华东师大初中数学九年级上册直角三角形(基础)知识讲解[精品]
- 格式:doc
- 大小:110.50 KB
- 文档页数:6
三角形中位线定理【学习目标】1. 理解三角形的中位线的概念,掌握三角形的中位线定理.2. 掌握中点四边形的形成规律.【要点梳理】要点一、三角形的中位线1.连接三角形两边中点的线段叫做三角形的中位线.2.定理:三角形的中位线平行于第三边,并且等于第三边的一半.要点诠释:(1)三角形有三条中位线,每一条与第三边都有相应的位置关系与数量关系. (2)三角形的三条中位线把原三角形分成可全等的4个小三角形.因而每个小三角形的周长为原三角形周长的12,每个小三角形的面积为原三角形面积的14.(3)三角形的中位线不同于三角形的中线.要点二、顺次连接特殊的平行四边形各边中点得到的四边形的形状(1)顺次连接平行四边形各边中点得到的四边形是平行四边形.(2)顺次连接矩形各边中点得到的四边形是菱形.(3)顺次连接菱形各边中点得到的四边形是矩形.(4)顺次连接正方形各边中点得到的四边形是正方形.要点诠释:新四边形由原四边形各边中点顺次连接而成.(1)若原四边形的对角线互相垂直,则新四边形是矩形.(2)若原四边形的对角线相等,则新四边形是菱形.(3)若原四边形的对角线垂直且相等,则新四边形是正方形.【典型例题】类型一、三角形的中位线1、(2016•北京)如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.(1)求证:BM=MN;(2)∠BAD=60°,AC平分∠BAD,AC=2,求BN的长.【思路点拨】(1)根据三角形中位线定理得MN=AD,根据直角三角形斜边中线定理得BM=AC,由此即可证明.(2)首先证明∠BMN=90°,根据BN2=BM2+MN2即可解决问题.【答案与解析】(1)证明:在△CAD中,∵M、N分别是AC、CD的中点,∴MN∥AD,MN=AD,在RT△ABC中,∵M是AC中点,∴BM=AC,∵AC=AD,∴MN=BM.(2)解:∵∠BAD=60°,AC平分∠BAD,∴∠BAC=∠DAC=30°,由(1)可知,BM=AC=AM=MC,∴∠BMC=∠BAM+∠ABM=2∠BAM=60°,∵MN∥AD,∴∠NMC=∠DAC=30°,∴∠BMN=∠BMC+∠NMC=90°,∴BN2=BM2+MN2,由(1)可知MN=BM=AC=1,∴BN=【总结升华】本题考查三角形中位线定理、直角三角形斜边中线定理、勾股定理等知识,解题的关键是灵活应用这些知识解决问题,属于中考常考题型.举一反三:【变式】如图,矩形OABC的顶点A、C分别在x轴、y轴正半轴上,B点坐标为(3,2),OB与AC交于点P,D、E、F、G分别是线段OP、AP、BP、CP的中点,则四边形DEFG的周长为_____.【答案】5;解:∵四边形OABC是矩形,∴OA=BC,AB=OC;BA⊥OA,BC⊥OC.∵B点坐标为(3,2),∴OA=3,AB=2.∵D、E、F、G分别是线段OP、AP、BP、CP的中点,∴DE=GF=1.5; EF=DG=1.∴四边形DEFG的周长为(1.5+1)×2=5.2、如图,在△ABC中,已知点D、E、F分别是AB、BC、CA的中点,AH是高.(1)若BC=10,AH=8,则四边形ADEF的面积为.(2)求证:∠DHF=∠DEF.B【思路点拨】(1)由三角形面积公式可知:△BDE、△EFC的面积都等于△ABC面积的四分之一,进而可求出四边形ADEF的面积.(2)首先证明四边形ADEF是平行四边形,进而可得∠DEF=∠DAF,再利用直角三角形的中线性质得线段相等,从而得角等,最终可得到∠DAF=∠DEF,即可证出∠DHF=∠DEF.【答案解析】(1)解:∵BC=10,AH=8,∴S△ABC=×8×10=40,∵点D、E、F分别是AB、BC、CA的中点,∴△BDE、△EFC的面积都等于△ABC面积的,∴四边形ADEF的面积=40﹣20=20,故答案为:20;(2)证明:∵D、E、F分别是△ABC各边中点,∴DE∥AC,EF∥AB,∴四边形ADEF是平行四边形,∴∠DEF=∠DAF,∵AH是△ABC的高∴△ABH、△ACH是直角三角形,∵点D、点F是斜边AB、AC中点,∴DH=DA,HF=AF,∴∠DAH=∠DHA,∠FAH=∠FHA,∴∠DAH+∠FAH=∠FHA+∠DHA,即∠DAF=∠DHF , ∴∠DEF=∠DHF .