结晶器冷却水量控制
- 格式:doc
- 大小:293.50 KB
- 文档页数:8
结晶技术学习目标掌握:结晶的原理,结晶过程的物料衡算和热量衡算,影响结晶操作的因素。
理解:结晶的基本理论,工业结晶设备的结构特点。
了解:溶液结晶的过程及分类,其他结晶方法。
学习要求结晶的过程及分类,结晶的基本原理,结晶操作控制,工业结晶设备,结晶过程中的物料衡算和热量衡算,其他结晶方法。
结晶过程及分类结晶过程结晶是指物质从液态(溶液或熔融体)或蒸汽形成晶体的过程,是获得纯净固态物质的重要方法之一。
在化学、食品、医药、轻纺等工业中,许多产品及中间产品都是以晶体形态出现的,因此许多化工生产过程中都包含着结晶这一个单元操作。
例如,尿酸、碳铵、食盐、味精、蔗糖、速溶咖啡、奶粉、青霉素、红霉素、洗衣粉、纯碱等产品的生产一般都包含有结晶过程。
经过结晶后的产品,均有一定的外形,便于干燥、包装、运输、储存等。
从而可以更好的适应商品市场的需要。
与其他化工分离过程相比,结晶过程有如下特点:1.能从杂质含量很高的溶液或多组分熔融状态混合物中获得非常纯净的晶体产品。
2.对于许多其他方法很难分离的混合物系、热敏性物系和同分异构体物系等,采用结晶方法分离更为有效。
3.结晶操作能耗低,对于设备材质要求不高,一般亦很少有“三废”排放。
结晶过程可以分为溶液结晶、熔融结晶、升华结晶和沉淀结晶4大类,其中溶液结晶是工业中常采用的结晶过程。
工业生产中要将温度为84℃、质量分数为35%的MgSO4原料液进行结晶操作,装置如图2-1所示。
连续真空冷却结晶器顶部用蒸汽喷射泵维持结晶器内部绝对压强为1.3kPa,由于是在真空条件下,此时水的沸点为11.4℃,溶液的沸点为17℃,即原料在较低的温度下即可蒸发达到过饱和而析出MgSO4·7H2O晶体。
结晶过程的实质是将稀溶液变成过饱和溶液后析出晶体。
达到过饱和有两种方法:一种是用蒸发移去溶剂,如上面所述的硫酸镁的结晶过程;另一种是对原料进行冷却,使其溶解度下降而达到过饱和。
当然,工业中实施的结晶是一个很复杂的过程(如需要使晶体具有一定的形状),影响结晶操作的因素也有很多,工业生产中,要根据对不同产品质量要求的不同,选择合适的结晶工艺条件,生产出合格的产品。
板坯连铸机漏钢原因分析及控制措施1.操作不当:操作人员操作不规范或经验不足,如操作时间过长、操作不准确等,容易导致板坯连铸机漏钢。
为了避免操作不当导致漏钢,应加强操作人员培训,提高他们的技术水平和操作经验,严格遵循操作规程,并进行必要的考核和监督。
2.连铸结晶器破损:连铸结晶器是冷却板坯的关键部件,如果结晶器破损,冷却水可能会直接进入铸坯中,导致漏钢。
为了避免这种情况,应定期对结晶器进行检查和维修,及时发现并更换破损的部件。
3.气孔:气孔是指铸坯内部存在的空隙,通常由于钢水中的氢气无法完全逸出而形成。
气孔会影响铸坯的质量,导致漏钢。
为了减少气孔,可以采取以下措施:(1)控制钢水的合金成分,控制钢水中的氢含量。
(2)在铸造过程中加入除氧剂,提高钢水中的溶解氧含量,减少气体生成。
(3)合理设计结晶器,使气泡易于从铸坯中升出。
4.结晶器堵塞:连铸结晶器内部可能会堵塞,导致冷却水无法均匀地冷却铸坯,造成漏钢。
为了避免结晶器堵塞,应定期对结晶器进行清洗和维修,保证结晶器内部的冷却水流通畅。
5.铸坯温度过高:铸坯温度过高会导致铸坯内部产生过多的气体,增加气孔的形成,从而引起漏钢。
为了控制铸坯温度,可以在连铸过程中控制冷却水的流量和温度,以达到合理的冷却效果;同时,在连铸过程中加强温度监控,及时调整连铸速度和冷却水的冷却效果。
6.铸模破损:铸模破损会导致铸坯内部形成孔洞和裂缝,导致漏钢。
为了避免铸模破损,应定期进行铸模的检查和维修,及时更换破损的部件。
7.其他原因:除了以上几点外,板坯连铸机漏钢还可能受到其他因素的影响,如连铸设备的老化、设备维护不当等。
为了确保连铸机的正常运行和减少漏钢,应加强设备的维护保养,定期进行设备的检修和更换关键部件。
