,直径分别是n d d d ,...,,21,即},||sup{|i i V Q W W Q d ∈=, (i =1,2,…,n ), |WQ|表示W, Q 两点的距离.设},...,,max{21n d d d =λ,则当λ很小时,()z y x f ,,在i V 上的变化也很小.可以用这个小区域上的任意一点()i i i z y x ,,的密度()i i i z y x f ,,来近似整个小区域上的密度,这样我们可以求得这个小的立体的质量近似为()i i i i V z y x f ∆,,,所有这样的小的立体的质量之和即为这个物体的质量的一个近似值.即()i i i i ni V z y x f M ∆≈∑=,,1.当0→λ时,这个和式的极限存在,就是物体的质量.即()i i i i ni V z y x f M ∆=∑=→,,lim 1λ.从上面的讨论可以看出,整个求质量的过程和求曲顶柱体的体积是类似的,都是先分割,再求和,最后取极限.所以我们也可以得到下面一类积分. 二、 三重积分的定义设()z y x f ,,是空间3R 中的一个有界可求体积的闭区域V 上的有界函数,将V 任意分割为若干个可求体积的小闭区域n V V V ,...,,21,这个分割也称为V 的分划,记为P : n V V V ,...,,21.Φ=⋂oo j i V V (空, j i ≠), 其体积分别是n V V V ∆∆∆,...,,21,直径分别是n d d d ,...,,21.设},...,,max{21n d d d =λ,或记为||P ||. 在每个小区域中任意取一点()i i i i V z y x ∈,,,作和()iiiini V z y x f ∆∑=,,1(称为Riemann 和),若当0→λ时,这个和式的极限存在,则称其极限为函数()z y x f ,,在区域V 上的三重积分,记为()⎰⎰⎰VdV z y x f ,,.并称函数()z y x f ,,在区域V 上可积.()z y x f ,,称为被积函数,x,y,z 称为积分变量., V 称为积分区域.特别地,在直角坐标系下,可以记为()⎰⎰⎰Vdxdydz z y x f ,,.我们同样可以引入Darboux 大,小和来判别可积, 也有同样的结论(略).1. 若()z y x f ,,是有界闭区域V 上的连续函数,则函数()z y x f ,,在区域V 上可积.2. 若()z y x f ,,=1时,⎰⎰⎰=VV dxdydz的体积.3. 若()z y x f ,,在有界闭区域V 上的间断点集合是0体积时, ()z y x f ,,在V 可积. 三重积分有着与二重积分类似的性质.下面简单叙述一下.1.可积函数的和(或差)及积仍可积. 和(差)的积分等于积分的和(差). 2.可积函数的函数k 倍仍可积. 其积分等于该函数积分的k 倍. 3.设Ω是可求体积的有界闭区域,()z y x f,,在Ω上可积,Ω分为两个无共同内点的可求体积的闭区域21,ΩΩ之并,则()z y x f ,,在21,ΩΩ上可积,并有()()()V d z y x f V d z y x f V d z y x f ⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩΩ+=21,,,,,,.等等.三、三重积分的计算方法同二重积分一样, 我们这里给出三重积分的计算方法,理论上的证明读者自己完成..1. 利用直角坐标系计算三重积分先给一个结论.定理12.14 若函数()z y x f ,,是长方体V =[a,b ]×[c,d ]×[e,h ]上的可积, 记D=[c,d ]×[e,h ], 对任意x ∈[a,b ], 二重积分()⎰⎰=Ddydz z y x f x I ,,)(存在, 则 ()⎰⎰⎰⎰⎪⎪⎭⎫⎝⎛=ba Db a dx dydz z y x f dx x I ,,)( (记为()⎰⎰⎰D ba dydz z y x f dx ,,)也存在, 且()()()⎰⎰⎰⎰⎰⎰⎰⎰⎰==hed cb aDb aVdz z y x f dy dx dydz z y x f dx V d z y x f ,,,,,,.这时右边称为三次积分或累次积分, 即三重积分化为三次积分.证明 分别中[a,b ], [c,d ], [e,h ] 插入若干个分点b x x x x a n =<<<<= 210;d y y y y c m =<<<<= 210;h z z z z e s =<<<<= 210作平面i x x =, j y y =, k z z =,(i =0,1,2,…,n; ,j i =0,1,2,…,m; k =0,1,2,…,s,)得到V 的一个分划P . 令 ],,[],[],[111k k j j i i ijk z z y y x x v ---⨯⨯=(i =1,2,…,n; ,j i =1,2,…,m; k =1,2,…,s,),ijk M ,ijk m 分别是()z y x f ,,在ijk v 上的上, 下确界.那么在],[],[11k k j j jk z z y y D --⨯=上有k j ijkD ik j ijk z y Mdydz z y f z y m jk∆∆≤≤∆∆⎰⎰),,(ξ其中Δx i ,= x i - x i -1 , Δy j ,= y j - y j -1 , Δz k ,= z k - z k -1 , (i =1,2,…,n; ,j i =1,2,…,m; k =1,2,…,s,).)