【总结升华】此题主要考查了平行四边形的性质与判定,三角形的中位线定理,直角三角形的性质,解决题目的关键是证明∠DHF=∠DAF 与∠DAF=∠DEF .3、如图所示,在△ABC 中,M 为BC 的中点,AD 为∠BAC 的平分线,BD ⊥AD 于D ,AB =12,AC =18,求MD 的长.【思路点拨】本题中所求线段MD 与已知线段AB 、AC 之间没有什么联系,但由M 为BC 的中点联想到中位线,另有AD 为角平分线和垂线,根据等腰三角形“三线合一”构造等腰三角形ABN ,D 为BN 的中点,DM 即为中位线,不难求出MD 的长度. 【答案与解析】解:延长BD 交AC 于点N .∵ AD 为∠BAC 的角平分线,且AD ⊥BN , ∴ ∠BAD =∠NAD ,∠ADB =∠ADN =90°,在△ABD 和△AND 中,BAD NAD AD =ADADB ADN ∠∠⎧⎪⎨⎪∠∠⎩== ∴ △ABD ≌△AND(ASA) ∴ AN =AB =12,BD =DN .∵ AC =18,∴ NC =AC -AN =18-12=6, ∵ D 、M 分别为BN 、BC 的中点, ∴ DM =12CN =162⨯=3.【总结升华】当条件中含有中点的时候,可以将它与等腰三角形的“三线合一”、三角形的中线、中位线等联系起来,进行联想,必要时添加辅助线,构造中位线等图形. 举一反三:【变式】如图所示,四边形ABCD 中,Q 是CD 上的一定点,P 是BC 上的一动点,E 、F 分别是PA 、PQ 两边的中点;当点P 在BC 边上移动的过程中,线段EF 的长度将( ).A .先变大,后变小B .保持不变C .先变小,后变大D .无法确定 【答案】B ;解: 连接AQ .∵ E 、F 分别是PA 、PQ 两边的中点,∴ EF 是△PAQ 的中位线,即AQ =2EF .∵ Q 是CD 上的一定点,则AQ 的长度保持不变, ∴ 线段EF 的长度将保持不变.4、我们给出如下定义:有一组相邻内角相等的四边形叫做等邻角四边形.请解答下列问题:(1)如图1,在△ABC 中,AB=AC ,点D 在BC 上,且CD=CA ,点E 、F 分别为BC 、AD 的中点,连接EF 并延长交AB 于点G .求证:四边形AGEC 是等邻角四边形;(2)如图2,若点D 在△ABC 的内部,(2)中的其他条件不变,EF 与CD 交于点H ,图中是否存在等邻角四边形,若存在,指出是哪个四边形,不必证明;若不存在,请说明理由.【思路点拨】(1)运用中位线的性质,找出对应相等的角;(2)根据题意易知满足条件的四边形即为第一题的四边形. 【答案与解析】解:(1)取AC 的中点H ,连接HE 、HF∵点E 为BC 中点∴EH 为△ABC 的中位线∴EH∥AB,且EH=12AB 同理FH∥DC,且FH=12DC∵AB=AC,DC=AC ∴AB=DC ,EH=FH ∴∠1=∠2∵EH∥AB,FH∥DC ∴∠2=∠4,∠1=∠3 ∴∠4=∠3∵∠AGE+∠4=180°,∠GEC+∠3=180° ∴∠AGE=∠GEC∴四边形AGEC是邻角四边形(2)存在等邻角四边形,为四边形AGHC.【总结升华】本题考查了三角形的中位线以及等腰三角形的性质的综合运用.本题较灵活,要求学生能够把题中的条件转化成角,从而找出相等的角来解题.举一反三:【变式】如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是()A.4 B.3 C.2 D.1【答案】D;解:连接DE并延长交AB于H,∵CD∥AB,∴∠C=∠A,∠CDE=∠AHE,∵E是AC中点,∴AE=CE,∴△DCE≌△HAE,∴DE=HE,DC=AH,∵F是BD中点,∴EF是△DHB的中位线,∴EF=12 BH,∴BH=AB-AH=AB-DC=2,∴EF=1.类型二、中点四边形5、如图,在梯形ABCD中,AD∥BC,AB=DC,对角线AC、BD交于点O,AC⊥BD,E、F、G、H分别是AB、BC、CD、DA的中点.(1)求证:四边形EFGH是正方形;(2)若AD=2,BC=4,求四边形EFGH的面积.【思路点拨】(1)先由三角形的中位线定理求出四边相等,然后由AC⊥BD入手,进行正方形的判断.(2)连接EG ,利用梯形的中位线定理求出EG 的长,然后结合(1)的结论求出2EH =92,也即得出了正方形EHGF 的面积. 