河南省安阳二中高二数学最新学案 第2章 第7课时 《等差数列的前n项和》(2)(学生版)(人教A版必修5)
- 格式:doc
- 大小:183.00 KB
- 文档页数:4
2.3.2 等差数列的前n 项和(二)2.3.2 等差数列的前n 项和(二一、知识与技能1.进一步熟练掌握等差数列的通项公式和前n 项和公式;2.了解等差数列的一些性质,并会用它们解决一些相关问题;3.会利用等差数列通项公式与前n 项和的公式研究S n 的最值二、过程与方法1.经历公式应用的过程,形成认识问题、解决问题的一般思路和方法;2.学会其常用的数学方法和体现出的数学思想,促进学生的思维水平的发展三、情感态度与价值观通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题教学重点 熟练掌握等差数列的求和公式教学难点 灵活应用求和公式解决问题导入新课师 首先回忆一下上一节课所学主要内容生 我们上一节课学习了等差数列的前n 项和的两个公式:(1)2)(1n n a a n S +=;(2)2)1(1dn n na S n -+=师 对,我们上一节课学习了等差数列的前n 项和的公式,了解等差数列的一些性质.学会了求和问题的一些方法,本节课我们继续围绕等差数列的前n 项和的公式的内容来进一步学习与探究推进新课 [合作探究]师 本节课的第一个内容是来研究一下等差数列的前n 项和的公式的函数表示,请同学们将求和公式写成关于n 的函数形式 生 我将等差数列{a n }的前n 项和的公式2)1(1dn n na S n -+=整理、变形得到:)2(212d a n d S n -+=n师 很好!我们能否说(*)式是关于n 的二次函数呢生1 能,(*)式就是关于n 的二次函数生2 不能,(*)式不一定是关于n 的二次函数师 为什么生2 若等差数列的公差为0,即d =0时,(*)式实际是关于n 的一次函数!只有当d ≠0时,(*)式才是关于n 的二次函数师 说得很好!等差数列{a n }的前n 项和的公式可以是关于n 的一次函数或二次函数.我来问一下:这函数有什么特征生 它一定不含常数项,即常数项为生 它的二次项系数是公差的一半师 对的,等差数列{a n }的前n 项和为不含常数项的一次函数或二次函数.问:若一数列的前n 项和为n 的一次函数或二次函数,则这数列一定是等差数列吗生 不一定,还要求不含常数项才能确保是等差数列师 说的在理.同学们能画出(*)式表示的函数图象或描述一下它的图象特征吗生当d =0时,(*)式是关于n 的一次函数,所以它的图象是位于一条直线上的离散的点列,当d ≠0时,(*)式是n 的二次函数,它的图象是在二次函数x da x d y )2(212-+=的图象上的一群孤立的点.这些点的坐标为(n ,S n )(n =1,2,3,师 说得很精辟[例题剖析] 【例】 (课本第51页例分析:等差数列{a n }的前n 项和公式可以写成n da n d S n )2(212-+=,所以S n 可以看成函数x da x d y )2(212-+=(x∈N *)当x=n 时的函数值.另一方面,容易知道S n 关于n 的图象是一条抛物线上的点.因此我们可以利用二次函数来求n 的值.(解答见课本第52页师 我们能否换一个角度再来思考一下这个问题呢?请同学们说出这个数列的首项和公差. 生 它的首项为5,公差为75-师 对,它的首项为正数,公差小于零,因而这个数列是个单调递减数列,当这数列的项出现负数时,则它的前n 项的和一定会开始减小,在这样的情况下,同学们是否会产生新的解题思路呢?生 老师,我有一种解法:先求出它的通项,求得结果是a n =a 1+(n -1)d =74075+-n 我令74075+=n a n ≤0,得到了n ≥8,这样我就可以知道a 8=0,而a 9<0.从而便可以发现S 7=S 8,从第9项和S n 开始减小,由于a 8=0对数列的和不产生影响,所以就可以说这个等差数列的前7项或8项的和最大师 说得非常好!这说明我们可以通过研究它的通项取值的正负情况来研究数列的和的变化情况[方法引导]师 受刚才这位同学的新解法的启发,我们大家一起来归纳一下这种解法的规律:①当等差数列{a n }的首项大于零,公差小于零时,它的前n 项的和有怎样的最值?可通过什么来求达到最值时的n 的值生S n 有最大值,可通过⎩⎨⎧≤≥+001n n a a 求得n 的值师 ②当等差数列{a n }的首项不大于零,公差大于零时,它的前n 项的和有怎样的最值?可通过什么来求达到最值时的n 的值生 S n 有最小值,可以通过⎩⎨⎧≥≤+01n n a a 求得n 的值[教师精讲]好!有了这种方法再结合前面的函数性质的方法,我们求等差数列的前n 项的和的最值问题就有法可依了.主要有两种:(1)利用a n 取值的正负情况来研究数列的和的变化情况; (2)利用S n :由n da n d S n )2(212-+=利用二次函数求得S n 取最值时n 的值课堂练习请同学们做下面的一道练习:已知:a n =1 024+lg21-n(lg2=0.3 01 0)n ∈*.问多少项之和为最大?前多少项之和的绝对值最小?(让一位学生上黑板去板演解:1°⎩⎨⎧-=≥-+=+02lg 102402lg )1(10241<n a n a n n2lg 10242lg 1024≤⇒n <+1⇒3 401<n <3 403.所以n2°S n =1 024n +2)1(-n n (-lg2),当S n =0或S n 趋近于0时其和绝对值最小,令S n =0,即1 024+2)1(-n n (-lg2)=0,得n =2lg 2048因为n ∈N *,所以有n(教师可根据学生的解答情况和解题过程中出现的问题进行点评[合作探究]师 我们大家再一起来看这样一个问题: 全体正奇数排成下表:3 7 913 15 1721 23 25 27……此表的构成规律是:第n行恰有n个连续奇数;从第二行起,每一行第一个数与上一行最后一个数是相邻奇数,问2 005是第几行的第几个数师此题是数表问题,近年来这类问题如一颗“明珠”频频出现在数学竞赛和高考中,成为出题专家们的“新宠”,值得我们探索.