综上所述,要控制板坯连铸机漏钢,需要从操作规范、设备维护、冷却控制等多个方面着手,以保证连铸过程的正常进行和铸坯质量的提高。
只有在整个生产过程中严格按照操作规程进行操作,定期维护检修设备,并加强钢水质量控制,才能有效控制和减少板坯连铸机漏钢的发生。
1600板坯连铸机工艺技术操作规程一、连铸机基本技术参数:1)连铸机机型:直弧形连续弯曲连续矫直板坯连铸机2)连铸机流数: 1 流3)铸坯规格:厚度: 170、210mm宽度: 700~1600mm铸坯定尺长度: 9~12m部分短定尺: 4.8m~5.8m最大坯重:~31.5t4)铸机速度:拉速范围: 0.2~4.5m/min工作拉速: 0.6~2.2m/min5)基本圆弧半径: 8000mm6)垂直段高度: 2426mm7)弯曲区长度: 1400 mm8)矫直区长度: 3150 mm9)铸机长度: 27259mm10)浇注准备时间:~55min11)平均连浇炉数: 7~8(15~20)炉12)铸机配合年产量: 102(~130)万吨13)出坯辊面标高: +800mm14)浇注平台标高:~+11350mm15)钢包回转台:蝶型、单臂独自升降承载能力: max.2x200(100)t回转半径: 4900(~4500)mm升降行程: 800mm该回转台可以适应60t和120t钢包的生产。
16)中间罐车:半门型,载重量:~60 t17)中间罐:矩形结构中间罐容量:正常 30t/1000mm,溢流 35t/1100mm18)钢流控制方式:电动塞棒式;涡流液面检测19)结晶器:铜板材质: CuCrZr铜板长度: 900mm足辊直径:φ100mm;宽面1对,三节式;窄面4对结晶器调宽:手动调宽20)结晶器振动装置形式:四连杆式振动装置振幅:0±5mm (可调)振频: 0~200次/min21)弯曲段(扇形0段)辊子数量:内、外弧各15个22)弧形扇形段扇形段个数:5个辊子数量:每段内、外弧各7个23)矫直扇形段扇形段个数:2个辊子数量:每段内、外弧各7个24)水平扇形段扇形段个数:4个辊子数量:每段内、外弧各7个25)脱引锭装置:液压冲顶式26)铸坯切割自动火焰切割机:切割行程:~9m27)窜动辊道:窜动行程:~600mm28)引锭杆引锭杆型式:链式、下装、侧存放引锭杆长度:~11 m引锭杆厚度:~160 mm引锭杆身宽度:~1450 mm引锭杆头宽度: 700~1300 mm1250~1600 mm29)升降挡板:1#机:2个;2#机3个。
炼钢连铸工艺操作规程(作业文件)编写:审核: 审批:1 工艺流程接收钢水——钢包回转台——中间包——结晶器——导向段及二冷——拉矫机——液压切割机——运输辊道——升降挡板——移坯车——收集台架——热送或缓冷2 大包浇钢工艺技术规程2.1 供连铸钢水质量要求:化学成分、温度符合相应标准要求、工艺操作要求。
2.2 化学成分及杂质要求连铸钢水的化学成分应符合钢种标准要求。
2.3 钢水温度要求中间包内钢水温度控制在浇注钢种的液相线以上10-30 C范围内,第一炉比正常连浇炉次高10-20 C。
2.4 大包浇钢工艺规程2.4.1 浇注准备准备好浇注用工器具及原材料。
浇注前应仔细检查大包回转台,要求空载运行平稳、无噪音。
2.4.2 浇铸操作2.4.2.1 在中间包液面达到200mm 时,向中间包加入覆盖剂,在冲击区处,并根据情况随时补加,保证不裸露钢液。
2.4.2.2 分别在开浇后5 分钟、浇注中期、浇注末期,在离大包注流最远的一流水口上方,测三次温,测温枪插入钢液面下250-300mm 间,并做好记录。
2.4.2.3 在正常浇注过程中,应控制中间包液面高度在750mm± 100mm 之间,特殊情况不低于450mm。
2.5 换大包操作2.5.1 浇注完毕,及时关闭大包水口,避免向中间包灌渣。
2.5.2 特殊事故处理2.5.3.1 大包水口穿钢或关不住时,及时将大包旋转到事故包上方。