(),,(),,(,iDik j D iI dydz z y f dydz z y f jkξξξ==⎰⎰∑⎰⎰∑∑∑∆∆∆≤∆≤∆∆∆=kj i k j i ijk ni i i kj i k j i ijkz y x M x I z y x m,,1,,)(ξ因可积,所以当||P ||趋于0时,Darboux 大,小和趋于同一数,即三重积分. 故定理得证.如果V 如右图, e ≤z ≤h, z=z 与V 面积为D z ,不难得到,若函数()z y x f ,,在V 上的可积, 那么()()⎰⎰⎰⎰⎰⎰=zD heVdxdy z y x f dz V d z y x f ,,,,.下面给出一般三重积分的具体计算方法,理论证明读者可参照二重积分自己完成.设函数),,(z y x f 在有界闭区域Ω上连续,我们先讨论一种比较特殊的情况.()()()()},,,,|,,{21y x z z y x z D y x z y x ≤≤∈=Ω,其中xy D 为Ω在xoy 平面上的投影,且()()})(,|,{21x y y x y b x a y x D xy ≤≤≤≤=.如图12.我们现在z 轴上做积分,暂时将y x ,看成是常数.把函数()z y x f ,,看作是z 的函数,将它在区间()()],,,[21y x z y x z 上积分得到()()()⎰y x z y x z dz z y x f ,,21,,.显然这个结果是y x ,的函数,再把这个结果在平面区域xy D 上做二重积分()()()dxdy dz z y x f y x z y x z D xy⎪⎭⎫ ⎝⎛⎰⎰⎰,,21,,. 在利用二重积分的计算公式便可以得到所要的结果.若平面区域xy D 可以用不等式()()x y y x y b x a 21,≤≤≤≤表示,则()⎰⎰⎰ΩdV z y x f ,,()()()()()⎰⎰⎰=y x z y x z x y x y badz z y x f dy dx ,,2121,,.这个公式也将三重积分化为了三次积分.如果积分区域是其他的情形,可以用类似的方法计算. 例1计算三重积分⎰⎰⎰ΩxdV ,其中Ω是由三个坐标面和平面1=++z y x 所围的立体区域.解 积分区域如图所示,可以用不等式表示为y x z x y x --≤≤-≤≤≤≤10,10,10,所以积分可以化为()()241413181121112341021010101010=+-=-=--==⎰⎰⎰⎰⎰⎰⎰⎰⎰----Ωx x x dx x x dyy x x dx xdzdy dx xdV xyx x四、三重积分的积分变换和二重积分的积分变换一样,有如下的结果:定理12.15 设V 是uvw 空间R 3中的有界可求体积的闭区域,T :x =x (u,v,w ), y =y (u,v,w ), z =z (u,v,w ),是V 到xyz 空间R 3中的一一映射,它们有一阶连续偏导数,并且V w v u zz v z u z z yv y uyz x v x ux w v u z y x ∈≠∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=∂∂),,(,0),,(),,( (称为Jacobi). 如果f (x,y,z ) 是T (V )上的可积函数,那么dudvdw w v u z y x w v u z w v u y w v u x f dxdydz z y x f VV T ⎰⎰⎰⎰⎰⎰∂∂=),,(),,()),,(),,,(),,,((),,()(在R 3中有两种重要的变换柱面坐标和球面坐标.1. 利用柱面坐标计算三重积分 前面我们可以看到,由于积分区域与被积函数的特点,二重积分可以用极坐标来计算.同样对于三重积分可以用柱面坐标和球面坐标计算.我们先讨论用柱面坐标来计算三重积分.设空间中有一点()z y x M ,,,其在坐标面xoy 上的投影点'M 的极坐标为()θ,r ,这样图12-4-4M ’M (x,y,z)三个数θ,,r z 就称为点M 的柱面坐标(如图12-4-4).这里规定三个变量的变化范围是⎪⎩⎪⎨⎧+∞≤≤∞-≤≤+∞≤≤z r πθ200, 注意到,当=r 常数时,表示以z 轴为中心轴的一个柱面. 当θ=常数时,表示通过z 轴,与平面xoy 的夹角为θ的半平面. 当=z 常数时,表示平行于平面xoy ,与平面xoy 距离为z 的平面. 空间的点的直角坐标与柱面坐标之间的关系, 即是R 3到R 3的映射:⎪⎩⎪⎨⎧===z z r y r x θθsin cos . 所以 其Jacobi 为,10c o ss i n 0s i n c o s),,(),,(r r r z r z y x =-=∂∂θθθθθ故容易得到: 如果f (x,y,z ) 是R 3中的有界可求体积的闭区域V 上的可积函数,则()()⎰⎰⎰⎰⎰⎰=VVdz rdrd z r r f dV z y x f θθθ,sin ,cos ,,,其中,变换前后区域都用V 表示.我们也可以从几何直观的意义来描述这个公式的由来.用三组坐标面311,,C z C C r ===θ将积分区域划分为若干个小区域,考虑其中有代表性的区域,如图12-4-5所示的区域可以看成是由底面圆半径为dr r r +和两个圆柱面,极角为θθθd +和的两个半平面,以及高度为dz z z +和的两个平面所围成的.