变频器的冷却方式比较
- 格式:doc
- 大小:14.50 KB
- 文档页数:2
一、引言在电力、化工、煤矿、冶金等工业生产领域要求高压变频器有极高的可靠性。
影响高压变频器的可靠性指标有多项,其中在设计过程中其散热与通风是一个至关重要的环节。
目前高压变频器有高-低-高式、元件直接串联式、中点箝位多电平式、单元级联式等多种方式,一般来讲,上述各种方式的高压变频器,其效率一般都可达到96~98%;但由于设备功率大,在正常工作时,仍要产生大量的热量。
为保证设备的正常工作,把大量的热量散发出去,优化散热与通风方案,进行合理的设计与计算,实现设备的高效散热,对于提高设备的可靠性是十分必要的。
高压变频器设备功率较大,4%的功率损耗主要以热量形式散失在运行环境当中。
如果不能及时有效的解决变频器室的工作环境温度问题,将直接危及变频器本体的运行安全;最终因为温度过高,导致变频器过热保护动作跳闸。
为保证变频器具有良好的运行环境,必须对变频器及运行环境的温度控制采取措施。
二、冷却方式通过变频器工程应用经验的积累,针对不同的应用环境现场提供完整的变频器冷却系统解决方案。
常用的几种冷却方式主要包括:⑴风道开放式冷却;⑵空调密闭冷却;⑶空-水冷密闭冷却;⑷设备本体水冷却;⑸上述方式组合冷却。
1.风道开放式冷却1.1冷却过程冷风经变频室通风入口滤网进入变频器,经过对机体进行冷却后,再由变频器风道出风口将热风排出。
1.2安装方式风道开放式冷却安装比较简单,只需在变频室的墙壁上开两个通风入口,安装上滤网,然后在变频器的柜顶风罩上向外引出出风口风道即可,如下图1所示:1.3系统特点(1)施工简单,维护量大;(2)费用低廉;(3)运行稳定性依赖于当地环境2.空调密闭冷却2.1容量选择原则按照变频器的发热量和控制室环境实用面积来选择空调的容量。
2.2安装方式变频器室安装空调时,要求变频器控制室空间要尽可能小,并且做好密封,避免夏季室外温度高带来的加热效应。
空调的安装位置可根据现场实际情况布置在变频器两侧。
具体设备布局如下图2所示。
.高压变频器电气室冷却方式节能解决方案一、概述随着电力电子技术与交流变频技术的成熟,大容量高压变频调速技术、SVC、SVC等得到广泛应用。
设备在正常工作时部分电能通过电子元器件、电器设备(如功率单元、隔离变压器、电抗器、电容器等)转换成热能的形式,因此设备冷却散热问题是设备稳定和安全运行的重要环节之一。
大功率热源设备常用的运行环境冷却方式有:强制空气冷却、循环水冷却、热管换热冷却和空调冷却等。
因强制风冷粉尘较大,已逐步淘汰;空调冷却因购置成本及运行费用、维护费用较高也较少采用;热管散热因成本太高、效果不是很理想,基本不采用。
二、高压变频器电气室通风散热方式电力电子技术集成电气设备,对运行环境有一定要求,通常运行环境要求:+5 —+40 ºC, 湿度<95%, 无凝露,无粉尘,所以用户在安装设备时会将设备安装在封闭的房间内,以保证设备稳定、安全、可靠的运行。
但是设备内部带出来热量不排出室内或耗散,热量就会在室内聚集造成室温升高,这样就会影响设备的正常运行及设备的使用寿命。
如何解决电气室热量散热的问题就成为设备应用中的一个课题。
现以高压变频设备为例,常用的方式有三种:①通风管道散热(强制空冷):通过管道把热空气直接排出室外,变频器抽取室外空气。
②空调制冷散热方式:室内安装空调,通过空调制冷降温。
③空-水冷装置散热方式:室外安装空-水冷装置。
通过引风管道将变频器内部带出来热量引至空-水冷装置进行热交换,然后降冷却降温后的冷风引回变频器室。
如下图:室内室外空-水冷装置散热方式1、空-水冷散热装置基本原理空-水冷却系统是一种利用高效、环保、节能的冷却系统,其应用技术在国内处于领先地位。
其外形及原理如上图所示,从变频器出来的热风,经过风管连接到内有固定水冷管的散热器中,散热器中通过温度低于33℃的冷水,热风经过散热片后,将热量传递给冷水,变成冷风从散热片吹出,热量被循环冷却水带走,保证变频器控制室内的环境温度不高于40℃。