【答案与解析】证明:(1)在△ABC 中,E 、F 分别是AB 、BC 的中点,故可得:EF =12AC ,同理FG =12BD ,GH =12AC ,HE =12BD , 在梯形ABCD 中,AB =DC ,故AC =BD ,∴EF =FG =GH =HE , ∴四边形EFGH 是菱形. 设AC 与EH 交于点M ,在△ABD 中,E 、H 分别是AB 、AD 的中点, 则EH∥BD, 同理GH∥AC, 又∵AC⊥BD,∴EH⊥HG,∴四边形EFGH 是正方形. (2)连接EG . 在梯形ABCD 中,∵E、G 分别是AB 、DC 的中点, ∴EG=12(AD +BC )=3. 在Rt△EHG 中,∵222EH GH EG +=,EH =GH , ∴2EH =92,即四边形EFGH 的面积为92. 【总结升华】此题考查了等腰梯形的性质及三角形、梯形的中位线定理,解答本题的关键是根据三角形的中位线定理得出EH =HG =GF =FE ,这是本题的突破口. 举一反三:【变式】如图,E 、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点. (1)判断四边形EFGH 的形状,并说明你的理由;(2)连接BD 和AC ,当BD 、AC 满足何条件时,四边形EFGH 是正方形.【答案】解:(1)四边形EFGH 是平行四边形.理由:连接AC ,∵E、F 分别是AB 、BC 的中点,∴EF∥AC,且EF =12AC , 同理,HG∥AC,且HG =12AC ,∴EF∥HG,且EF =HG ,∴四边形EFGH 是平行四边形;(2)当BD =AC ,且B D⊥AC 时,EFGH 是正方形. 理由:连接AC ,BD ,∵E、F 、G 、H 分别是边AB 、BC 、CD 、DA 的中点, ∴EF=GH =12AC ,EH =FG =12BD ,EH∥BD,GH∥AC, ∵BD=AC ,BD⊥AC,∴EH=EF =FG =GH ,EH⊥GH,∴四边形ABCD 是菱形,∠EHG=90°, ∴四边形EFGH 是正方形.。
《解直角三角形》全章复习与巩固(基础) 知识讲解【学习目标】1.了解锐角三角函数的概念,能够正确应用sinA 、cosA 、tanA 、cotA 表示直角三角形中两边的比;记忆30°、45°、60°的正弦、余弦、正切和余切的三角函数值,并能由一个特殊角的三角函数值说出这个角的度数.2.能够正确地使用计算器,由已知锐角求出它的三角函数值,由已知三角函数值求出相应的锐角;3.理解直角三角形中边与边的关系,角与角的关系和边与角的关系,会运用勾股定理、直角三角形的两个锐角互余、直角三角形斜边上中线等于斜边的一半,以及锐角三角函数解直角三角形,并会用解直角三角形的有关知识解决简单的实际问题.4.通过锐角三角函数的学习,进一步认识函数,体会函数的变化与对应的思想;5.通过解直角三角形的学习,体会数学在解决实际问题中的作用.【知识网络】【要点梳理】要点一、直角三角形的性质(1) 直角三角形的两个锐角互余.(2) 直角三角形两直角边的平方和等于斜边的平方.(勾股定理)如果直角三角形的两直角边长分别为a b ,,斜边长为c ,那么222a b c +=.(3) 直角三角形斜边上的中线等于斜边的一半. 要点二、锐角三角函数1.正弦、余弦、正切、余切的定义如右图,在Rt △ABC 中,∠C=900,如果锐角A 确定:(1)∠A 的对边与斜边的比值是∠A 的正弦,记作sinA = ∠A 的对边斜边(2)∠A 的邻边与斜边的比值是∠A 的余弦,记作cosA = ∠A 的邻边斜边(3)∠A 的对边与邻边的比值是∠A 的正切,记作tanA = ∠A 的对边∠A 的邻边(4)∠A 的邻边与对边的比值是∠A 的余切,记作cotA = ∠A 的邻边∠A 的对边要点诠释:(1)正弦、余弦、正切、余切是在一个直角三角形中定义的,其本质是两条线段的比值,它只是一个数值,其大小只与锐角的大小有关,而与所在直角三角形的大小无关.(2)sinA 、cosA 、tanA 、cotA 是一个整体符号,即表示∠A 四个三角函数值,书写时习惯上省略符号“∠”,但不能写成sin ·A ,对于用三个大写字母表示一个角时,其三角函数中符号“∠”不能省略,应写成sin ∠BAC ,而不能写出sinBAC.(3)sin 2A 表示(sinA)2,而不能写成sinA 2. (4)三角函数有时还可以表示成等.2.锐角三角函数的定义锐角∠A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数. 要点诠释:1. 