它可以近似的看作一个柱体,其底面的面积为θrdrd ,高为dz .所以其体积为柱面坐标下的体积元素,即dz rdrd dV θ=.再利用两种坐标系之间的关系,可以得到()()⎰⎰⎰⎰⎰⎰=VVdz rdrd z r r f dV z y x f θθθ,sin ,cos ,,.在柱面坐标下的三重积分的计算也是化为三次积分. 例2计算三重积分()⎰⎰⎰Ω+dV y x22,其中Ω是由椭圆抛物面()224y x z +=和平面4=z 所围成的区域.解 如图所示,积分区域Ω在坐标面xoy 上的投影是一个圆心在原点的单位圆.所以{}44,20,102≤≤≤≤≤≤=Ωz r r πθ.于是()()πθθθππ32441053204412202222=-===+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩdr r r d dzrdr r d dzrdrd r dV y xr2.利用球面坐标计算三重积分我们知道球面坐标用数ϕθ,,r 来表示空间的一个点.设有直角坐标系的空间点()z y x M ,,,点M 在坐标面xoy 上的投影'M ,其中||OM r =,θ为x 轴到射线'OM 转角.ϕ为向量与z 轴的夹角.如图12-4-7.规定三个变量的变化范围是⎪⎩⎪⎨⎧≤≤≤≤+∞≤≤πϕπθ0200r . 我们可以看到,注意到,当=r 常数时,表示以原点为球心的球面. 当θ=常数时,表示通过z 轴的半平面.当=ϕ常数时,表示以原点为顶点,z 轴为中心的锥面. 两种坐标系之间的关系如下:⎪⎩⎪⎨⎧===ϕθϕθϕcos sin sin cos sin r z r y r x . 即又是一个即是R 3到R 3的映射.它的Jacobi 是,sin 0sin cos cos sin cos cos sin sin sin sin sin cos cos sin ),,(),,(2ϕϕϕθϕθϕθϕθϕθϕθϕθϕr r r r r r r z y x =--=∂∂由一般的重积分变换公式容易得到:如果f (x,y,z ) 是R 3中的有界可求体积的闭区域V 上的可积函数,则()()⎰⎰⎰⎰⎰⎰=VVd drd rr r r f dV z y x f θϕϕϕθϕθϕsin cos ,sin sin ,cos sin ,,2,其中,变换前后区域都用V 表示.用几何直观的意义可以如下理解: 已知f (x,y,z ) 闭区域V 上的可积函数.用三组坐标=r 常数,=θ常数,=ϕ常数,将积分区域V 划分为若干个小的区域. 考虑其中有代表性的区域,此小区域可以看成是有半径为dr r r +和的球面,极角为θ和θθd +的半平面,与中心轴夹角为ϕ和ϕϕd +的锥面所围成,它可以近似的看作边长分别是θϕϕd r rd dr sin ,,的小长方体,从而得到球面坐标系下的体积元素为ϕθϕd drd r dV sin 2=.再由直角坐标系与球面坐标之间的关系,可以得到下面的公式()()ϕθϕϕθϕθϕd drd r r r r f dV z y x f VVsin cos ,sin sin ,cos sin ,,2⎰⎰⎰⎰⎰⎰=.例3计算三重积分()⎰⎰⎰Ω+dV y x22,其中Ω是右半球面0,2222≥≤++y a z y x 所围成的区域.解 在球面坐标下,积分区域可以表示为}0,0,0{πϕπθ≤≤≤≤≤≤=Ωa r所以()503505334022222154cos 31cos 551sin sin sin sin a a d r d drr d d d drd r r dV y xaaπϕϕπϕϕθϕϕθϕθϕϕπππππ=⎥⎦⎤⎢⎣⎡--=⎥⎦⎤⎢⎣⎡===+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰ΩΩ与二重积分,三重积分一样可以定义一般n 重积分.我们这里只是简单介绍.当V 是R n 中的有界闭区域. 依照可求面积的方法定义V 的可求“体积”或可测(略). 设f (x 1, x 2,,…, x n ,) 是R n 中的有界可测闭区域V 上的函数, 任取V 的分划P,, 即把分成若干个可测小区域m V V V ,,,21 , 它们的”体积”或测度分别记为m V V V ∆∆∆,,,21 , 当令{}i i V Q Q Q Q d ∈=2121,|||sup , ||21Q Q 表示两点的距离,{}m d d d P ,,,max ||||21 = , 对任取),,2,1(,),,,()()(2)(1m i V x x x i i n i i =∈,如果i mi i n i i P V x x xf ∆∑=→1)()(2)(10||||),,,(lim存在,称f (x 1, x 2,,…, x n ,)是V 上的可积函数.其极限值称为f (x 1, x 2,,…, x n ,)在V 上的n 重积分,记为dV x x x f n n V),,,(21 ⎰⎰ 或 n n nVdx dx dx x x x f2121),,,(⎰⎰. 特别 当V =[a 1,b 1]×[a 2,b 2]×…×[a n ,b n ]时,n n b a b a b a n n n Vdx x x x f dx dx dx dx dx x x x f n n),,,(),,,(212121211122⎰⎰⎰⎰⎰=.