1、关于变频器冷却风扇和制动的问题2010-07-24 来源:工控商务网浏览:92一、变频器冷却风扇一般功率稍微大一点的变频器,都带有冷却风扇。
同时,也建议在控制柜上出风口安装冷却风扇。
进风口要加滤网以防止灰尘进入控制柜。
注意控制柜和变频器上的风扇都是要的,不能谁替代谁。
其他关于散热的问题1、在海拔高于1000m的地方,因为空气密度降低,因此应加大柜子的冷却风量以改善冷却效果。
理论上变频器也应考虑降容,1000m每-5%。
但由于实际上因为设计上变频器的负载能力和散热能力一般比实际使用的要大,所以也要看具体应用。
比方说在1500m的地方,但是周期性负载,如电梯,就不必要降容。
2、开关频率:变频器的发热主要来自于IGBT,IGBT的发热有集中在开和关的瞬间。
因此开关频率高时自然变频器的发热量就变大了。
有的厂家宣称降低开关频率可以扩容,就是这个道理。
二、制动的概念指电能从电机侧流到变频器侧(或供电电源侧),这时电机的转速高于同步转速.负载的能量分为动能和势能. 动能(由速度和重量确定其大小)随着物体的运动而累积。
当动能减为零时,该事物就处在停止状态。
机械抱闸装置的方法是用制动装置把物体动能转换为摩擦和能消耗掉。
对于变频器,如果输出频率降低,电机转速将跟随频率同样降低。
这时会产生制动过程. 由制动产生的功率将返回到变频器侧。
这些功率可以用电阻发热消耗。
在用于提升类负载,在下降时, 能量(势能)也要返回到变频器(或电源)侧,进行制动.这种操作方法被称作"再生制动",而该方法可应用于变频器制动。
在减速期间,产生的功率如果不通过热消耗的方法消耗掉,而是把能量返回送到变频器电源侧的方法叫做"功率返回再生方法"。
在实际中,这种应用需要"能量回馈单元"选件。
怎样提高制动能力?为了用散热来消耗再生功率,需要在变频器侧安装制动电阻。
为了改善制动能力,不能期望靠增加变频器的容量来解决问题。
日立磁悬浮变频器的冷却-概述说明以及解释1.引言1.1 概述日立磁悬浮变频器是一种先进的电力控制设备,广泛应用于工业领域。
它通过变频技术将电源频率转变为适合电机工作的频率,从而实现对电机转速和扭矩的精确控制。
与传统的变频器相比,日立磁悬浮变频器具有更高的效率、更精确的控制能力和更低的噪音水平。
本文将重点讨论日立磁悬浮变频器的冷却问题。
随着电机功率的增加和工作环境的复杂性,变频器的功率密度也呈现上升趋势。
为了确保变频器的正常运行和寿命的延长,冷却变得至关重要。
冷却的主要目的是降低变频器的温度,以防止其过热。
过高的温度会影响变频器的电子元件的性能和寿命,甚至可能导致设备故障。
同时,有效的冷却还有助于保持变频器的稳定性和可靠性,在长时间高负载工作时能够保持正常运行。
为了实现良好的冷却效果,日立磁悬浮变频器采用了多种冷却技术和方法。
常见的冷却方式包括风冷和水冷两种。
风冷系统通过风扇将冷空气吹入变频器内部,利用气流带走产生的热量。
而水冷系统则通过循环水将热量带走,并经过散热器散发到空气中。
此外,冷却系统的设计和优化也对冷却效果起到重要作用。
合理的设计可以提高热量的传导和散发,避免冷却不均匀导致的温度过高问题。
同时,采用先进的冷却材料和散热技术也能提升冷却效果,保证变频器的安全稳定运行。
综上所述,冷却对于日立磁悬浮变频器的重要性不言而喻。
通过有效的冷却措施和技术,可以保证变频器的正常运行和寿命的延长,提高其稳定性和可靠性。
随着技术的不断进步和应用领域的拓展,冷却方法和技术的研究与发展也将不断取得新的突破。
在未来的发展中,我们可以期待更加高效和智能的冷却方案的出现,进一步提升日立磁悬浮变频器的性能和应用范围。
文章结构部分主要介绍了本文的组织结构和各个章节的内容概要,让读者能够清楚地了解全文的框架和内容安排。