函数值的取值范围对于锐角A 的每一个确定的值,sinA 有唯一确定的值与它对应,所以sinA 是∠A 的函数.同样,cosA 、tanA 、cotA 也是∠A 的函数,其中∠A 是自变量,sinA 、cosA 、tanA 、cotA 分别是对应的函数.其中自变量∠A 的取值范围是0°<∠A <90°,函数值的取值范围是0<sinA <1,0<cosA <1,tanA >0,cotA >0.2.锐角三角函数之间的关系:余角三角函数关系:“正余互化公式” 如∠A+∠B=90°,那么:sinA=cosB ; cosA=sinB ; tanA=cotB, cotA=tanB.同角三角函数关系:sin 2A +cos 2A=1;sin cos 1tanA=,cot ,tan .cos sin cot A A A A A A A==在直角三角形中,如果一个角等于30°,那么它所对的直角边等于斜边的一半.30°、45°、60°角的三角函数值和解含30°、60°角的直角三角形、含45°角的直角三角形为本章的重中之重,是几何计算题的基本工具.要点三、解直角三角形在直角三角形中,由已知元素求出未知元素的过程,叫做解直角三角形. 解直角三角形的依据是直角三角形中各元素之间的一些相等关系,如图:角角关系:两锐角互余,即∠A+∠B=90°; 边边关系:勾股定理,即;边角关系:锐角三角函数,即sin ,cos ,tan ,cot a bab A A A Ac c b a ==== sin ,cos ,tan ,cot b aba B B B B c c a b==== 要点诠释:解直角三角形,可能出现的情况归纳起来只有下列两种情形: (1)已知两条边(一直角边和一斜边;两直角边);(2)已知一条边和一个锐角(一直角边和一锐角;斜边和一锐角).这两种情形的共同之处:有一条边.因此,直角三角形可解的条件是:至少已知一条边.求∠,要点四、解直角三角形的应用解直角三角形的知识应用很广泛,关键是把实际问题转化为数学模型,善于将某些实际问题中的数量关系化归为直角三角形中的边角关系是解决实际应用问题的关键.1.解这类问题的一般过程(1)弄清题中名词、术语的意义,如仰角、俯角、坡度、坡角、方向角等概念,然后根据题意画出几何图形,建立数学模型.(2)将已知条件转化为几何图形中的边、角或它们之间的关系,把实际问题转化为解直角三角形的问题.(3)根据直角三角形(或通过作垂线构造直角三角形)元素(边、角)之间的关系解有关的直角三角形.(4)得出数学问题的答案并检验答案是否符合实际意义,得出实际问题的解.2.常见的应用问题类型(1) 仰角与俯角:(2)坡度:;坡角:.(3)方向角:要点诠释:1.用解直角三角形的知识解决实际问题的基本方法是:把实际问题抽象成数学问题(解直角三角形),就是要舍去实际事物的具体内容,把事物及它们的联系转化为图形(点、线、角等)以及图形之间的大小或位置关系.借助生活常识以及课本中一些概念(如俯角、仰角、倾斜角、坡度、坡角等)的意义,也有助于把实际问题抽象为数学问题.当需要求解的三角形不是直角三角形时,应恰当地作高,化斜三角形为直角三角形再求解.2.锐角三角函数的应用用相似三角形边的比的计算具有一般性,适用于所有形状的三角形,而三角函数的计算是在直角三角形中解决问题,所以在直角三角形中先考虑三角函数,可以使过程简洁。
直角三角形(基础)【学习目标】1.认识直角三角形, 学会用符号和字母表示直角三角形.2.掌握直角三角形的性质定理,并能灵活的应用性质定理解答和证明相关问题.3. 掌握直角三角形的判定定理,并能灵活应用.【要点梳理】要点一、直角三角形的概念有一个角是直角的三角形是直角三角形.直角三角形表示方法:Rt△.如下图,可以记作“Rt△ABC”.要点诠释:三角形有六个元素,分别是:三个角,三个边,在直角三角形中,有一个元素永远是已知的,就是有一个角是90°.直角三角形可分为等腰直角三角形和含有30°的直角三角形两种特殊的直角三角形,每种三角形都有其特殊的性质.要点二、直角三角形的性质定理定理1:直角三角形的两个锐角互余.要点诠释:直角三角形的特征是两锐角互余,反过来就是直角三角形的一个判定:两个角互余的三角形是直角三角形.定理2:直角三角形斜边上的中线等于斜边的一半.定理3:在直角三角形中,30°的角所对的直角边等于斜边的一半.