若V 上有一一映射T⎪⎪⎩⎪⎪⎨⎧===),,,(),,,(),,,(:2121222111n n n n n u u u x x u u u x x u u u x x T ,其每个分量的函数有连续偏导数,当V 是有界可测区域,f (x 1, x 2,,…, x n ,)在T(V )上可积,并且JacobiV u u u u x u x u x u x u x ux u x u x u x u u u x x x n n nn n n n n n ∈≠∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=∂∂),,,(,0),,,(),,,(212122212121112121那么n n n V T dx dx dx x x x f2121)(),,,(⎰⎰nn n n n n n n Vdu du du u u u x x x u u u x u u u x u u u x f21212121212211),,,(),,,()),,,(,),,,,(),,,,((∂∂=⎰⎰.特别是R n 中的球坐标变换T :,321321211cos sin sin ,cos sin ,cos ϕϕϕϕϕϕr x r x r x === ……,123211cos sin sin sin sin ---=n n n r x ϕϕϕϕϕ , 12321sin sin sin sin sin --=n n n r x ϕϕϕϕϕ ,在R n 中, .20,,,,0,012321πϕπϕϕϕϕ≤≤≤≤∞<≤--n n r 这时的Jacobi 是2231211112122111111121sin sin sin ),,,(),,,(--------=∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂∂=∂∂n n n n n nn n n n n n r x x rx x x rx x x r x r x x x ϕϕϕϕϕϕϕϕϕϕϕ。
三重积分计算方法
三重积分是数学中的一种重要的计算方法,用于计算三维空间中某个区域内的物理量。
它在物理学、工程学、计算机图形学等领域中具有广泛的应用。
三重积分可以理解为对一个三维区域进行体积的累加。
在直角坐标系下,三重积分可以表示为f(x, y, z)dV,其中f(x, y, z)为被积函数,dV表示微元体积。
计算三重积分的方法有多种,常见的方法包括直接计算法、柱坐标法和球坐标法。
直接计算法是最基本的计算方法,即将三重积分的积分区域分成小立方体,并对每个小立方体进行积分,然后将这些小立方体的积分结果相加。
这种方法适用于积分区域较简单的情况,但对于复杂的积分区域来说,计算量较大。
柱坐标法是一种将直角坐标系转换为柱坐标系进行计算的方法。
通过将积分区域转换为柱坐标系下的一个圆柱体,可以简化积分的计算过程。
这种方法尤其适用于具有旋转对称性的问题。
球坐标法是一种将直角坐标系转换为球坐标系进行计算的方法。
通过
将积分区域转换为球坐标系下的一个球体,可以进一步简化积分的计算过程。
这种方法尤其适用于具有球对称性的问题。
除了以上提到的方法外,还有其他一些积分变换方法,如椭球坐标法、柱坐标系下的旋转变换等,根据具体情况选择合适的方法进行计算。
需要注意的是,对于一些复杂的积分区域,可能需要将其分解为多个简单的子区域,然后对每个子区域进行积分。
此外,在实际计算中,还需要注意积分的顺序以及积分限的确定,以避免出现错误结果。
综上所述,三重积分是一种重要的计算方法,通过选择合适的计算方法和注意计算细节,可以有效地求解三维空间中的问题。
三重积分的计算方法三重积分是微积分中的重要概念,它在物理、工程、经济学等领域都有着广泛的应用。
在实际问题中,我们经常需要对三维空间中的函数进行积分,而三重积分就是用来描述这种情况的工具。
本文将介绍三重积分的计算方法,希望能够帮助读者更好地理解和掌握这一概念。
首先,我们来看三重积分的定义。
对于一个定义在三维空间内的函数 f(x, y, z),其在某个区域 V 上的三重积分可以表示为:∭V f(x, y, z) dV。
其中,dV 表示体积元素。
在直角坐标系中,体积元素可以表示为 dV = dx dy dz,而在柱坐标系或球坐标系中,体积元素的表示形式会有所不同。
根据被积函数在不同坐标系下的表示形式,我们可以选择合适的坐标系进行计算,以简化积分的计算过程。
接下来,我们将介绍三重积分的计算步骤。
首先,我们需要确定被积函数的积分区域 V,并确定合适的坐标系。
然后,我们需要将积分区域 V 划分成小的体积元素,这可以通过直角坐标系、柱坐标系或球坐标系下的积分区域划分方法来实现。
在确定了积分区域的划分方式后,我们可以利用定积分的性质,将三重积分化为三次定积分的形式进行计算。
在进行具体的计算时,我们需要注意积分的次序。
根据被积函数在不同坐标系下的表示形式,我们可以选择合适的积分次序,以简化计算过程。
通常情况下,我们可以先对 z 进行积分,然后对 y 进行积分,最后对 x 进行积分,这样的积分次序在某些情况下可以大大简化计算过程。
除了利用积分次序简化计算外,我们还可以利用对称性简化计算过程。
在某些情况下,被积函数具有一定的对称性,这时我们可以利用对称性简化积分的计算过程,从而减少计算的复杂度。
总的来说,三重积分的计算方法并不复杂,但在具体的计算过程中需要注意选择合适的积分次序和利用对称性简化计算。
通过本文的介绍,相信读者对三重积分的计算方法有了更清晰的认识,希望能够帮助读者更好地理解和掌握这一概念。