文章结构的编写应该简明扼要,突出各个章节的主题和目标。
具体编写如下:1.2 文章结构本文分为引言、正文和结论三个部分。
矿用高压变频器水冷系统的改造实践梁鑫(山西焦煤集团有限责任公司屯兰矿,山西古交030206)0引言随着变频技术的成熟和工业生产节能降耗要求的提出,各种变频设备正越来越广泛地应用于煤矿、化工、冶金等领域。
作为电气驱动的核心设备,要求变频器必须具有较高的工作稳定性,而变频器对温度等因素的变化较为敏感,因此变频器需具有较强的散热能力。
尤其对于高压变频器,装置内部的大功率半导体和移相变压器,在工作过程中的功率损耗将转化为大量热量,如果热量得不到及时疏散,将导致内部元器件温度升高,影响元件的使用寿命和运行稳定[1-3]。
因此,对于不同应用环境下的高频变频器,需选择相适应的冷却散热方式。
近年来,随着煤矿机电设备的升级,综采工作面常见的重型刮板输送机、带式输送机等设备普遍采用了高压变频驱动技术。
但由于设备散热不当,时常发生因变频器温度超限而停机保护的状况,对煤炭生产效率产生较大影响。
针对这一问题,本文将以屯兰矿井下某综采工作面高压变频器冷却系统的改造为例,对矿用高压变频器水冷系统的应用和改造技术进行研究。
1高压变频器冷却方式高压变频器一般要求环境温度在0~40℃之间,超过40℃将触发温度保护。
常见的变频器冷却方式有强制风冷、直接水冷、空调冷却、空-水冷却等方式,具体如下:1)强制风冷。
一般利用送风风道,将外部的凉风送入需冷却部位,凉风与散热装置进行热交换后变热,然后再由出风风道将热风排出。
这种冷却方式施工简单,成本投入低,但受限于外部环境温度,且存在散热能力不足、风机体积大、噪声大等问题,无法满足大功率高压变频器的散热要求。
2)直接水冷。
也称为“水-水循环冷却”,是目前较为先进的电气设备冷却方式。
其系统分为内、外双循环两部分,内循环水采用高阻抗的去离子纯水,直接与设备接触吸收热量,由于水的比热容是空气的5300倍,因此其散热能力较强;外循环水采用普通工业用水,通过热交换将内循环水的热量带走。
这种冷却方式冷却效率高、冷却装置体积小、静音性能好、安全环保,尤其适合大功率高压变频器的冷却。
高压变频器三种冷却系统及优缺点介绍由于高压变频器本体在运行过程中有一定的热量散失,为保高压证变频器具有良好的运行环境,需要为变频器室配备一套独立的冷却系统。
综合冷却系统的投资和运营成本、设备维护量、无故障运行时间,现提出以下三种冷却系统解决方案:一、空调密闭冷却方式变频器从柜体的正面和后面吸入空气,经柜顶风机将变频器内部的热量带走排到室内。
从而在变频器室上部形成一个温度偏高、压力偏高的气旋涡流区,在变频器的正面部分形成一个偏负压区。
在运行中,变频器功率柜正面上部区域实际上是吸入刚排出的热风进行冷却,形成气流短路风不能达到有效的冷却效果。
空调通常采用下进上出风结构,从而与变频器在一定程度上形成了“抢风”现象,这就是“混合循环区”。
在这个区域变频器吸入的空气不完全是空调降温后的冷空气,空调的降温处理也没有把变频器排出的热空气全部降温,从而导致了整个冷却系统的运行效率不高。
变频器自身是节能节电设备,而通常采用的空调式冷却则造成能源的二次浪费。
这种情况在大功率、超大功率的变频应用系统中更加明显。
二、风道冷却功率单元内部散热系统通过安装在单元内的风机强制冷却单元里的散热器,使每一个功率单元满足散热需求,同时,由于功率单元内风机吹走热风,使其进风处的柜体内形成强力负压,柜外冷风大量进入高压变频气内,通过功率单元风道对单元散热器进行冷却。
同时,由于柜顶风机大量抽风,使其密闭风室内形成强力负压,加速功率单元内热风进入密闭风室,通过柜顶风机抽出高压变频器柜外。
通过建立严密畅通的风道,以及在功率单元内设计强制风冷,大大提高那高压变频器散热系统的散热能力和效率,同时,也可以减少散热器体积和功率柜体积,实现高压变频器的小型化,为用户安装高压变频器节省空间。