已知:如图Rt△ABC中,∠ACB=90°,∠A=30°,则证明:取AB中点D,连接CD则CD=BD=AD=,∵在Rt△ ABC中,∠ACB=90°,∠A=30°∴∠B=60°,∴△BCD为等边三角形∴要点三、直角三角形的判定定理定理1:如果一个三角形的两个角互余,那么这个三角形是直角三角形.定理2:在一个三角形中,如果一边的中线等于这边的一半,那么这个三角形是直角三角形.如图:已知:CD为AB的中线,且CD=AD=BD,求证:△ABC是直角三角形.证明:∵AD=CD,∴∠A=∠1.同理∠2=∠B.∵∠2+∠B+∠A+∠1=180°,即2(∠1+∠2)=180°,∴∠1+∠2=90°,即:∠ACB=90°,∴△ABC是直角三角形.【典型例题】类型一、直角三角形两锐角互余性质的应用1、(2015春•秦淮区期末)如图,在直角三角形ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.求证:CD⊥AB.【思路点拨】根据∠ACB=90°,得出∠A+∠B=90°,根据∠ACD=∠B,得出∠A+∠ACD=90°,再根据两锐角互余的三角形是直角三角形即可得出答案.【解析】证明:∵∠ACB=90°,∴∠A+∠B=90°,∵∠ACD=∠B,∴∠A+∠ACD=90°,∴∠ADC=90°,∴CD⊥AB.【总结升华】此题考查了直角三角形的性质,关键是根据直角三角形的性质得出∠A+∠B=90°.举一反三:【变式】如图,在△ABC中,∠ACB=90°,CD是AB边上的高线,图中与∠A互余的角有()A.0个B.1个C.2个D.3个【答案】C.类型二、含有30°角的直角三角形2、如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=6,求AB的长.【思路点拨】根据直角三角形中,30°角的对边等于斜边的一半,得出AB与BC 的数量关系.【答案与解析】解:∵∠C=90°,∠A=30°,BC=6,∴AB=2BC=12.【总结升华】本题考查了含30°的直角三角形.含30°的直角三角形中,斜边等于30°角的对边的2倍.3、如图,测量旗杆AB的高度时,先在地面上选择一点C,使∠ACB=15°.然后朝着旗杆方向前进到点D,测得∠ADB=30°,量得CD=13m,求旗杆AB的高.【思路点拨】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CAD,再根据等角对等边的性质可得AD=CD,然后根据直角三角形30°角所对的直角边等于斜边的一半解答即可.【答案与解析】三角形的一个外角等于与它不相邻的两个内角的和的性质,等角对等边的性质,熟记性质是解题的关键.举一反三:【变式】如图,在△ABC中,AB=AC=8cm,∠A=30°,求△ABC的面积.【答案】类型三、直角三角形斜边上的中线等于斜边的一半4、(2016•丰台区二模)如图,△ABC是等边三角形,BD⊥AC于点D,E为BC的中点,连接DE.求证:DE=DC.【思路点拨】根据等边三角形的性质得到AC=BC,CD=AC,∠BDC=90°,根据直角三角形的性质得到DE=BC,于是得到结论.【答案与解析】解:∵△ABC是等边三角形,∴AC=BC,∵BD⊥AC于点D,∴CD=AC,∠BDC=90°,∵E为BC的中点,∴DE=BC,∴DE=DC.【总结升华】本题考查了等边三角形的性质,直角三角形的性质,熟练掌握各性质定理是解题的关键.举一反三:【变式1】如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,将△ADC沿AC边所在的直线折叠,使点D落在点E处,得四边形ABCE.求证:EC∥AB.【答案】证明:∵CD是AB边上的中线,且∠ACB=90°,∴CD=AD.∴∠CAD=∠ACD.又∵△ACE是由△ADC沿AC边所在的直线折叠而成的,∴∠ECA=∠ACD.∴∠ECA=∠CAD.∴EC∥AB.【变式2】如图,在Rt△ABC中,∠C=90°,AC=AB.求证:∠B=30°.请填空完成下列证明.证明:如图,作Rt△ABC的斜边上的中线CD,则 CD=AB=AD ().∵A C=AB,∴AC=CD=AD 即△ACD是等边三角形.∴∠A=°.∴∠B=90°﹣∠A=30°.【答案】直角三角形斜边上的中线等于斜边的一半;60;证明:如图,作Rt△ABC的斜边上的中线CD,则CD=AB=AD(直角三角形斜边上的中线等于斜边的一半).∵AC=AB,∴AC=CD=AD 即△ACD是等边三角形.∴∠A=60°.∴∠B=90°﹣∠A=30°.