综上所述,本文介绍了三重积分的计算方法,包括其定义、计算步骤以及一些简化计算的技巧。
三重积分的计算方法三重积分是多元函数积分的一种,它是对三维空间内的函数进行积分运算。
在物理学、工程学和数学等领域都有着广泛的应用。
在进行三重积分的计算时,我们需要掌握一定的方法和技巧,下面将介绍三重积分的计算方法。
首先,我们来看看三重积分的计算公式。
对于函数f(x, y, z),其在空间区域V 上的三重积分可以表示为:∭f(x, y, z)dV。
其中,∭表示三重积分的符号,f(x, y, z)是被积函数,dV表示体积元素。
在直角坐标系中,体积元素dV可表示为dxdydz,因此三重积分可以表示为:∭f(x, y, z)dxdydz。
接下来,我们将介绍三种常见的计算方法,直角坐标系下的三重积分、柱坐标系下的三重积分和球坐标系下的三重积分。
在直角坐标系下的三重积分中,我们需要将被积函数表示为x、y、z的函数,然后按照一定的积分次序进行计算。
通常情况下,我们会先对z进行积分,再对y 进行积分,最后对x进行积分。
这样可以将三重积分转化为三次一重积分的计算,简化计算过程。
在柱坐标系下的三重积分中,我们需要将被积函数表示为ρ、θ、z的函数,其中ρ表示点到z轴的距离,θ表示点在xy平面上的极角。
通过变量替换和雅可比行列式的计算,我们可以将直角坐标系下的三重积分转化为柱坐标系下的三重积分,从而简化计算。
在球坐标系下的三重积分中,我们需要将被积函数表示为r、θ、φ的函数,其中r表示点到原点的距离,θ表示点在xy平面上的极角,φ表示点与z轴的夹角。
通过变量替换和雅可比行列式的计算,我们可以将直角坐标系下的三重积分转化为球坐标系下的三重积分,从而简化计算。
除了上述的常见计算方法外,我们在进行三重积分的计算时,还需要注意积分区域的确定、被积函数的合理选择、积分次序的调整等问题。
在实际应用中,我们还可以利用对称性、奇偶性等性质简化计算过程。
总之,三重积分是多元函数积分的一种重要形式,它在实际问题中有着广泛的应用。
掌握三重积分的计算方法,对于深入理解多元函数的性质和解决实际问题具有重要意义。
三重积分的计算方法
三重积分可以通过以下步骤进行计算:
1. 确定积分区域:首先确定三重积分的积分区域,即确定积分的上下限。
2. 写出积分表达式:根据积分区域确定积分的表达式。
3. 求解内层积分:将内层积分作为常数处理,对剩下的变量进行积分。
4. 求解中层积分:将中层积分作为常数处理,对剩下的变量进行积分。
5. 求解外层积分:将外层积分作为常数处理,对剩下的变量进行积分。
6. 整合结果:将求解得到的结果进行整合,即得到最终的三重积分结果。
三重积分的概念计算及应用三重积分是微积分中的一个重要概念,它可以用于描述空间中的曲面、体积和质量等问题,是积分学在三维空间中的推广与应用。
本文将从三重积分的概念、计算和应用三个方面进行阐述。
首先,我们来了解一下三重积分的概念。
三重积分是对三维空间中其中一区域内函数的积分,可以表示为∭f(x,y,z)dxdydz。
其中,f(x,y,z)表示被积函数,dxdydz表示微元体,即数学上用来描述三维空间中其中一点的微小体积。
三重积分的结果是一个实数,表示被积函数在该区域内的总体积。
对于三重积分的计算,可以分为直角坐标系和柱坐标系、球坐标系两种情况。
在直角坐标系中,我们将积分区域划分成小立方体,并将其分别对x、y、z轴进行积分,求和即可得到积分结果。
在柱坐标系和球坐标系中,可以利用坐标变换与雅可比行列式的知识简化计算,因为在这两种坐标系下,微元体的体积表示形式比直角坐标系更简洁。
接下来,我们来看一下三重积分的一些应用。
首先是体积计算。
通过将其中一区域的体积表示为三重积分的形式,并选择适当的坐标系进行计算,可以得到该区域的体积大小。
这在几何学、物理学、工程学等领域中有着广泛的应用。
其次是质量计算。
当被积函数表示为密度函数时,三重积分可以用来计算物体的质量。
例如,在物理学中,可以用三重积分来计算不规则物体的质量。
此外,三重积分还可以用来计算物体的质心、转动惯量等物理量。
最后是曲面积分的计算。
通过将曲面积分转化为三重积分形式,可以计算曲面的面积或质量分布等问题。
总之,三重积分是微积分中的一个重要概念,通过对三维空间中其中一区域内函数的积分,可以描述空间中的曲面、体积和质量等问题。
在计算三重积分时,可以根据具体情况选择不同的坐标系进行计算,以简化计算过程。
三重积分在几何学、物理学、工程学等领域中具有广泛的应用,可以用来计算体积、质量、质心等物理量,并解决一些曲面积分的问题。
通过深入理解三重积分的概念、计算和应用,可以帮助我们更好地理解三维空间中的问题,推动科学研究的发展。
三重积分的计算与应用积分是高等数学中的一个重要概念,它在数学、物理、工程等领域都有广泛的应用。
三重积分是对三维空间中的函数进行积分运算的一种方法,它可以用于计算三维体积、质心位置、质量、物理场的通量等问题。
在本文中,我们将介绍三重积分的计算方法以及一些常见的应用。
一、三重积分的计算方法三重积分在直角坐标系中的计算方法可以分为直角坐标系下的直接计算和变量替换法两种。
1. 直接计算直接计算是指根据积分的定义,将积分区域划分为许多小的体积元,然后对每个小体积元进行积分的方法。
在直角坐标系中,三重积分的计算公式为:∬∬∬_V f(x,y,z) dxdydz其中f(x,y,z)为被积函数,V为积分区域,dxdydz表示三维空间中的体积元。