请同学们根据此表的构成规律,将自己的发现告诉我.生1 我发现这数表n行共有1+2+3+…+n个数,即n行共有2)1(+nn个奇数师很好!要想知道2 005是第几行的第几个数,必须先研究第n行的构成规律生 2 根据生1的发现,就可得到第n行的最后一个数是2×2)1(+nn-1=n2+n-生3 我得到第n行的第一个数是(n2+n-1)-2(n-1)=n2-n师现在我们对第n行已经非常了解了,那么这问题也就好解决了,谁来求求看生4 我设n2-n+1≤2 005≤n2+n-1,解这不等式组便可求出n=45,n2-n+1=1 981.再设2 005是第45行中的第m个数,则由2 005=1 981+(m-1)×2,解得m=13.因此,2 005是此表中的第45行中的第13个数师很好!由这解法可以看出,只要我们研究出了第n行的构成规律,则可由此展开我们的思路.从整体上把握等差数列的性质,是迅速解答本题的关键课堂小结本节课我们学习并探究了等差数列的前n项和的哪些内容生1我们学会了利用等差数列通项公式与前n项和的公式研究S n的最值的方法:①利用a n :当a n >0,d <0,前n 项和有最大值.可由a n ≥0,且a n +1≤0,求得n 的值;当a n ≤0,d >0,前n 项和有最小值.可由a n ≤0,且a n +1≥0,求得n 的值②利用S n :由S n =2d n 2+(a 1-2d)n 利用二次函数求得S n 取最值时n 的值生2 我们还对等差数列中的数表问题的常规解法作了探究,学习了从整体上把握等差数列的性质来解决问题的数学思想方法师 本节课我们在熟练掌握等差数列的通项公式和前n 项和公式的基础上,进一步去了解了等差数列的一些性质,并会用它们解决一些相关问题.学会了一些常用的数学方法和数学思想,从而使我们从等差数列的前n 项和公式的结构特征上来更深刻地认识等差数列布置作业课本第52页习题2.3 A 组第5、6题预习提纲: ①什么是等比数列?②等比数列的通项公式如何求?等差数列的前n 项和(二)S n 与函数的联系例4求S n 最值的方法 学生练习 数表问题。
听课第6课时 【学习导航】知识网络学习要求1.进一步熟练掌握等差数列的通项公式和前n 项和公式;2.了解等差数列的一些性质,并会用它们解决一些相关问题;3.利用等差数列解决相关的实际问题。
【自学评价】等差数列的性质:1.当公差0d ≠时,等差数列的通项公式11(1)n a a n d dn a d =+-=+-是关于n 的_______函数,且斜率为公差d ;前n 和1(1)2n n n S na d -=+21()22d d n a n =+-是关于n 的_____________函数.2.若公差0d >,则为递增等差数列,若公差0d <,则为递减等差数列,若公差0d =,则为常数列。
3.当m n p q +=+时,则有_____________,特别地,当2m n p +=时,则有__________4.在等差数列中,每隔相同的项抽出来的项按照原来顺序排列,构成的新数列是_______.5.若{}n a 、是等差数列,232,,n n n n n S S S S S -- ,…成__________6.在等差数列{}n a 中,当项数为偶数2n 时,S S nd =偶奇-;项数为奇数21n -时,S S a -=奇偶中,21(21)n S n a -=-⋅中(这里a 中即n a );:(1):奇偶S S k k =+。
7.若等差数列{}n a 、{}n b 的前n 项和分别为n A 、n B ,且()n nA f nB =,则2121(21)(21)n n n n n n a n a A b n b B ---==- (21)f n =-.8.如果两等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的____________.注意:公共项仅是公共的项,其项数不一定相同,即研究n m a b =.【精典范例】【例1】某剧场有20排座位,后一排比前一排多2个座位,最后一排有60个座位,这个剧场共有多少个座位?【解】【例2】某种卷筒卫生纸绕在盘上,空盘时盘芯直径40mm,满盘时直径120mm已知卫生纸的厚度为0.1mm,问:满盘时卫生纸的总长度大约是多少米(精确到1m)?【解】【例3】)教育储蓄是一种零存整取定期储蓄存款,它享受整存整取利率,利息免税.教育储蓄的对象为在校小学四年级(含四年级)以上的学生.假设零存整取3年期教育储蓄的月利率为2.1‰.(1)欲在3年后一次支取本息合计2万元,每月大约存入多少元?(2)零存整取3年期教育储蓄每月至多存入多少元?此时3年后本息合计约为多少(精确到1元)?【解】追踪训练一1. 已知a n = 1562+n n(n ∈N *), 则数列{a n }的最大项是( )A .第12项B .第13项C .第12项或第13项D .不存在 2. 已知等差数列{an}满足a1+a2+…+a101=0,则有( ). A.1011a a +>0 B.1011a a +<0C.1011a a +=0 D.5151=a3. 已知一个凸多边形的内角度数组成公差为5°的等差数列,且最小角为120°,问它是几边形.4.某钢材库新到200根相同的圆钢,要把它们堆放成正三角形垛(如图),并使剩余的圆钢尽可能地少,那么将剩余多少根圆钢?5.时钟在1点钟的时候敲一下,在2点钟的时候敲2下……在12点钟的时候敲12下,中间每半点钟也敲一下.一昼夜内它一共敲多少下?【选修延伸】【例4】已知数列{}n a 的通项公式为n a =)12)(12(1+-n n ,求它的前n 项和. 分析:我们先看通项n a =)12)(12(1+-n n ,然后将其分裂成⎪⎭⎫ ⎝⎛+--12112121n n ,再求和.【解】点评: 如果数列的通项公式可转化为())(1n f n f -+形式,常采用裂项求和的方法.特别地,当数列形如⎭⎬⎫⎩⎨⎧+11n n a a ,其中{}n a 是等差数列,可尝试采用此法. 常用裂项技巧如:⎪⎭⎫ ⎝⎛+-=+k n n k k n n 111)(1,()n k n kn k n -+=++11等. 