故答案为:直角三角形斜边上的中线等于斜边的一半;60.类型四、直角三角形的判定5、一个三角形,它的一个内角占内角和的,其余两个角按剩下的度数2:3来分配,这个三角形是什么三角形?【思路点拨】三角形的内角度数和是180°,用“180°×”求出三角形一个内角的度数,然后求出另两个内角度数和,进而根据三角形的分类判断三角形的类别.【答案与解析】解:180×=30°,180°﹣30°=150°,150°×=60°,150°×=90°,答:该三角形是直角三角形.【总结升华】此题考查了三角形的内角和定理,按比例分配应用题和三角形的分类的方法.举一反三:【变式】等腰三角形的一个底角与顶角度数之比是1:2,这个三角形是三角形.【答案】等腰直角;等腰三角形中,一个底角与顶角度数的比是1:2,即三个角的比为2:1:1;进而根据按比例分配知识分别求出最大角为:80°×=90°,得出该三角形为等腰直角三角形.。
第24章 解直角三角形考点一、直角三角形的性质1. 直角三角形的两个锐角互余.可表示如下:∠C =90°⇒∠A +∠B =90°2. 在直角三角形中,30°角所对的直角边等于斜边的一半.301902A BCD AB C ∠=︒⎫⇒=⎬∠=︒⎭ 3. 直角三角形斜边上的中线等于斜边的一半.9012ACB CD AB BD AD D AB ∠=︒⎫⇒===⎬⎭为的中点 4. 勾股定理直角三角形两直角边a ,b 的平方和等于斜边c 的平方,即222c b a =+.5. 摄影定理在直角三角形中,斜边上的高线是两直角边在斜边上的摄影的比例中项,每条直角边是它们在斜边上的摄影和斜边的比例中项.22290CD AD BD ACB AC AD AB CD AB BC BD AB⎧=•∠=︒⎫⎪⇒=•⎬⎨⊥⎭⎪=•⎩ 6. 常用关系式由三角形面积公式可得:AB •CD =AC •BC考点二、直角三角形的判定1. 有一个角是直角的三角形是直角三角形.2. 如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.3. 勾股定理的逆定理如果三角形的三边长a ,b ,c 有关系222c b a =+,那么这个三角形是直角三角形. 考点三、锐角三角函数的概念1. 如图,在△ABC 中,∠C =90°①锐角A 的对边与斜边的比叫做∠A 的正弦,记为sinA ,即A a sin A c∠==的对边斜边 ②锐角A 的邻边与斜边的比叫做∠A 的余弦,记为cos A ,即A b cos A c∠==的邻边斜边 ③锐角A 的对边与邻边的比叫做∠A 的正切,记为tan A ,即A a tan A A b ∠==∠的对边的邻边 ④锐角A 的邻边与对边的比叫做∠A 的余切,记为cot A ,即A b cot A A a∠==∠的邻边的对边 2. 锐角三角函数的概念锐角A 的正弦、余弦、正切、余切都叫做∠A 的锐角三角函数.3. 各锐角三角函数之间的关系〔1〕互余关系:sin A =cos(90°—A ),cos A =sin(90°—A )tan A =cot(90°—A ),cot A =tan(90°—A )〔2〕平方关系:1cos sin 22=+A A〔3〕倒数关系:tan A •cot A =1〔4〕弦切关系:tan A =A A cos sin ;cot A =cos sin A A4. 锐角三角函数的增减性:当角度在0°~90°之间变化时,〔1〕正弦值随着角度的增大〔或减小〕而增大〔或减小〕〔2〕余弦值随着角度的增大〔或减小〕而减小〔或增大〕〔3〕正切值随着角度的增大〔或减小〕而增大〔或减小〕〔4〕余切值随着角度的增大〔或减小〕而减小〔或增大〕5. 一些特殊角的三角函数值三角函数0° 30° 45° 60° 90° sinα 0 21 22 23 1 cosα 1 23 22 21 0 tanα 0 33 1 3 不存在 cotα不存在 3 1 33 01. 解直角三角形的概念: 在直角三角形中,除直角外,一共有五个元素,即三条边和两个锐角,由直角三角形中除直角外的元素求出所有未知元素的过程叫做解直角三角形.2. 解直角三角形的理论依据在Rt△ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c〔1〕三边之间的关系:222c b a =+〔勾股定理〕〔2〕锐角之间的关系:∠A +∠B =90°〔3〕边角之间的关系:sin ,cos ,tan ,cot sin ,cos ,tan ,cot a b a b A A A A c cb a b a b a B B B Bc c a b========。