三、空-水冷却系统空-水冷却系统是一种利用高效、环保、节能的冷却系统,其应用技术在国内处于领先地位。
在电力、钢铁等行业的高压大功率变频应用中得到广泛的推广应用。
该系统由于其采用完全机械结构设计,较空调等电力、电子设备而言具有明显的安全、可靠性。
变频器冷却方案引言:随着工业自动化的发展,变频器在生产中的应用越来越广泛。
然而,由于变频器在工作过程中会产生大量的热量,因此冷却变频器成为了一个重要的问题。
本文将探讨变频器冷却的方案,并提出一种可行的解决方法。
一、变频器冷却的原理及问题:变频器通过改变电源的频率和电压来调节电机的转速,从而实现对机械设备的控制。
在工作过程中,变频器会产生大量的热量,这主要是由于电子元件的功耗和损耗所致。
如果不能及时有效地冷却变频器,会导致其温度过高,甚至损坏设备。
因此,变频器冷却是一个非常重要的问题。
二、变频器冷却的常见方案:1. 风冷散热:这是目前应用最广泛的一种冷却方式。
通过风扇将周围的冷空气吹入变频器内部,将热量带走。
这种方式简单、成本较低,但对环境温度要求较高,且冷却效果有限。
2. 水冷散热:这种方式通过水循环系统将热量带走,具有很好的冷却效果。
但相对来说,成本较高,需要安装水泵和水冷器等设备,且维护成本也较高。
3. 冷却剂循环散热:这种方式通过循环冷却剂来带走热量,具有较高的冷却效果。
但同样需要安装冷却剂循环系统,成本较高。
三、一种新的变频器冷却方案:针对目前变频器冷却方案存在的问题,我们提出了一种新的解决方案。
该方案结合了风冷散热和冷却剂循环散热的优点,既简单又有效。
具体方案如下:1. 风冷散热:在变频器内部安装风扇,通过风扇将周围的冷空气吹入变频器内部,将一部分热量带走。
这种方式简单、成本较低,可以有效降低变频器的温度。
2. 冷却剂循环散热:在变频器内部设置冷却剂循环系统,通过循环冷却剂将热量带走。
这种方式可以进一步提高冷却效果,确保变频器的温度在安全范围内。
该方案的优点在于:1. 简单、成本较低:相比于单纯的水冷散热或冷却剂循环散热,该方案的成本较低,且安装维护相对简单。
2. 效果好:结合了风冷散热和冷却剂循环散热的优点,可以有效降低变频器的温度,确保设备的正常工作。
四、实施该方案的步骤:1. 设计变频器内部结构:根据该方案,需要设计变频器内部的风道和冷却剂循环通道,确保风冷散热和冷却剂循环散热的有效结合。
变频器的冷却方式随着现代工业技术的不断发展,变频器作为电机控制系统中的核心设备,被广泛应用于工业生产中。
然而,由于长时间高负载运行,变频器容易产生过热现象,进而影响其正常运行和寿命。
因此,采用适当的冷却方式对于变频器的可靠性和稳定性至关重要。
本文将介绍几种常见的变频器冷却方式以及其优缺点。
一、自然冷却方式自然冷却方式是最常见的变频器冷却方式之一,其原理是通过将变频器安装在开放的环境中,让周围空气对其进行散热。
这种方式的优点是使用方便、成本较低,不需要额外的冷却装置。
然而,自然冷却方式的散热效果受环境温度的影响较大,特别是在高温环境下,无法有效降低变频器的温度,容易导致过热问题。
二、风扇冷却方式风扇冷却方式是通过在变频器内部安装风扇,通过风扇的循环风流,将热量带走,达到降温的目的。
相比于自然冷却方式,风扇冷却方式具有更好的散热效果,即使在高温环境下也能保持较低的温度。
同时,风扇冷却方式还能减少因灰尘和湿气导致的故障。
然而,风扇冷却方式需要消耗额外的能源,且噪音较大,在一些对噪音敏感的场所应用有所局限。
三、水冷却方式水冷却方式是通过将变频器内部的热量传导到水体中,利用水的高热传导性质来实现散热。
水冷却方式的优点是散热效果好、噪音小、温度控制精确。
尤其在高功率、高负载工况下,水冷却方式能够更好地保持变频器的正常运行温度。
但是,水冷却方式需要配置水冷却装置和水循环系统,增加了设备和能源成本,并且在水冷却系统的维护和管理上也需要特殊的操作和保养。