【例5】已知数列{}n a 满足321=a ,n n a n n a 11+=+,求n a . 【解】听课追踪训练二1.在等差数列中,前n 项的和为S n ,若S m =2n,S n =2m,(m 、n ∈N 且m ≠n),则公差d 的值为( )A.-mn n m )(4+ B.-)(4n m mn+C.-mn n m )(2+ D. -)(2n m mn+2.三角形三个边长组成等差数列,周长为36,内切圆周长为6π,则此三角形是()A .正三角形 B .等腰直角三角形C .等腰三角形,但不是直角三角形D .直角三角形,但不是等腰三角形3.设()442xx f x =+,利用课本中推导等差数列前n 项和方法,求121111f f ++⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭…1011f +⎛⎫⎪⎝⎭的值为 .4.已知数列{}n a 满足211=a ,n n a a n n ++=+211,求n a .5.已知31=a ,n n a n n a 23131+-=+ )1(≥n ,求n a .。
2.3.2 等差数列的前n 项和(二)一、内容及其解析(一)内容:等差数列的前n 项和(二)解析:“等差数列的前n 项和”第二节课的主要内容是让学生进一步熟练掌握等差数列的通项公式和前n 项和公式,进一步去了解等差数列的一些性质,并会用它们解决一些相关问题;学会利用等差数列通项公式与前n 项和的公式研究S n n 项和公式的认识更为深刻.通过本节例题的教学,使学生能活用求和公式解题,并进一步感受到数列与函数、数列与不等式等方面的联系,促进学生对本节内容认知结构的形成,通过探究一些特殊数学求和问题的思路和方法,体会数学思想方法的运用.在本节教学中,应让学生融入问题情境中,经历知识的形成和发展,通过观察、操作、探索、交流、反思,来认识和理解等差数列的求和内容,学会学习并能积极地发展自己的能力.教学重点 熟练掌握等差数列的求和公式.教学难点 灵活应用求和公式解决问题.二、目标及其解析(一)目标:n 项和公式;2.了解等差数列的一些性质,并会用它们解决一些相关问题;n 项和的公式研究S n 的最值.1.经历公式应用的过程,形成认识问题、解决问题的一般思路和方法;2.学会其常用的数学方法和体现出的数学思想,促进学生的思维水平的发展.三、问题诊断分析通过有关内容在实际生活中的应用,使学生再一次感受数学源于生活,又服务于生活的实用性,引导学生要善于观察生活,从生活中发现问题,并数学地解决问题.四、教学过程问题与题例师 首先回忆一下上一节课所学主要内容.生 我们上一节课学习了等差数列的前n 项和的两个公式:(1)2)(1n n a a n S +=;(2)2)1(1d n n na S n -+=. 师 对,我们上一节课学习了等差数列的前n 项和的公式,了解等差数列的一些性质.学会了求和问题的一些方法,本节课我们继续围绕等差数列的前n 项和的公式的内容来进一步学习与探究.推进新课[合作探究]师 本节课的第一个内容是来研究一下等差数列的前n 项和的公式的函数表示,请同学们将求和公式写成关于n 的函数形式.生 我将等差数列{a n }的前n 项和的公式2)1(1d n n na S n -+=整理、变形得到:)2(212d a n d S n -+=n .(*) 师 很好!我们能否说(*)式是关于n 的二次函数呢?生1 能,(*)式就是关于n 的二次函数.生2 不能,(*)式不一定是关于n 的二次函数.师 为什么? 生2 若等差数列的公差为0,即d =0时,(*)式实际是关于n 的一次函数!只有当d ≠0时,(*)式才是关于n 的二次函数.师 说得很好!等差数列{a n }的前n 项和的公式可以是关于n 的一次函数或二次函数.我来问一下:这函数有什么特征?生 它一定不含常数项,即常数项为0.生 它的二次项系数是公差的一半. ……师 对的,等差数列{a n }的前n 项和为不含常数项的一次函数或二次函数.问:若一数列的前n 项和为n 的一次函数或二次函数,则这数列一定是等差数列吗?生 不一定,还要求不含常数项才能确保是等差数列.师 说的在理.同学们能画出(*)式表示的函数图象或描述一下它的图象特征吗?生 当d =0时,(*)式是关于n 的一次函数,所以它的图象是位于一条直线上的离散的点列,当d ≠0时,(*)式是n 的二次函数,它的图象是在二次函数x d a x d y )2(212-+=的图象上的一群孤立的点.这些点的坐标为(n ,S n )(n =1,2,3,…).师 说得很精辟.[例题剖析]【例】 (课本第51页例4)分析:等差数列{a n }的前n 项和公式可以写成n d a n d S n )2(212-+=,所以S n 可以看成函数x d a x d y )2(212-+= (x∈N *)当x=n 时的函数值.另一方面,容易知道S n 关于nn 的值.(解答见课本第52页)师 我们能否换一个角度再来思考一下这个问题呢?请同学们说出这个数列的首项和公差. 生 它的首项为5,公差为75-. 师 对,它的首项为正数,公差小于零,因而这个数列是个单调递减数列,当这数列的项出现负数时,则它的前n 项的和一定会开始减小,在这样的情况下,同学们是否会产生新的解题思路呢?生 老师,我有一种解法:先求出它的通项,求得结果是a n =a 1+(n -1)d =74075+-n . 我令74075+=n a n ≤0,得到了n ≥8,这样我就可以知道a 8=0,而a 97=S 8,从第9项和S n 开始减小,由于a 8=0对数列的和不产生影响,所以就可以说这个等差数列的前7项或8项的和最大.师 说得非常好!这说明我们可以通过研究它的通项取值的正负情况来研究数列的和的变化情况.[方法引导]师 受刚才这位同学的新解法的启发,我们大家一起来归纳一下这种解法的规律: ①当等差数列{a n }的首项大于零,公差小于零时,它的前n 项的和有怎样的最值?可通过什么来求达到最值时的n 的值?生S n 有最大值,可通过⎩⎨⎧≤≥+001n n a a 求得n 的值.师 ②当等差数列{a n }的首项不大于零,公差大于零时,它的前n 项的和有怎样的最值?