解直角三角形知识解读解直角三角形与直角三角形的概念、性质、判定和作图有着密切的联系,是在深入研究几何图形性质的根底上,根据条件,计算直角三角形未知的边长、角度和面积,以及与之相关的几何图形的数量。
1、明确解直角三角形的依据和思路在直角三角形中,我们是用三条边的比来表述锐角三角函数定义的。
因此,锐角三角函数的定义本质提醒了直角三角形中边角之间的关系,是解直角三角形的根底。
如图1,在Rt△ABC中,∠C=90°,设三个内角A、B、C所对的边分别为a、b、c〔以下字母同〕,那么解直角三角形的主要依据是〔1〕边角之间的关系:sinA=cosB=,cosA=sinB=,tgA=ctgB=,ctgA=tgB=。
〔2〕两锐角之间的关系:A+B=90°。
〔3〕三条边之间的关系:。
以上每个边角关系式都可看作方程,解直角三角形的思路,就是根据条件,正确地选择直角三角形中边角间的关系式,通过解一元方程来求解。
2、解直角三角形的根本类型和方法我们知道,由直角三角形中的元素求出未知元素的过程叫作解直角三角形,而在直角三角形中,除直角以外还有三条边及两个锐角共五个元素,那么什么样的直角三角形才可解呢?如果两个锐角能否解直角三角形呢?事实上,解直角三角形跟直角三角形的判定与作图有着本质的联系,因为两个元素〔至少有一个是边〕可以判定直角三角形全等,也可以作出直角三角形,即此时直角三角形是确定的,所以这样的直角三角形是可解的。
由于两个锐角的直角三角形是不确定的,它们是无数多个相似的直角三角形,因此求不出各边的长。
所以,要解直角三角形,给出的除直角外的两个元素中,必须至少有一个是边。
这样,解直角三角形就分为两大类,即一条边及一个锐角或两条边解直角三角形。
四种根本类型和解法列表如下:条件解法一边及一锐角直角边a及锐角AB=90°-A,b=a·ctgA,斜边c及锐角A B=90°-A,a=c·sinA,b=c·cosA两边两条直角边a和b ,B=90°-A,直角边a和斜边c,B=90°-A,例1、如图2,假设图中所有的三角形都是直角三角形,且∠A=α,AE=1,求AB的长。
直角三角形(基础)
【学习目标】
1.认识直角三角形, 学会用符号和字母表示直角三角形.
2.掌握直角三角形的性质定理,并能灵活的应用性质定理解答和证明相关问题.
3. 掌握直角三角形的判定定理,并能灵活应用.
【要点梳理】
要点一、直角三角形的概念
有一个角是直角的三角形是直角三角形.直角三角形表示方法:Rt△.如下图,可以记作“Rt△ABC”.
要点诠释:三角形有六个元素,分别是:三个角,三个边,在直角三角形中,有一个元素永远是已知的,就是有一个角是90°.直角三角形可分为等腰直角三角形和含有30°的直角三角形两种特殊的直角三角形,每种三角形都有其特殊的性质.
要点二、直角三角形的性质定理
定理1:直角三角形的两个锐角互余.
要点诠释:直角三角形的特征是两锐角互余,反过来就是直角三角形的一个判定:两个角互余的三角形是直角三角形.
定理2:直角三角形斜边上的中线等于斜边的一半.
定理3:在直角三角形中,30°的角所对的直角边等于斜边的一半.
已知:如图Rt△ABC中,∠ACB=90°,∠A=30°,则
证明:取AB中点D,连接CD
则CD=BD=AD=,
∵在Rt△ ABC中,∠ACB=90°,∠A=30°
∴∠B=60°,
∴△BCD为等边三角形
∴
要点三、直角三角形的判定定理
定理1:如果一个三角形的两个角互余,那么这个三角形是直角三角形.
定理2:在一个三角形中,如果一边的中线等于这边的一半,那么这个三角形是直角三角形.
如图:已知:CD为AB的中线,且CD=AD=BD,
求证:△ABC是直角三角形.
证明:∵AD=CD,
∴∠A=∠1.
同理∠2=∠B.
∵∠2+∠B+∠A+∠1=180°,
即2(∠1+∠2)=180°,
∴∠1+∠2=90°,
即:∠ACB=90°,
∴△ABC是直角三角形.
【典型例题】
类型一、直角三角形两锐角互余性质的应用
1、(2015春•秦淮区期末)如图,在直角三角形ABC中,∠ACB=90°,D是AB上一点,且∠ACD=∠B.
求证:CD⊥AB.
【思路点拨】根据∠ACB=90°,得出∠A+∠B=90°,根据∠ACD=∠B,得出∠A+∠ACD=90°,再根据两锐角互余的三角形是直角三角形即可得出答案.