通过将积分区域V划分成小的立方体,求解每个小立方体的体积和函数值的乘积,再将所有小立方体的贡献相加,即可得到三重积分的结果。
2. 变量替换法当被积函数的积分区域V的形状比较复杂时,直接计算的方法可能比较繁琐。
这时可以利用变量替换法来简化计算。
变量替换法是通过引入新的变量替换积分变量,使得积分区域转化为更简单的形式。
常用的变量替换方法包括球坐标系变换、柱坐标系变换和曲线坐标系变换等。
二、三重积分的应用三重积分在物理学、工程学和计算机图形学等领域有着广泛的应用。
1. 计算体积三重积分可以用来计算三维空间中各种复杂形体的体积。
通过将被积函数设为1,即可计算出积分区域的体积。
2. 质心位置质心是一个物体的重心位置,对于具有连续分布质量的物体,其质心位置可以通过三重积分来计算。
通过将被积函数分别为x、y、z乘以质量密度,然后对三重积分进行计算,即可得到质心位置的坐标。
3. 质量如果一个物体的质量分布在三维空间中不均匀,可以通过三重积分来计算其质量。
将被积函数设为质量密度,然后对积分区域进行三重积分,即可得到质量的大小。
4. 物理场的通量物理场的通量表示单位时间通过单位面积的物理量。
三重积分的计算方法例题摘要:一、三重积分的概念及应用场景二、三重积分的计算方法1.重积分的计算2.重积分的换元法3.重积分的性质4.重积分的几何意义三、实例解析四、总结与拓展正文:一、三重积分的概念及应用场景三重积分是一种多元函数的积分形式,通常表示为对空间中一个几何体内部的属性进行积分。
它在物理学、工程学、经济学等领域具有广泛的应用。
三重积分的计算方法有多种,包括重积分、换元法等。
二、三重积分的计算方法1.重积分的计算重积分是指对一个空间函数在某个区域内的值进行积分。
求解重积分的过程通常包括以下步骤:确定被积函数、确定积分区域、选择积分顺序、进行积分计算。
2.重积分的换元法重积分的换元法是一种求解重积分的高效方法。
通过引入一个新的变量,将复杂的重积分问题转化为简单的一重积分问题。
换元法的关键在于选择合适的换元函数,使得积分过程变得简洁。
3.重积分的性质重积分具有线性、可交换、满足乘法公式等性质。
这些性质使得重积分在实际计算中具有很好的灵活性,可以简化计算过程。
4.重积分的几何意义重积分在几何上的意义是对一个立体图形的质量进行求解。
具体来说,重积分可以表示为空间曲线长度、曲面面积或体积的函数。
这为求解空间几何问题提供了理论依据。
三、实例解析以一个球体的体积为例,介绍三重积分的计算过程。
设球体的半径为R,球体的密度为ρ。
我们需要求解球体内部某一区域内质量的分布。
1.确定被积函数:球体内部的密度函数,即ρ(x, y, z)。
2.确定积分区域:球体内部,用球坐标系表示为x^2 + y^2 + z^2 <R^2。
3.选择积分顺序:先对z积分,再对y积分,最后对x积分。
4.进行积分计算:利用重积分公式,计算出球体内部的质量分布。
四、总结与拓展本文详细介绍了三重积分的计算方法,包括重积分、换元法等。
通过实际应用场景和实例解析,加深了对三重积分的理解。
在实际问题中,三重积分有着广泛的应用,掌握其计算方法有助于解决诸多实际问题。
三重积分的计算方法三重积分是多元函数积分的一种,它在物理、工程、数学等领域都有着广泛的应用。
在实际问题中,我们常常需要对三维空间中的函数进行积分,而三重积分就是用来描述这种情况的数学工具。
本文将介绍三重积分的计算方法,帮助读者更好地理解和掌握这一重要的数学工具。
首先,我们来看三重积分的定义。
对于空间中的函数f(x, y, z),我们可以通过三重积分来求解其体积、质量、质心等物理量。
三重积分的计算方法主要有直角坐标系下的直角坐标法和柱面坐标法、球面坐标法,以及直角坐标系下的三重积分换元法等。
在直角坐标系下,三重积分的计算可以通过将积分区域分割成小立体体积,并对每个小立体体积进行积分来实现。
具体而言,我们可以将积分区域分割成若干个小立体体积,然后对每个小立体体积进行积分,最后将所有小立体体积的积分结果相加,即可得到整个积分区域的积分值。
而在柱面坐标法和球面坐标法中,我们可以通过变量替换的方法将三重积分转化为对应坐标系下的三个变量的积分,从而简化计算。
这种方法在处理对称性较强的积分区域时特别有效,能够大大减少计算量。
此外,三重积分换元法也是计算三重积分的重要方法之一。
当积分区域的形状较为复杂时,我们可以通过变量替换将其转化为一个简单的积分区域,从而简化计算。
这种方法在处理非直角坐标系下的积分问题时特别有用。
总的来说,三重积分的计算方法有很多种,我们可以根据具体情况选择合适的方法来进行计算。
在实际问题中,我们需要根据积分区域的形状、函数的性质等因素来选择合适的计算方法,以便更高效地求解三重积分。
在实际问题中,我们常常需要利用三重积分来求解物理、工程等领域的实际问题。
比如,我们可以利用三重积分来计算物体的质量、质心、重心等物理量,也可以用三重积分来描述电荷分布、密度分布等问题。
因此,掌握三重积分的计算方法对于理解和应用多元函数积分具有重要意义。
综上所述,本文介绍了三重积分的计算方法,包括直角坐标系下的直角坐标法和柱面坐标法、球面坐标法,以及三重积分换元法等。