可通过什么来求达到最值时的n 的值?生 S n 有最小值,可以通过⎩⎨⎧≥≤+001n n a a 求得n 的值.[教师精讲]好!有了这种方法再结合前面的函数性质的方法,我们求等差数列的前n 项的和的最值问题就有法可依了.主要有两种:(1)利用a n 取值的正负情况来研究数列的和的变化情况;(2)利用S n :由n d a n d S n )2(212-+=利用二次函数求得S n 取最值时n 的值.课堂练习请同学们做下面的一道练习:已知:a n =1 024+lg21-n (lg2=0.3 01 0)n ∈*.问多少项之和为最大?前多少项之和的绝对值最小?(让一位学生上黑板去板演)解:1°⎩⎨⎧-=≥-+=+02lg 102402lg )1(10241<n a n a n n2lg 10242lg 1024≤⇒n <+1⇒3 401<nn =3 402. 2°S n =1 024n +2)1(-n n (-lg2),当S n =0或S n 趋近于0时其和绝对值最小, 令S n =0,即1 024+2)1(-n n (-lg2)=0,得n =2lg 2048+1≈6 804.99. 因为n ∈N *,所以有n =6 805.(教师可根据学生的解答情况和解题过程中出现的问题进行点评)[合作探究]师 我们大家再一起来看这样一个问题:全体正奇数排成下表:13 57 9 1113 15 17 1921 23 25 27 29…… ……此表的构成规律是:第n 行恰有n 个连续奇数;从第二行起,每一行第一个数与上一行最后一个数是相邻奇数,问2 005是第几行的第几个数?师 此题是数表问题,近年来这类问题如一颗“明珠”频频出现在数学竞赛和高考中,成为出题专家们的“新宠”,值得我们探索.请同学们根据此表的构成规律,将自己的发现告诉我. 生1 我发现这数表n 行共有1+2+3+…+n 个数,即n 行共有2)1(+n n 个奇数. 师 很好!要想知道2 005是第几行的第几个数,必须先研究第n 行的构成规律.生2 根据生1的发现,就可得到第n 行的最后一个数是2×2)1( n n -1=n 2+n -1. 生3 我得到第n 行的第一个数是(n 2+n -1)-2(n -1)=n 2-n +1.师 现在我们对第n 行已经非常了解了,那么这问题也就好解决了,谁来求求看?生4 我设n 2-n +1≤2 005≤n 2+n -1,解这不等式组便可求出n =45,n 2-n +1=1 981.再设2 005是第45行中的第m 个数,则由2 005=1 981+(m-1)×2,解得m=13.因此,2 005是此表中的第45行中的第13个数.师 很好!由这解法可以看出,只要我们研究出了第n 行的构成规律,则可由此展开我们的思路.从整体上把握等差数列的性质,是迅速解答本题的关键.五、目标检测《优化设计》《自我测评》六、课堂小结本节课我们学习并探究了等差数列的前n 项和的哪些内容?生1我们学会了利用等差数列通项公式与前n 项和的公式研究S n 的最值的方法: ①利用a n :当a n >0,d <0,前na n ≥0,且a n +1≤0,求得n 的值;当a n ≤0,d >0,前na n ≤0,且a n +1≥0,求得n 的值.②利用S n :由S n =2d n 2+(a 1-2d )n 利用二次函数求得S n 取最值时n 的值. 生2 我们还对等差数列中的数表问题的常规解法作了探究,学习了从整体上把握等差数列的性质来解决问题的数学思想方法.师 本节课我们在熟练掌握等差数列的通项公式和前n 项和公式的基础上,进一步去了解了等差数列的一些性质,并会用它们解决一些相关问题.学会了一些常用的数学方法和数学思想,从而使我们从等差数列的前n 项和公式的结构特征上来更深刻地认识等差数列.七、配餐练习《优化设计》 《优化作业》。
4.2.2 等差数列的前n项和公式(第二课时)【学习目标】(1)能熟练处理与等差数列的相关量之间的关系;(2)用函数的思想解决数列的最大(小)项、和的最大(小)值问题;(3)会利用等差数列的性质灵活解决与之相关的问题.【知识复习】1、等差数列的通项公式:a n=a1+(n−1)d2、等差数列前n项和的公式:S n=n(a1+a n)2S n=na1+n(n−1)2d【例题精讲】例1(课本例8)(实际应用)某校新建一个报告厅,要求容纳800个座位,报告厅共有20排座位,从第2排起后一排都比前一排多2个座位. 问第1排应安排多少个座位.跟踪训练11、某市一家商场的新年最高促销奖设立了两种领奖方式:第一种,获奖者可以选择2000元的奖金;第二种,从12月20日到第二年的1月1日,每天道商场领取奖品,第1天领取的奖品价值为100元,第2天为110元,以后逐天增加10元。
你认为哪种领奖方式获奖者受益更多?2、虎甲虫以爬行速度闻名,下表记录了一只虎甲虫连续爬行n s(n=1,2,…,100)时爬行的距离.(1)你能建立一个数列模型,近似地表示这只虎甲虫连续爬行的距离与时间之间的关系吗?(2)利用建立的模型计算,这只虎甲虫连续爬行1 min能爬多远(精确到0.01m)?它连续爬行10m 需要多长时间(精确到0.1s )?例2(研究等差数列前n 项和公式的性质)探究:如果数列{a n }的前n 项和为S n =pn 2+qn +r ,其中p,q,r 为常数,且p ≠0,那么这个数列一定是等差数列吗?若是,则它的首项与公差分别是什么?证:当n≥2时,a n =S n -S n-1=pn 2+qn+r-p(n-1)2-q(n-1)-r=2pn-p+q 当n=1时,a 1=S 1=p+q+r当r ≠0时,a 1不满足a n =2pn-p+q ,此时数列不是等差数列. 当且仅当r =0时,a 1满足a n =2pn-p+q ,此时该数列是等差数列.故只有当r=0时该数列才是等差数列, 其中首项a 1=p+q, 公差d=2p(p≠0).跟踪训练2-1已知数列{a n }的n 项和为S n =14n 2+23n +3 ,求数列{a n }的通项公式.