2.5.3.2 连浇时,当大包水口打开困难,中间包液面降到500mm 时,应通知拉钢工降低拉速。
2.6 热换中间包操作2.6.1 热换中间包第一炉,温度按浇注第一炉温度要求控制。
2.6.2 上炉浇注结束,原中间包车开走,新中间包车就位后,立即组织开浇,按第一炉浇注程序进行。
2.7 中间包浇钢工艺技术规程2.7.1 设备检查2.7.2 操作和检查:各按钮、指示灯正常,转换开关灵活可靠。
2.7.3 结晶器检查:铜管上划痕超过1.0mm 深、结晶器出现上下法兰漏水,应及时更换。
连铸坯内部裂纹产生的主要原因及解决措施李广艳【摘要】Two kinds of continuous casting billet produced by the 50 t EAF and converter steelmaking production lines in new two area had been researched and the reasons and types for the formation of internal cracks had been studied by SEM and EDAX. The quality of casting billet improved, macrostructure and hot upsetting percent of pass enhanced significantly through implementation of these measurements such as casting with stable casted velocity, reasonable matching between casting speed and water quantity, controlling with narrow temperature wave of molten steelin ladle and heightened the purity of molten steel.%以莱钢50 t电炉生产线及新二区转炉炼钢生产线生产的两种规格的连铸坯作为研究对象,分析了内部裂纹形成的原因,并采用扫描电镜和能谱分析了内部裂纹的类型。
通过采取恒拉速浇注、拉坯速度与水量合理匹配、实行中间包窄温度波动控制、提高钢水纯净度等措施,连铸坯的质量得到了明显改善,低倍和热顶锻合格率也有了显著提高。
【期刊名称】《山东冶金》【年(卷),期】2014(000)002【总页数】4页(P40-43)【关键词】连铸坯;内部裂纹;原因;措施【作者】李广艳【作者单位】莱芜钢铁集团有限公司技术中心,山东莱芜271104【正文语种】中文【中图分类】TG115.21 前言铸坯裂纹的形成是一个非常复杂的过程,是传热、传质和应力相互作用的结果。
碳酸钠冷却结晶一、概述碳酸钠是一种重要的化工原料,广泛应用于玻璃、化肥、造纸等行业。
在生产过程中,需要对碳酸钠进行冷却结晶,以实现产品的纯化和提高产品质量。
二、碳酸钠冷却结晶的原理碳酸钠在水溶液中的溶解度随温度的降低而减小,因此可以通过降温使其结晶。
同时,碳酸钠的结晶速度也受到溶液中杂质离子浓度、搅拌强度等因素的影响。
三、碳酸钠冷却结晶的工艺流程1. 碱液制备:将石灰石和苏打灰按一定比例混合,并加入适量水进行反应生成碱液。
2. 碱液净化:将碱液通过过滤或沉淀等方式去除其中的杂质离子。
3. 冷却结晶:将净化后的碱液加热至一定温度后,通过冷却器将其冷却至一定温度下进行结晶。
通常采用自然冷却或强制冷却的方式进行。
4. 过滤、洗涤:将结晶后的固体物通过过滤机或离心机进行分离,然后用水进行洗涤,去除其中的杂质。
5. 干燥:将洗涤后的固体物置于干燥器中进行干燥,最终得到纯净的碳酸钠产品。
四、碳酸钠冷却结晶中需要注意的问题1. 温度控制:冷却结晶过程中需要控制溶液温度,以保证结晶速度和产品质量。