三重积分的概念三重积分的性质三重积分的计算直角柱面球面回顾:讨论密度分布不均匀的物体的质量:(1) 一根细棒:ab 密度为i ξ=M ()b a x dx ρ=⎰()i ρξi x ∆∑=ni 10lim →λ(2)平面薄片:),(i i ηξ=M (,)i i ρξη∑=n i 10lim →λiσ∆(,)Dx y dxdy ρ=⎰⎰密度为y x D(3)设在空间有限闭区域Ω内分布着某种不均匀的物质,(,,),x y z C ρ∈求分布在Ω内的物质的质量M .密度函数为Ω(,,)k k k ξηζk v ∆(,,)x y z ρ➢分割:12,,,,,i n v v v v ∆∆∆∆把Ω分为➢取近似:(,,)k k k k kM v ρξηζ∆≈∆➢求和:1(,,)n k k k kk M v ρξηζ=≈∆∑➢取极限:01lim (,,)n k k k k k M v λρξηζ→==∆∑设f (x , y , z )是空间有界闭区域Ω上的有界函数,1、将闭区域Ω任意分成n 个小闭区域∆v 1, ∆v 2, ⋅⋅⋅, ∆v n , 其中∆v i 表示第i 个小闭区域, 也表示它的体积,2、在每个∆v i 上任取一点(ξi , ηi , ζi ), 作乘积f (ξi , ηi , ζi )∆v i ,3、求和∑=ni i i i i v f 1),,(∆ζηξ4、如果当各小闭区域的直径中的最大值λ趋近于零时, 该和式的极限存在, 则称此极限为函数f (x , y , z )在闭区域Ω上的三重积分, 并记为d (,,)Ωf x y z v⎰⎰⎰三重积分的定义⚫注:(2)三重积分的物理意义:不均匀物体的质量(1)其中dv 称为体积元素, 其它术语与二重积分相同.(3)同样有: 有界闭区域上的连续函数一定可积.d 01.(,,)lim (,,)ni i i ii f x y z v f v λξηζ→=Ω=∆∑⎰⎰⎰将二重积分定义中的积分区域推广到空间区域,被积函数推广到三元函数, 就得到三重积分的定义.三重积分的概念三重积分的性质三重积分的计算直角柱面球面➢线性性质[]d d d (,,)(,,)(,,)(,,)f x y z g x y z v f x y z v g x y z v αβαβΩΩΩ+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰➢可加性d d d 12(,,)(,,)(,,)f x y z v f x y z v f x y z v ΩΩΩ=+⎰⎰⎰⎰⎰⎰⎰⎰⎰➢几何意义d v V Ω=⎰⎰⎰V 为Ω的体积➢不等式(,,)f g x y z ≤∈Ωd d (,,)(,,)f x y z v g x y z vΩΩ≤⎰⎰⎰⎰⎰⎰d d (,,)(,,)f x y z v f x y z vΩΩ≤⎰⎰⎰⎰⎰⎰(),Df x y d σ=⎰⎰曲顶柱体的体积➢估值定理(,,)m f M x y z ≤≤∈Ωd (,,)mV f x y z v MVΩ≤≤⎰⎰⎰➢中值定理(,,)f x y z 在Ω上连续,则存在(,,),ξηζ∈Ω使得d (,,)(,,)f x y z v f V ξηζΩ=⎰⎰⎰三重积分的概念三重积分的性质三重积分的计算直角柱面球面在直角坐标系中, 如果我们用三族(平行于坐标面的)平面x = 常数, y = 常数, z = 常数, 对空间区域进行分割那末每个规则小区域都是长方体. 其体积元素为:dv =dxdydz三重积分可写成:三重积分在直角坐标系中的计算法与二重积分类似, 三重积分可化成三次积分进行计算.具体可分为先单后重和先重后单两种类型.d (,,)f x y z v Ω=⎰⎰⎰(),,f x y z dxdydzΩ⎰⎰⎰(一)先单后重(先一后二)法假设:1(,,)f x y z Ω在有界闭区域上连续;2º过Ω内任一点M 且平行于某坐标轴的直线与Ω的边界曲面S 至多有两个交点.以下以z 轴的情形为例.),(2y x zz =),(1y x z z =),(2y x z z =),(1y x z z =xyzoΩD xy 1z 2z 2S 1S ),(1y x z z =),(2y x z z =ab),(y x ),,(:),,(:2211y x z z S y x z z S ==(,),xy x y D ∈过点作直线穿出.穿入,从从21z z Ω在xOy 面上的投影区域为D xy ,以D xy 的边界为准线作母线平行z 轴的柱面.这柱面与Ω的边界曲面S相交,并将S 分成上、下两部分:则Ω可以表示为12{(,,)(,)(,),(,)}.xy x y z z x y z z x y x y D Ω=≤≤∈()()12,(,,),,,x y f x y z z z x y z x y z ⎡⎤⎣⎦先将看作定值,将只看作的函数,在区间上对积分21(,)(,)(,,)(,)[(,,)].xyxyD z x y z x y D f x y z dv F x y d f x y z dz d σσΩ==⎰⎰⎰⎰⎰⎰⎰⎰从而原三重积分可表示为21(,)(,)(,,)xyz x y z x y D d f x y z dzσ=⎰⎰⎰这就化为一个定积分和一个二重积分的运算21(,)(,)(,,)z x y z x y f x y z dz⎰(,)xy F x y D 再计算在闭区间上的二重积分(,)F x y ==⎰⎰⎰Ωdvz y x f ),,(12:()(),,xy D y x y y x a x b ≤≤≤≤若得2()y y x =abD1()y y x =Dba2()y y x =1()y y x =先对z ,再对y ,最后对x 的三次积分dx ⎰dy ⎰(),,.f x y z dz ⎰()1,z x y ()2,z x y ()1y x ()2y x ab注:若将积分域Ω投影到yOz 或xOz 面上,则可把三重积分化为按其它顺序的三次积分.x y zyoz →→Ω积分次序为将投影到面21(,)(,)(,,)(,,)yzx y z x y z D f x y z dv d f x y z dxσΩ=⎰⎰⎰⎰⎰⎰21(,)(,)(,,)(,,)xzy x z y x z D f x y z dv d f x y z dyσΩ=⎰⎰⎰⎰⎰⎰y x z xoz →→Ω积分次序为将投影到面Ω:平面x =0, y = 0, z = 0,x+2y+ z =1所围成的区域x = 0, y = 0, x+2y =1 围成例1.