解:当n ≥2时,a n =S n −S n−1=14n 2+23n +3−[14(n −1)2+23(n −1)+3]=12n +512当n =1时,a 1=S 1=14+23+3=4712,不满足上式故数列{a n }的通项公式为a n ={4712,n =112n +512,n ≥2证明:∵S n =na 1+n (n−1)2d =d 2n 2+(a 1−d2)n∴S n n =d 2n +(a 1−d2) ∴S n n −S n−1n −1=d 2n +(a 1−d 2)−[d 2(n −1)+(a 1−d 2)]=d2故{Snn }是公差为d2的等差数列.跟踪训练2-2 已知S n是等差数列{a n}的前n项和.}是等差数列;(1)证明:{S nn}的前n项和,若S4=12,S8=40,求T n.(2)设T n为数列{S nn证明:∵S m=a1+a2+⋯+a m∴S2m−S m=a m+1+a m+2+⋯+a2m=(a1+a2+⋯+a m)+m2d S3m−S2m=a2m+1+a2m+2+⋯+a3m=(a m+1+a m+2+⋯+a2m)+m2d ∴(S2m−S m)−S m=(S3m−S2m)−(S2m−S m)=m2d∴S m,S2m−S m,S3m−S2m构成等差数列,公差为m2d.跟踪训练2-31.已知等差数列{a n}的n项和为S n,且S10=310,S20=1220,求S30.解:∵数列{a n}为等差数列,∴S10,S20-S10,S30-S20也成等差数列,∴2(S20-S10)=S10+S30-S20,即2×(1 220-310)=310+S30-1 220,∴S30=2 730.证明:a mb n=2a m 2b n=a 1+a 2m−1b 1+b 2n−1=(2m−1)(a 1+a 2m−1)212m−1(2n−1)(b 1+b 2n−1)212n−1=(2n−1)S 2m−1(2m−1)T 2n−1跟踪训练2-41.已知{a n },{b n }均为等差数列,其前n 项和分别为S n ,T n ,且S n T n=2n+2n+3,则a 5b 5=__53__.2、设等差数列{b n }的前n 项和为T n . 若a n b n=5n+2n+3,则 S5T5=__176__;证明: S 2n =2n (a 1+a 2n )2=n (a 1+a 2n )=n (a n +a n+1),S 偶−S 奇=(a 2−a 1)+(a 4−a 3)+⋯+(a 2n −a 2n−1)=ndS 偶S 奇=n (a 2+a 2n )2n (a 1+a 2n−1)2=a 2+a 2n a 1+a 2n−1=2a n+12a n =a n+1a n.跟踪训练2-51.一个等差数列的前12项和为354,前12项中偶数项和与奇数项和之比为32∶27,则公差d =______.解:由条件{S 奇+S 偶=354S 偶S 奇=3227) ,解得{S 偶=192S 奇=162)∴ 由S 偶−S 奇=6d 得 d =5证明:S 2n+1=(2n+1)(a 1+a 2n+1)2=(2n+1)2a n+12=(2n +1)a n+1S 奇−S 偶=a 1+(a 3−a 2)+(a 5−a 4)+⋯+(a 2n+1−a 2n )=a 1+nd =a n+1S 偶S 奇=n (a 2+a 2n )2(n +1)(a 1+a 2n+1)2=n (a 2+a 2n )(n +1)(a 1+a 2n+1)=n n +1.跟踪训练2-61、项数为奇数的等差数列{a n },奇数项之和为44,偶数项之和为33,求这个数列的中间项及项数.解:设等差数列{a n }共有(2n +1)项,则奇数项有(n +1)项,偶数项有n 项,中间项是第(n +1)项,即a n +1,∴S 奇S 偶=12(a 1+a 2n +1)(n +1)12(a 2+a 2n )n =(n +1)a n +1na n +1=n +1n =4433=43,解得n =3.∵S 奇=(n +1)a n +1=44,∴a n +1=11.∴这个数列的中间项为11,共有2n +1=7(项).例3(课本例9)已知等差数列{a n }的前n 项和为S n ,若a 1=10,公差d =−2,则S n 是否存在最大值?若存在,求S n 的最大值及取得最大值时n 的值;若不存在,请说明理由.【总结】求等差数列{a n }的前n 项和S n 的最值的方法 1.前n 项和公式法利用S n =An 2+Bn 进行配方,求二次函数的最值,此时n 应取最接近−B 2A的正整数值;2.通项公式法利用等差数列的增减性及a n 的符号变化(1)当a 1>0,d <0时,数列前面有若干项为正, 此时所有正项的和为S n 的最大值. 此时由a n ≥0且a n+1≤0求n 的值;(2)当a 1<0,d >0时,数列前面有若干项为负, 此时所有负项的和为S n 的最小值. 此时由a n ≤0 且a n+1≥ 0求n 的值;注意:当数列的项中有数值为0时,n应有两解.跟踪训练31、已知等差数列-4.2,-3.7,-3.2,…的前n项和为S n,S n是否存在最大(小)值?如果存在,求出取得最值时n的值.,前n项和为S n. 求S n取得最小值时n的值.2、已知数列{a n}的通项公式为a n=n−22n−15【课后作业】(1)《把关题》第6-7页;(2)《把关题》第8-9页.【板书设计】一、选择题1.已知数列{a n }满足a n =26-2n ,则使其前n 项和S n 取最大值的n 的值为( ) A.11或12 B.12 C.13D.12或13答案 D 解析 ∵a n =26-2n ,∴a n -a n -1=-2, ∴数列{a n }为等差数列.又a 1=24,d =-2,∴S n =24n +n (n -1)2×(-2)=-n 2+25n =-⎝ ⎛⎭⎪⎫n -2522+6254.∵n ∈N *,∴当n =12或13时,S n 最大.2.若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和最大时,n 的值为( ) A.6 B.7 C.8D.9答案 B 解析 因为a n +1-a n =-3,所以数列{a n }是以19为首项,-3为公差的等差数列,所以a n =19+(n -1)×(-3)=22-3n .