2. 搅拌强度:适当的搅拌强度可以促进结晶速度,但过强的搅拌会使得结晶颗粒变小,降低产品质量。
3. 杂质控制:在碱液净化和洗涤过程中需要注意去除其中的杂质离子,以保证产品纯度。
4. 结晶器选择:不同类型的结晶器对产品颗粒大小和产量有影响,需要根据具体情况选择合适的设备。
五、碳酸钠冷却结晶技术发展趋势随着工业化生产的不断发展,碳酸钠冷却结晶技术也在不断改进和创新。
目前,一些新型结晶设备如旋转床、振荡床等已经开始应用于生产中,可以提高产品质量和产量,并降低生产成本。
六、结语碳酸钠冷却结晶是一项重要的工艺过程,在生产中需要注意控制温度、搅拌强度等因素,并且采用合适的设备进行操作。
未来随着技术的不断发展,相信这项技术将会得到更加完善和广泛的应用。
各类结晶设备的功能结构对比
结晶器的类型很多,按溶液获得过饱和状态的方法可分蒸发结晶器和冷却结晶器;按流动方式可分母液循环结晶器和晶浆循环结晶器;按操作方式可分连续结晶器和间歇结晶器。
1. 冷却式结晶器
(1)空气冷却式结晶器:空气冷却式结晶器是一种最简单的敞开型结晶器,靠顶部较大的敞开液面以及器壁与空气间的换热,以降低自身温度从而达到冷却析出结晶的目的,并不加晶种,也不搅拌,不用任何方法控制冷却速率及晶核的形成和晶体的生长。
这类结晶器构造最简单,造价最低,可获得高质量、大粒度的晶体产品,尤其适用于含多结晶水物质的结晶。
缺点是传热速率太慢,且属于间歇操作,生产能力较低,占地面积较大。
在产品量不太大而对产品纯度及粒度要求又不严时,仍被采用。
(2)搅拌式结晶槽:在空气冷却式结晶器的外部,装设传热夹套或在内部装设蛇管式换热器以促进传热,并增加动力循环装置,即成为强制循环冷却式结晶槽或搅拌式结晶槽。
晶浆强制循环于外冷却器与结晶槽之间,使晶浆在槽内能较好地混合,并能提高冷却面的热交换速率,这种结晶槽可以分批或连续操作。
为自然冷却,必要时可配备内部冷却器。
搅拌器可以从下方传动,也可以从上方传动。
晶浆在导流筒中可以向上流动,也可以向下流动。
这类结晶器内温度比较均匀,产生的晶体较少但粒度较均匀,也使冷却周期缩短,生产能力提高。
对于易在空气中氧化的物质的结晶,可用闭式槽,槽内通入惰性气体。
连铸结晶器工作原理连铸结晶器是连铸生产线中的重要组成部分,其工作原理涉及多种物理和化学过程。
下面将对连铸结晶器的工作原理进行详细解释。
**一、连铸结晶器的作用**连铸结晶器主要用于在连铸过程中将液态金属逐渐冷却凝固,形成连续的坯料。
通过结晶器对液态金属进行凝固成形,可以满足不同工艺要求和坯料规格的生产需求,同时也可以提高产品的质量和性能。
**二、连铸结晶器的工作原理**1. **结晶器内的冷却系统**连铸结晶器内部配备了冷却系统,主要包括冷却水管和冷却水。
在连铸过程中,通过冷却水对结晶器进行冷却,使得液态金属能够迅速被冷却并凝固。
2. **液态金属的注入和分布**在结晶器上部,液态金属经过预炼炉或其他方式得到均匀温度后,通过喷嘴均匀地注入到结晶器内,形成一定宽度和深度的液态金属层。
通过振动和控制系统,实现液态金属在结晶器内的均匀分布和控制厚度。
3. **结晶器外壁和内壁的温度控制**结晶器外壁设有绝热层以保持结晶器内温度稳定,内壁则通过冷却水保持一定的温度,以控制凝固过程中的结晶器内部温度分布。
4. **凝固过程**液态金属在结晶器内受到冷却水的冷却,由于受热传导和传热等因素,逐渐凝固成形,形成坯料。
结晶器内部的振动系统也可以对液态金属进行微小的振动,以促进坯料的凝固和形成。
5. **坯料的后续处理**连铸结晶器中形成的坯料随后通过后续的冷却、切割和处理工艺,最终成为可加工的半成品或成品。
通过以上工作原理的分析可以看出,连铸结晶器不仅仅是一个简单的冷却设备,其内部结构和工作原理涉及了液态金属的凝固过程、温度控制、振动控制等多方面的物理和化学过程,是连铸生产中至关重要的环节。
结晶器一、河北诺达化工设备有限公司1、OSLO结晶器(1)概述OSLO结晶器分为蒸发式OSLO结晶器和冷却式OSLO结晶器两大类。