综上所述,不同的冷却方式各有优缺点,需要根据具体情况来选择。
对于一些温度要求较低,且噪音要求不高的场所,可以采用自然冷却方式;对于一些高温环境或对散热要求较高的场所,风扇冷却方式是一个较好的选择;而对于一些高功率、高负载的变频器,水冷却方式能够更好地满足其散热需求。
在实际应用中,我们应根据电机负载情况和环境条件,合理选择合适的冷却方式,以确保变频器的正常运行和使用寿命。
一、主要技术指标1.1现场变频室为2台1250KW、一台450KW变频器,以满负载情况计算:变频器满负荷发热量为:(2*1250+450)*(1-0.96)=118kw采用2套70kw制冷量空水冷系统为整个变频器室制冷,即:2*70=140kw变频器室水量计算:根据空水冷相关经验数据1kw需要约0.2 t/h,则变频器室需要水量=0.2*140=28 t/h冷却水采用自来水,冷却水塔方式循环,出水温度不高于33℃,水量最大时冷却器冷风温度不超过38℃,单台冷却器制冷功率不小于70kW,二、改造方案2.1变频器室冷却方式采用的是空水冷换热技术,在此方案中变频器室内部循环空气与冷却水完全隔离,通过换热器毛细管进行换热,变频器室为密封空间,保证内部循环可以的干燥度,防止变频器受潮出现故障。
示意图如下:冷却器安装室外,冷却器基础由中标方自行设计、施工。
变频器柜产生的热量经柜顶风机排到冷却器中进行换热,由冷却器内风机抽到冷却器内进行冷却,冷却后的冷风送到变频器室内,再由柜顶风机抽到变频器柜内部对变频器元件进行冷却,热风再排到冷却器内,循环往复。
冷却水引自厂区内自来水,采用冷却塔方式循环。
冷却水管路及水塔、冷却器等装置全部置于室外,保证变频器与冷却系统的隔离,变频器运行不受到威胁。
风管道设备预留应急排风口及应急新风口。
变频器室现场复杂,尺寸必须现场勘查。
2.2采用的是空水冷换热技术,在此方案中变频器室内部循环空气与冷却水完全隔离,通过换热器毛细管进行换热,变频器室为密封空间,保证内部循环可以的干燥度,防止变频器受潮出现故障。
如图所示:考虑到冷却系统的高可靠性,引风道设置应急排风口,如果冷却系统突然出现故障,即可打开应急风道风门,把变频器室房门打开,可以保证高温风机的高压变频器在短时间内不用停机,我方人员也会及时处理,处理完毕后再恢复正常运行即可。
三、空水冷与空调系统对比1、按照每年使用8000h小时计算空调用电量为:16kw*8000h=128000kwh而空水冷只需6kw*8000h=48000kwh。
变频器的冷却方式比较
高压变频调速系统虽然是一种非常高效的调速装置,但是在运行中,仍然有2%-4%左右的损耗,这些损耗都变成热量,最终耗散在大气中。
如何把这些热量顺利的从变频器中带出来,是变频器设计中一个非常重要的问题。
高压变频器的发热部件主要是两部分:一是整流变压器,二是功率元件。
功率元件的散热方式是关键。
现代变频器一般采用空气冷却或者水冷。
在功率较小时,采用空气冷却就能够满足要求。
在功率较大时,则需要在散热器中通水,利用水流带走热量,因为散热器一般都有不同的电位,所以必须采用绝缘强度较好的水,一般采用纯净水,它比普通蒸馏水的离子含量还要低。
在水路的循环系统中,一般还要加离子树脂交换器,因为散热器上的金属离子会不断的溶解到水中,这些离子需要被吸附清除。
应该说,从散热的角度来说,水冷是非常理想的。
但是,水循环系统工艺要求高,安装复杂,维护工作量大,而且一旦漏水,会带来安全隐患。
所以,能够用空气冷却解决问题的场合,就不要采用水冷。
空气冷却能够解决的散热功率,毕竟有一个极限,这个极限与技术类别有关。
比如,ABB公司的ACS1000系列三电平变频器,规定在2000KW以上就必须采用水冷,而美国的罗宾康公司和AB公司,对于3200KW/6KV的变频器,仍然采用空气冷却。
这又是为什么呢?