设前k 项和最大,则有⎩⎨⎧a k ≥0,a k +1≤0,所以⎩⎨⎧22-3k ≥0,22-3(k +1)≤0,即193≤k ≤223. 因为k ∈N *,所以k =7.故满足条件的n 的值为7.3.在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安四百二十里,良马初日行九十七里,日增一十五里;驽马初日行九十二里,日减一里;良马先至齐,复还迎驽马,二马相逢.问:几日相逢?( ) A.4日 B.3日 C.5日D.6日答案 A 解析 由题意,可知良马第n 日行程记为a n ,则数列{a n }是首项为97,公差为15的等差数列,驽马第n 日行程记为b n ,则数列{b n }是首项为92,公差为-1的等差数列,则a n =97+15(n -1)=15n +82,b n =92-(n -1)=93-n .因为数列{a n }的前n 项和为n (97+15n +82)2=n (179+15n )2,数列{b n }的前n 项和为n (92+93-n )2=n (185-n )2,∴n (179+15n )2+n (185-n )2=840,整理得14n 2+364n -1 680=0,即n 2+26n -120=0,解得n =4(n =-30舍去),即4日相逢.4.若在数列{a n }中,a n =43-3n ,则当S n 取最大值时,n =( ) A.13 B.14 C.15D.14或15答案 B 解析 ∵数列{a n }中,a n =43-3n ,∴a 1=40,∴S n =n (40+43-3n )2是关于n 的二次函数,函数图象是开口向下的抛物线上的一些横坐标为正整数的点,对称轴为n =836,又n 为正整数,与836最接近的一个正整数为14,故S n 取得最大值时,n =14.故选B.5.《算法统宗》是中国古代数学名著,由明代数学家程大位编著,它对我国民间普及珠算和数学知识起到了很大的作用.在这部著作中,许多数学问题都是以歌诀形式呈现的,“九儿问甲歌”就是其中一首:一个公公九个儿,若问生年总不知,自长排来差三岁,共年二百又零七,借问长儿多少岁,各儿岁数要详推.在这个问题中,记这位公公的第n 个儿子的年龄为a n ,则a 1=( ) A.35 B.32 C.23D.38答案 A 解析 由题意可知,九个儿子的年龄成公差d =-3的等差数列,且九项之和为207.故S 9=9a 1+9×82d =9a 1-108=207,解得a 1=35. 二、填空题6.在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时,S n 取得最大值,则公差d 的取值范围是________. 答案 ⎝ ⎛⎭⎪⎫-1,-78解析由题意,当且仅当n =8时,S n 有最大值,可知⎩⎨⎧d <0,a 8>0,a 9<0,即⎩⎨⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78. 7.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,数列{a n }的前n 项和最大.答案 8解析 ∵a 7+a 8+a 9=3a 8>0,∴a 8>0. ∵a 7+a 10=a 8+a 9<0,∴a 8>0,a 9<0. 故前8项的和最大.8.已知正项等差数列{a n }的前n 项和为S n ,S 10=40,则a 3·a 8的最大值为________. 答案 16解析 ∵正项等差数列{a n }的前n 项和为S n ,S 10=10(a 3+a 8)2=40,∴⎩⎪⎨⎪⎧a 3>0,a 8>0,a 3+a 8=40×210=8,∴a 3·a 8=a 3(8-a 3)=-a 23+8a 3=-(a 3-4)2+16≤16.当且仅当a 3=4时取等号. 三、解答题9.设等差数列{a n }的前n 项和为S n ,已知a 3=12,且S 12>0,S 13<0. (1)求公差d 的取值范围;(2)问前几项的和最大?并说明理由. 解 (1)∵a 3=12,∴a 1=12-2d .∵S 12>0,S 13<0,∴⎩⎨⎧12a 1+66d >0,13a 1+78d <0,即⎩⎨⎧24+7d >0,3+d <0,∴-247<d <-3.即d 的取值范围为⎝ ⎛⎭⎪⎫-247,-3.(2)∵S 12>0,S 13<0,∴⎩⎨⎧a 1+a 12>0,a 1+a 13<0,∴⎩⎨⎧a 6+a 7>0,a 7<0,∴a 6>0,又由(1)知d <0. ∴数列前6项为正,从第7项起为负.∴数列前6项和最大.10.流行性感冒(简称流感)是由流感病毒引起的急性呼吸道传染病.某市去年11月份曾发生流感.据统计,11月1日该市新的流感病毒感染者有20人,此后,每天的新感染者平均比前一天的新感染者增加50人,由于该市医疗部门采取措施,使该种病毒的传播得到控制,从某天起,每天的新感染者平均比前一天的新感染者减少30人.到11月30日止,该市在这30日内感染该病毒的患者总共8 670人,问11月几日,该市感染此病毒的新患者人数最多?并求这一天的新患者人数.解 设第n 天新患者人数最多,则从第n +1天起该市医疗部门采取措施,于是,前n 天流感病毒感染者总人数构成一个首项为20,公差为50的等差数列的n 项和,S n =20n +n (n -1)2×50=25n 2-5n (1≤n ≤30,n ∈N ),而后30-n 天的流感病毒感染者总人数,构成一个首项为20+(n -1)×50-30=50n -60,公差为-30,项数为30-n 的等差数列.其和T n =(30-n )·(50n -60)+(30-n )(29-n )2×(-30)=-65n 2+2 445n -14 850.依题设构建方程有S n +T n =8 670,即25n 2-5n +(-65n 2+2 445n -14 850)=8 670.化简,得n 2-61n +588=0,解得n =12或n =49(舍去),第12天的新患者人数为20+(12-1)×50=570(人).