蒸发式OSLO结晶器是由外部加热器对循环料液加热进入真空闪蒸室蒸发达到过饱和,再通过垂直管道进入悬浮床使晶体得以成长,由于OSLO结晶器的特殊结构,体积较大的颗粒首先接触过饱和的溶液优先生长,依次是体积较小的溶液;冷却式OSLO结晶器冷却器是由外部冷却器对饱和料液冷却达到过饱和,再通过垂直管道进入悬浮床使晶体得以成长,由于OSLO结晶器的特殊结构,体积较大的颗粒首先接触过饱和的溶液优先生长。
因此OSLO结晶器生产出的晶体具有体积大、颗粒均匀、生产能力大。
并具有连续操作、劳动强度低等优点(2)工作原理及特点特点:a、由于OSLO的本身特殊结构使生产出的产品具有颗粒较大,粒度分布较窄的优点;b、溶液循环量较大,溶液的过饱和度较小,不易产生二次晶核有利于结晶操作;c、可连续生产,产量可大可小;d、清液循环不存在晶体破碎问题;e、悬浮床内过饱和度均匀给晶体成长提供了良好的条件,d>20μ2、OSLO结晶器(1)概述DTB结晶器是一种高效率的结晶设备,由PLC控制物料温度,其独特的结构和工作原理决定了它具有传热效率高、配置简单、操作控制方便、操作环境好等特点,广泛适用于化工、医药、农药、等行业的结晶作业。
现生产制造设备处理量50~3000kgh,共十种型号的系列产品,可根据用户的需要提供与之相配套的各种辅助设备。
(2)工作原理及特点原理:结晶过程中,溶液的过饱和度、物料温度的均匀一致性以及搅拌转速和冷却面积是影响产品晶粒大小和外观形态的决定性因素。
本结晶机采用了专用的搅拌桨,且温度、搅拌桨转速可调易实现系统自控制,以适应各种物料结晶要求的。
(3)DTB结晶器特点:a、是一种典型的晶浆内循环式结晶器b、具有良好的流体动力学效果c、开发了专用螺旋浆,实现了高效内循环,而几乎不出现二次晶核d、很少出现内壁结疤现象e、用于药厂可满足GMP要求f、晶浆过饱和度均匀,粒度分布良好,实现了高效率g、能耗低h、可安装淘洗腿实现连续生产操作i、本身有高的换热面不需要另设加热器或冷却器j、可进行冷却结晶,也可用于真空蒸发冷却结晶k、转速低,调控容易,适用性强,运行可靠,故障少。
各类结晶设备的功能结构对比2010-08-15 17:26:54 作者:phpcms来源:浏览次数:0 网友评论 0 条结晶器的类型很多,按溶液获得过饱和状态的方法可分蒸发结晶器和冷却结晶器;按流动方式可分母液循环结晶器和晶浆循环结晶器;按操作方式可分连续结晶器和间歇结晶器。
1. 冷却式结晶器(1)空气冷却式结晶器:空气冷却式结晶器是一种最简单的敞开型结晶器,靠顶部较大的敞开液面以及器壁与空气间的换热,以降低自身温度从而达到冷却析出结晶的目的,并不加晶种,也不搅拌,不用任何方法控制冷却速率及晶核的形成和晶体的生长。
这类结晶器构造最简单,造价最低,可获得高质量、大粒度的晶体产品,尤其适用于含多结晶水物质的结晶。
缺点是传热速率太慢,且属于间歇操作,生产能力较低,占地面积较大。
在产品量不太大而对产品纯度及粒度要求又不严时,仍被采用。
(2)搅拌式结晶槽:在空气冷却式结晶器的外部,装设传热夹套或在内部装设蛇管式换热器以促进传热,并增加动力循环装置,即成为强制循环冷却式结晶槽或搅拌式结晶槽。
晶浆强制循环于外冷却器与结晶槽之间,使晶浆在槽内能较好地混合,并能提高冷却面的热交换速率,这种结晶槽可以分批或连续操作。
为自然冷却,必要时可配备内部冷却器。
搅拌器可以从下方传动,也可以从上方传动。
晶浆在导流筒中可以向上流动,也可以向下流动。
这类结晶器内温度比较均匀,产生的晶体较少但粒度较均匀,也使冷却周期缩短,生产能力提高。
对于易在空气中氧化的物质的结晶,可用闭式槽,槽内通入惰性气体。
(3)长槽搅抖式连续结晶器长槽搅抖式连续结晶器是一种应用广泛的连续结晶器,有较大的生产能力。
其结构为敞式或闭式长槽,底为一个半圆形,槽外焊有水夹套,槽中装有长螺距的低速螺带搅拌器。