计算三重积分x + 2y + z =1yx121()112y x =−D xyzy x x I d d d ⎰⎰⎰Ω=1、画出(观察)积分区域2、确定积分次序先z 再y 后x,4、将Ω向xoy 平面做投影得区域xyD 3、确定z 的积分上下限分析:1xyz121解:d d d x x y zΩ⎰⎰⎰121(1)00d (12)d x x x x y y−=−−⎰⎰120d x y z−−⎰12301(2)d 4x x x x =−+⎰148=练习:将积分次序改为:先y 再z 后x将积分次序改为:先x 再z 后y1xyz121x + 2y + z =1()012101201z x yy x x ≤≤−−⎧⎪⎪Ω≤≤−⎨⎪≤≤⎪⎩:例2 化三重积分 ⎰⎰⎰Ω=dxdydz z y x f I ),,(为三次积分,其中 积分区域 Ω为由曲面22y x z +=,2x y =,1=y , 0=z 所围成的空间闭区域.2y x=1y =oxy-11xyD 11、画出(观察)积分区域分析:2、确定积分次序先z 再y 后x,3、确定z 的积分上下限4、将Ω向xoy 平面做投影得区域xyD ⎰⎰⎰−+=1101222),,(yx x dz z y x f dy dx I .例3 化三重积分 ⎰⎰⎰Ω=dxdydz z y x f I ),,(为三次积分,其中积分区域Ω为由曲面 222y x z +=及22x z −=所围成的闭区域.1、画出(观察)积分区域分析:2、确定积分次序先z , 再y 后x ,3、确定z 的积分上下限222z x=−下曲面21((0,0)2(0,0)0)z z =>=2212z x y=+上曲面=22222(,,)xyxx yD I d f x y z dz σ−+∴⎰⎰⎰xyD Oxy–1122222112112(,,).x x xx ydx dy f x y z dz −−−−−+=⎰⎰⎰22222x y z x⎧⎪Ω⎨⎪+≤≤−⎩:2211x y x −−≤≤−11x −≤≤由⎩⎨⎧−=+=22222xz y x z ,221,x y +≤:xyz xoy D Ω消去得在面上的投影区域4、将Ω向xoy 平面做投影得区域xyD 解:xy xoy D xoy Ω思考:在面上的投影区域是一个圆域,那么在平面进行的二重积分,可不可以利用极坐标系计算?需要注意些什么?2222,4x z dv y x z y Ω+Ω=+=⎰⎰⎰例4计算其中是由曲面与平面所围成xyzo2z y x =−2z y x =−−分析:1、画出(观察)积分区域2、确定积分次序先z 再y 后x,4、将Ω向xoy 平面做投影得区域xyD 3、确定z 的积分上下限yxo4y =2y x ==222222xyy x y x D x z dv d x z dzσ−−−Ω++⎰⎰⎰⎰⎰⎰-=22224222y x xy xdx dy x z dz−−−+⎰⎰⎰分析:1、画出(观察)积分区域2、确定积分次序先y 再z 后x,4、将Ω向xoz 平面做投影得区域xzD 3、确定y 的积分上下限=2242222xzx z D x z dv d x z dyσ+Ω++⎰⎰⎰⎰⎰⎰22224,4x z dv y x z y Ω+Ω=+=⎰⎰⎰例计算其中是由曲面与平面所围成xyzΩ22y x z =+4y =xz2−2224x z +==2222422xzx zD x z dvd x z dyσΩ+++⎰⎰⎰⎰⎰⎰()=22222244x y xzx z d σ+≤−−+⎰⎰xz2−2224x z +=2r =()()=222224041282415d rr rdrr r dr πθππ−⋅=−=⎰⎰⎰解:1、确定了积分次序后,内层积分上下限至多包含两个变量,中层积分上下限至多包含一个变量,外层积分上下限必须是常数2、对于先单后重的次序,重积分部分可以根据积分区域的特点采用极坐标系计算(1)把积分区域Ω向某轴(例如 z 轴)投影,得投影区间],[21c c ;(3) 计算二重积分⎰⎰zD dxdy z y x f ),,(其结果为z 的函数)(z F ;(4)最后计算单积分⎰21)(c c dz z F 即得三重积分值.z(二)先重后单(先二后一)法先重后单, 就是先求关于某两个变量的二重积分再求关于另一个变量的定积分122,zz c c z xoy D ∈Ω⎡⎤⎣⎦()对用过轴且平行平面的平面去截,得截面21()zc cD g z dzdxdy=⎰⎰⎰V d z y x f ⎰⎰⎰Ω),,(即,若f (x, y, z )= g (z )21(,,).zc c D dz f x y z dxdy =⎰⎰⎰易见, 若内层的二重积分容易计算时,这个方法更显出优越性。