故11月12日,该市感染此病毒的新患者人数最多,这一天的新患者人数为570人.11.《张邱建算经》是中国古代数学史上的杰作,该书中有首民谣记载了一数列问题:“南山一棵竹,竹尾风割断,剩下三十节,一节一个圈.头节高五寸①,头圈一尺三②,逐节多三分③,逐圈少分三④.一蚁往上爬,遇圈则绕圈.爬到竹子顶,行程是多远?”(注释:①第一节的高度为0.5尺;②第一圈的周长为1.3尺; ③每节比其下面的一节多0.03尺;④每圈周长比其下面的一圈少0.013尺) 问:此民谣提出的问题的答案是( ) A.61.395尺 B.61.905尺 C.72.705尺D.73.995尺答案 A 解析 设从地面往上,每节竹长为a 1,a 2,a 3,…,a 30,∵每节竹节间的长相差0.03尺,∴{a n }是以a 1=0.5为首项,以d ′=0.03为公差的等差数列.由题意知竹节上一圈比下一圈细0.013尺,设从地面往上,每圈周长为b 1,b 2,b 3,…,b 30,可得{b n }是以b 1=1.3为首项,d =-0.013为公差的等差数列.∴一蚂蚁往上爬,遇圈则绕圈,爬到竹子顶,行程S 30=(a 1+a 2+…+a 30)+(b 1+b 2+…+b 30)=⎝ ⎛⎭⎪⎫30×0.5+30×292×0.03+⎣⎢⎡⎦⎥⎤30×1.3+30×292×(-0.013)=61.395,故选A. 12.已知{a n }是等差数列,首项为a 1,其公差d <0,前n 项和为S n ,设数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和为T n .(1)若a 1=-4d ,则当n =________时,T n 有最大值;(2)若当且仅当n =6时,T n 有最大值,则a 1d 的取值范围是________.答案 8或9 ⎝ ⎛⎭⎪⎫-3,-52解析 易知S n n =d 2n +⎝ ⎛⎭⎪⎫a 1-d 2, 若a 1=-4d ,则S n n =d 2n -92d ,由⎩⎪⎨⎪⎧S n n ≥0,S n +1n +1≤0,解得8≤n ≤9. 即n =8或9时,T n 有最大值;若当且仅当n =6时,T n 有最大值,则⎩⎪⎨⎪⎧S 66=a 1+52d >0,S 77=a 1+3d <0,d <0,解得-3<a 1d <-52. 13.某电站沿一条公路竖立电线杆,相邻两根电线杆的距离都是50 m ,最远一根电线杆距离电站1 550 m ,一汽车每次从电站运出3根电线杆供应施工.若该汽车往返运输总行程为17 500 m ,共竖立多少根电线杆?第一根电线杆距离电站多少米?解 由题意知汽车逐趟(由近及远)往返运输行程组成一个等差数列,记为{a n }, 则a n =1 550×2=3 100,d =50×3×2=300,S n =17 500.由等差数列的通项公式及前n 项和公式,得⎩⎪⎨⎪⎧a 1+(n -1)×300=3 100, ①na 1+n (n -1)2×300=17 500. ② 由①得a 1=3 400-300n .代入②得n (3 400-300n )+150n (n -1)-17 500=0,整理得3n 2-65n +350=0,解得n =10或n =353(舍去),所以a 1=3 400-300×10=400.故汽车拉了10趟,共拉电线杆3×10=30(根),最近的一趟往返行程400 m ,第一根电线杆距离电站12×400-100=100(m).所以共竖立了30根电线杆,第一根电线杆距离电站100 m.14.(多选题)首项为正数,公差不为0的等差数列{a n },其前n 项和为S n ,现有下列四个命题,其中正确的命题有( )A.若S 10=0,则S 2+S 8=0B.若S 4=S 12,则使S n >0的n 的最大值为15C.若S 15>0,S 16<0,则{S n }中S 8最大D.若S 7<S 8,则S 8<S 9答案 BC 解析 对于A ,若S 10=0,则S 10=(a 1+a 10)·102=0, 则a 1+a 10=0,即2a 1+9d =0,则S 2+S 8=(2a 1+d )+(8a 1+28d )=10a 1+29d ≠0,A 不正确;对于B ,若S 4=S 12,则S 12-S 4=0,即a 5+a 6+…+a 11+a 12=4(a 8+a 9)=0,由于a 1>0,则a 8>0,a 9<0,则有S 15=15(a 1+a 15)2=15a 8>0,S 16=16(a 1+a 16)2=16(a 8+a 9)2=0,故使S n >0的n 的最大值为15,B 正确; 对于C ,若S 15>0,S 16<0,则S 15=15(a 1+a 15)2=15a 8>0, S 16=16(a 1+a 16)2=8(a 8+a 9)<0,则有a 8>0,a 9<0,故{S n }中S 8最大,故C 正确;对于D ,若S 7<S 8,即a 8=S 8-S 7>0,而S 9-S 8=a 9,不能确定其符号,D 错误.。
2.3 等差数列的前n项和2
教学内容
师生活动及时间
分配
个案补充
教学目标(学习目标)1、进一步熟练掌握等差数列的通项公式和前n项和公式;了解等差数列的一些性质,并会用它们解决一些相关问题;会利用等差数列通项公式与前项和的公式研究。
2、通过等差数列前n项和的公式应用,体会数学的逻辑性
3、通过有关内容在实际生活中的应用,引导学生要善于观察生活
教材分析教学
重点
熟练掌握等差数列的求和公式教学
难点
灵活应用求和公式解决问题疑难
预设2
)1
(
1
d
n
n
na
S
n
-
+
=与二次函数
模式与方法
讲练结合
教学流程
教学内容师生活动及时间分配个案补充1、课题导入
首先回忆一下上一节课所学主要内容:
①等差数列的前n项和公式1:
2
)
(
1n
n
a
a
n
S
+
=
②等差数列的前n项和公式2:
2
)1
(
1
d
n
n
na
S
n
-
+
=
2、讲授新课
探究:——课本P51的探究活动
结论:一般地,如果一个数列{},n a的前n项
和为2
n
S pn qn r
=++,其中p、q、r为常数,
且0
p≠,那么这个数列一定是等差数列吗?
师说明
如果是,它的首项与公差分别是多少?