在操作时,浓热溶液从槽的一端加入,冷却水(或冷冻盐水)通常是在夹套中与溶液作逆流流动。
螺带搅拌器可以搅拌及输送晶体,还可以防止晶体聚积在冷却面上,并使已生成的晶体上扬,散布于溶液中,使晶体在溶液中悬浮而生长,从而获得均匀的晶体。
连铸结晶器断水事故应急预案一、连铸结晶器事故水参数:1.事故水箱容积:37.5m32.事故水压力:0.1Mpa3.事故水流量:每流75-80m3/h4.事故水可持续供水时间:15min(每3分钟下降25厘米左右)二、断水事故应急处理预案:当连铸正常浇铸时由于软水泵故障或停电等意外事故导致结晶器冷却水压力、流量下降报警时,按以下步骤处理:1. 连铸主操应根据以下标准快速判断报警是否有误判断标准:3秒内进出水温差持续上升,且任何一流流量低于80m3/h持续超过3秒,即认为实际断水而非误报警。
2.确定实际断水事故发生后主操应A. 快速开启操作台面的事故水开关。
(该按钮开启后,事故水下水气动阀和事故水溢流气动阀同时打开)B. 第一时间通知中包工停浇,闸下事故闸板,大包关闭。
3.立即跑到连铸二楼平台东北角处,观察A.事故回水气动阀是否处于“open”位置,B.回水气动阀前的手动阀是否处于打开位(该手动阀平时应处于常开位置)。
如果发现气动阀无法打开(处于“close”状态),则立即打开下方的旁通手动阀及北面的“事故回水手动阀2”。
4.观察水流量,正常情况每流结晶器水流量应该上升到75-80m3/h左右。
5.停浇后,结晶器中余坯继续拉出,不得关闭事故水,让事故水用完为止。
6.通知机修工进行抢修处理。
7.事故水用完并且余钢拉完后,关闭事故水启动开关,关闭旁通手动阀和回水手动阀2,但切勿关闭气动阀前的手动阀。
8.确认事故水各阀关闭准确后通知机修进行事故水补水操作,确认事故水箱液位。
该预案第一责任人:当班连铸主操;该预案第二责任人:当班班长与在线中包工;全体当班人员应了解掌握该预案的流程及重点设备操作并牢记在心,发生事故后应听从主操与班长的指挥,全力协调按流程处理。
炼钢二厂。
通过结晶器的热流量通过结晶器放出热流,可用下列计算Q=LEVP{C1(Te-Tl)+lf+cs(Ts-To)}(3.1)式中:Q:结晶器钢水放出的热量,kj/min;L:结晶器横截面周长,4.012m;E:出结晶器坯壳厚度,0.012m;V:拉速,2.2m/min;。
为了防止出现水垢,水必须经过软化处理或脱盐处理[9]。
结晶器内冷却水的流量,一般按断面周长长度每毫米2-2.5每毫米计算。
经过净化及软处理的水一般都是循环使用。
采用封闭式供水系统。
充分利用回水系压有利于节能。
3.5.1结晶器的倒锥度钢水在结晶器内凝固是因坯壳收缩形成气隙,通常是将结晶器作成倒锥度,后者定义为:△ =(S上—S下)/S上×L(3.3)式中:△:结晶器的倒锥度%/m;S上,S下:结晶器的上边口,下边口长;L:结晶器长度。
倒锥度取值不能太小,也不能太大。
过小则作用不大,过大则增大了拉坯阻力,甚至卡钢而不能出坯[9]。
高碳钢的收缩量大,所以须用较大的倒锥度[7]。
高速拉坯时,应采用较小的倒锥度。
在此设计中,倒锥度可取0.96%/m,为了不致产生太大的拉坯阻力。
实际的倒锥度略小于上述值,约为0.4-0.8%/m。
3.5.2结晶器冷却水量的计算(3.4)3.5)即;W=Q/(△Q)=2468L/min=48.1m3/h=801L/min。
3.6结晶器的重要参数针对小方坯连铸机,结晶器设计为弧形结晶器,因为拉坯速度较高,结晶器的长度定为900毫米。
结晶器的材质查阅有关资料后,我们考虑到结晶器的热疲劳寿命,决定采用铜铬合金(含Gr0.5-0.9)。
3.6.1结晶器的构造结晶器的结构如图所示,其内管为冷拔异性无缝钢管。
外面套有刚制外壳,钢管与铜套之间有约7毫米的缝隙通以冷却水,即冷却水缝。
钢管与铜套制成弧形。
铜管的上口通过法兰用螺钉固定在钢制外壳上。
如图4-4所示,铜管的下口一般为自由端,允许热胀冷缩;但上下口都必须密封,防止漏水。