原来,空气冷却能够从设备中带出来的热量,与有效散热面积的大小有关系,散热面积越大,能够带走的热量就越多。
元器件的数目越多,散热的面积就越大,空气冷却的效果就越好。
对于6KV的变频器,比3KV的变频器器件数目多,而且单只器件的电流小,所以可以有较大的散热面积,相当于热量均分了。
有人会说,我增大散热器的面积,不就增大了散热面积了吗?我公司产品开发部的试验证明了这是一个悖论。
电力电子元件的热量按照如下方式传导:沿散热器表面散开,再沿表面传递到散热片上,被空气带走。
沿散热器表面散开的面积是非常有限的,离开元件较远处,已经基本感受不到热量,所以把散热器表面做大到一定程度,对散热效果的增加已经没有意义。
对于散热器的齿片也是一样,齿根处温度较高,齿尖处只有很少的热量到达,所以增高齿片到一定程度,对散热也毫无用处。
所以,要解决大功率产品的空气冷却问题,唯一有效的办法是,利用很多的元器件,均摊热量,增大有效的散热面积。
当然,采用功耗较小的新一代元器件,或者采用热阻较小的新式散热器,也可以使空气冷却的变频器功率更大,例如,在目前的IGBT封装形式下,原来我们发现,如果不采用器件并联,我们只能做到1800KW/6KV,现在,由于新一代IGBT器件和新式散热器的采用,我们可以做到2300KW/6KV。
这是技术研究的另一方面,与上面的分析不矛盾。
那么,为什么我们在2500KW/6KV以上的变频器中采用IGBT并联?并不是因为我们买不到那么大电流的IGBT,而是因为,通过试验我们发现,在现有的技术条件下,如果不采用元器件并联增大有效散热面积,无法将内部的热量用空气带出来,无法保证元器件的温升满足要求。
我们现在研究开发5000KW/6KV的变频器,为什么我们比较有把握?因为原来我们开发的3200KW/6KV变频器,是用15个功率单元带走热量,到了5000KW时,我们把功率单元增加到24个,每个功率单元带走的热量仍旧差不多。
有人又会问:为什么ABB公司不采用元器件并联呢?这是因为,在所有的器件中,只有IGBT和MOSFET是正温度系数,适于并联,IGCT是不适于并联的,所以他们必须采用水冷了。
关于变频器散热的另外一个问题是,把热量从变频器内部带出来以后,如何耗散在大气中。
对于水冷装置,需要在室外安装一个水-空冷装置,把热水变成凉水。
对于空气冷却的装置,如果散热量较大,需要安装风道,把热空气直接排出室外,否则,热空气会在室内聚集,造成室温升高。
以前有的用户考虑用室内空调机降温,事实证明在大功率变频器应用中,需要较大的空调配置,是不经济的。
如果用户工厂内有冷却水,我们建议用户采用水-空冷装置,这种装置类似于我们工厂的空调装置,在水管上镶嵌散热片,在水管内通入冷水,冷水的流量要足够大,保证散热片较低的温度,变频器散出来的热风进入散热片,经过散热片后变成了凉风。
这种方式可以采用密闭的小屋放置变频器,不用考虑灰尘的影响。
总之,变频器的散热问题有很多的学问,结构设计人员在试验中,发现了很多非常有意思的现象。
而变频器的结构设计,往往不是把东西装进去那么简单,需要考虑很多的问题。