课前提问
师说明
——课本P51的探究活动
小组讨论后,组织好语言,
一人说明结论,及过程
1n ≥时a 1。
学习第15、16课时 数列复习课(2课时)【学习导航】 知识网络【自学评价】(一)数列的概念 数列的定义(一般定义,数列与函数)、数列的表示法。
数列的通项公式。
求数列通项公式的一个重要方法: 对于任一数列}{n a ,其通项n a 和它的前n 项和n s 之间的关系是⎩⎨⎧≥-==-)2()1(11n s s n s a n nn(二)等差数列和等比数列的概念、有关公式和性质1.等差数列(1)定义 (2)通项公式n a =1a +( )d=k a +( )d=dn +1a -d(3)求和公式nd a n d dn n na a a n s n n )2(22)1(2)(1211-+=-+=+=(4)中项公式A=2b a + 推广:2n a = (5)性质①若m+n=p+q 则 ②若}{n k 成A.P (其中N k n ∈)则}{n k a 也为A.P 。
③n n n n n s s s s s 232,,-- 成 数k n (m 等比数列等差数列表示方法图像与函数的关系前n 项和通项定义数列正整数集上函数及性质数列知识结构学习2. :适用于⎭⎬⎫⎩⎨⎧+1n n a a c 其中{ n a }是各项不为0的等差数列,c 为常数;部分无理数列、含阶乘的数列等。
3. :适用于{}n n b a 其中{}n a 是等差数列,{}n b 是各项不为0的等比数列。
4.倒序相加法: 类似于等差数列前n 项和公式的推导方法。
5.常用结论1) 1+2+3+...+n = _________2)1+3+5+...+(2n-1) = 3)_________n +++=33312 4) ___________n ++++=22221235)__________()n n =+11(_______)()n n =+11226)(______)()p q pq q p=<-11 【精典范例】一 函数方程思想在研究数列问题中的运用【例1】(1)首项为正数的等差数列{a n },其中S 3=S 11,问此数列前几项和最大?(2)等差数列{a n }中,S 10=100,S 20=300,求 S 30。
第5课时 【学习导航】
知识网络
学习要求
1.进一步熟练掌握等差数列的通项公式和前n 项和公式.
2.了解等差数列的一些性质,并会用它们解决一些相关问题
【自学评价】
1. 等差数列{a n }的公差为d ,前n 项和为S n ,那么数列S k ,S 2k -S k ,S 3k -S 2k ,(k ∈N *)成_____________,公差为________.
2.在等差数列{a n }中,若a 1>0,d <0,则S n 存在______.若a 1<0,d >0,则S n 存在最小值.
3.对等差数列前项和的最值问题有两种方法:
(1)利用n a :当n a >0,d<0,前n 项和有最大值可由
n a ≥0,且1+n a ≤0,求得n 的值
当n a <0,d>0,前n 项和有最小值可由 n a ≤0,且1+n a ≥0,求得n 的值
(2)利用n S :由n )2
d a (n 2d S 12n -+=二次函数配方法求得最值时n 的值 【精典范例】
【例1】已知一个等差数列的前四项和为21,末四项和为67,前n 项和为286,求数列的项数n 。
分析 条件中的8项可分为4组,每组中的两项与数列的首、尾两项等距。
【解】
听课
【例2】已知两个等差数列{a n }、{b n },它们的前n 项和分别是S n 、S n ′,若1
332'-+=n n S S n n
,求9
9b a . 【解法一】
【解法二】
【例3】数列{a n }是首项为23,公差为整数的等差数列,且第六项为正,第七项为负.
(1)求数列的公差.
(2)求前n 项和S n 的最大值.
(3)当S n >0时,求n 的最大值.
【解】
点评: 可将本题中的公差为整数的条件去掉,再考虑当n 为何值时,数列{a n }的前n 项和取到最大值.
【例4】等差数列n {a }中,1912a 0,s s ,<=该数列的前多少项和最小?
思路1:
求出n S 的函数解析式(n 的二次函数, n N +∈),再求函数取得最小值时的n 值. 思路2:
公差不为0的等差数前n 项和最小的条件为:n n 1a 0,a 0,+≤≥
思路3: 由s 9=s 12得s 12-s 9=a 10+a 11+a 12=0得a 11=0.
思维点拔:
说明:根据项的值判断前 项和的最值有以下结论:
①当10,0a d >>时,1231n n a a a a a +<<<<<<,
则1S 最小;
②当10,0a d ><时,12310n n a a a a a +>>>
>>≥>, 则n S 最大;
③当10,0a d <>时,12310n n a a a a a +<<<
<<≤<,
则n S 最小; ④当10,0a d <<时,
1231n n a a a a a +>>>
>>>,
则n S 最大 【追踪训练一】
1. 已知在等差数列{a n }中,a 1<0,S 25=S 45,若S n 最小,则n
为( )
A.25
B.35
C.36
D.45
2. 两等差数列{a n }、{b n }的前n 项和的比
'5327n n S n S n +=+,则55
a b 的值是( ) A .2817 B .4825 C .5327 D .2315 3.在等差数列{a n }中,已知a 14+a 15+a 17+a 18=82,则S 31=__________.
4.在等差数列{a n }中,已知前4项和是1,前8项和是4,则a 17+a 18+a 19+a 20等于______.
5.在等差数列{a n }中,a n =
23n -2
21,当n 为何值时,前n 项和S n 取得最小值?
【解】
【追踪训练二】
1. 在等差数列{a n }中,已知S 15=90,那么a 8等于( )
A.3
B.4
C.6
D.12
2.在项数为2n +1的等差数列中,所有奇数项的和为165,所有偶数项的和为150,则n 等于( )
A.9
B.10
C.11
D.12
3.等差数列{a n }的通项公式是a n =2n +1,由b n =n
a a a n +⋅⋅⋅++21 (n ∈N *)确定的数列{
b n }的前n 项和是( )
A.2
1 n (n +5) B. 21n (n +4) C. 21n (2n +7) D.n (n +2)
4.一个等差数列的前12项的和为354,前12项中,偶数项和与奇数项和之比为32∶27,则公差d 等于______.
5.已知数列{a n }的前n 项和是S n =32n -n 2,求数列{|a n |}的前n 项和S n ′.。