【解析】证明:∵∠ACB=90°,
∴∠A+∠B=90°,
∵∠ACD=∠B,
∴∠A+∠ACD=90°,
∴∠ADC=90°,
∴CD⊥AB.
【总结升华】此题考查了直角三角形的性质,关键是根据直角三角形的性质得出∠A+∠B=90°.
举一反三:
【变式】如图,在△ABC中,∠ACB=90°,CD是AB边上的高线,图中与∠A互余的角有()A.0个B.1个C.2个D.3个
【答案】C.
类型二、含有30°角的直角三角形
2、如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=6,求AB的长.
【思路点拨】根据直角三角形中,30°角的对边等于斜边的一半,得出AB与BC 的数量关系.
【答案与解析】
解:∵∠C=90°,∠A=30°,BC=6,
∴AB=2BC=12.
【总结升华】本题考查了含30°的直角三角形.含30°的直角三角形中,斜边等于30°角的对边的2倍.
3、如图,测量旗杆AB的高度时,先在地面上选择一点C,使∠ACB=15°.然后朝着旗杆方向前进到点D,测得∠ADB=30°,量得CD=13m,求旗杆AB的高.
【思路点拨】根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CAD,再根据等角对等边的性质可得AD=CD,然后根据直角三角形30°角所对的直角边等于斜边的一半解答即可.
【答案与解析】
三角形的一个外角等于与它不相邻的两个内角的和的性质,等角对等边的性质,熟记性质是解题的关键.
举一反三:
【变式】如图,在△ABC中,AB=AC=8cm,∠A=30°,求△ABC的面积.
【答案】
类型三、直角三角形斜边上的中线等于斜边的一半
4、(2016•丰台区二模)如图,△ABC是等边三角形,BD⊥AC于点D,E为BC的中点,连接DE.求证:DE=DC.
【思路点拨】根据等边三角形的性质得到AC=BC,CD=AC,∠BDC=90°,根据直角三角形
的性质得到DE=BC,于是得到结论.
【答案与解析】
解:∵△ABC是等边三角形,
∴AC=BC,
∵BD⊥AC于点D,
∴CD=AC,∠BDC=90°,
∵E为BC的中点,
∴DE=BC,
∴DE=DC.
【总结升华】本题考查了等边三角形的性质,直角三角形的性质,熟练掌握各性质定理是解题的关键.
举一反三:
【变式1】如图,在Rt△ABC中,∠ACB=90°,CD是AB边上的中线,将△ADC沿AC边所在的直线折叠,使点D落在点E处,得四边形ABCE.
求证:EC∥AB.
【答案】
证明:∵CD是AB边上的中线,且∠ACB=90°,
∴CD=AD.
∴∠CAD=∠ACD.
又∵△ACE是由△ADC沿AC边所在的直线折叠而成的,
∴∠ECA=∠ACD.
∴∠ECA=∠CAD.
∴EC∥AB.
【变式2】如图,在Rt△ABC中,∠C=90°,AC=AB.求证:∠B=30°.
请填空完成下列证明.
证明:如图,作Rt△ABC的斜边上的中线CD,
则 CD=AB=AD ().
∵A C=AB,
∴AC=CD=AD 即△ACD是等边三角形.
∴∠A=°.
∴∠B=90°﹣∠A=30°.
【答案】直角三角形斜边上的中线等于斜边的一半;60;
证明:如图,作Rt△ABC的斜边上的中线CD,
则CD=AB=AD(直角三角形斜边上的中线等于斜边的一半).
∵AC=AB,
∴AC=CD=AD 即△ACD是等边三角形.
∴∠A=60°.
∴∠B=90°﹣∠A=30°.
故答案为:直角三角形斜边上的中线等于斜边的一半;60.
类型四、直角三角形的判定
5、一个三角形,它的一个内角占内角和的,其余两个角按剩下的度数2:3来分配,这个三角形是什么三角形?
【思路点拨】三角形的内角度数和是180°,用“180°×”求出三角形一个内角的度数,然后求出另两个内角度数和,进而根据三角形的分类判断三角形的类别.
【答案与解析】
解:180×=30°,
180°﹣30°=150°,
150°×=60°,
150°×=90°,
答:该三角形是直角三角形.
【总结升华】此题考查了三角形的内角和定理,按比例分配应用题和三角形的分类的方法.举一反三:
【变式】等腰三角形的一个底角与顶角度数之比是1:2,这个三角形是三角形.【答案】等腰直角;
等腰三角形中,一个底角与顶角度数的比是1:2,即三个角的比为2:1:1;进而根据按比例分配知识分别求出最大角为:80°×=90°,得出该三角形为等腰直角三角形.。