实验三 单相变压器空载和短路实验
- 格式:doc
- 大小:347.00 KB
- 文档页数:9
第三章变压器实验3-1单相变压器一、实验目的1、通过空载和短路实验测定变压器的变比和参数。
2、通过负载实验测取变压器的运行特性。
二、预习要点1、变压器的空载和短路实验有什么特点?实验中电源电压一般加在哪一方较合适?2、在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小?3、如何用实验方法测定变压器的铁耗及铜耗。
三、实验项目1、空载实验测取空载特性U0=f(I0),P0=f(U0) , cosφ0=f(U0)。
2、短路实验测取短路特性U K=f(I K),P K=f(I K), cosφK=f(I K)。
3、负载实验(1)纯电阻负载保持U1=U N,cosφ2=1的条件下,测取U2=f(I2)。
(2)阻感性负载保持U1=U N,cosφ2=0.8的条件下,测取U2=f(I2)。
四、实验方法1、实验设备2、屏上排列顺序D33、D32、D34-3、DJ11、D42、D43图3-1 空载实验接线图3、空载实验1)在三相调压交流电源断电的条件下,按图3-1接线。
被测变压器选用三相组式变压器DJ11中的一只作为单相变压器,其额定容量P N=77W,U1N/U2N=220/55V,I1N/I2N=0.35/1.4A。
变压器的低压线圈a、x接电源,高压线圈A、X开路。
2)选好所有电表量程。
将控制屏左侧调压器旋钮向逆时针方向旋转到底,即将其调到输出电压为零的位置。
3)合上交流电源总开关,按下“开”按钮,便接通了三相交流电源。
调节三相调压器旋钮,使变压器空载电压U0=1.2U N,然后逐次降低电源电压,在 1.2~0.2U N的范围内,测取变压器的U0、I0、P0。
4)测取数据时,U=U N点必须测,并在该点附近测的点较密,共测取数据7-8组。
记录于表3-1中。
5)为了计算变压器的变比,在U N以下测取原方电压的同时测出副方电压数据也记录于表3-1中。
表3-14、短路实验1)按下控制屏上的“关”按钮,切断三相调压交流电源,按图3-2接线(以后每次改接线路,都要关断电源)。
单相变压器的空载和短路实验报告实验目的:1. 了解单相变压器的结构和工作原理;2. 学习如何进行变压器的空载和短路实验;3. 掌握变压器的空载和短路参数测量方法;4. 分析和比较实验数据,验证理论计算结果的准确性。
实验仪器和设备:电压互感器,电流互感器,变压器,电阻箱,电压表,电流表,频率计。
实验原理:单相变压器是一种将交流电能从一电压水平传递到另一电压水平的装置。
变压器的工作原理是利用电磁感应产生绕在铁心上的主次线圈之间的电磁感应耦合,实现能量的传递。
变压器包括两个主要部分:铁心和绕组。
其中,铁心由高导磁材料制成,主绕组连接到输入电源,次绕组连接到输出负载。
1. 空载实验:在空载实验中,变压器的主绕组未连接负载,即输出为开路。
此时,主绕组的电流很小,接近于零,可以忽略不计。
通过输入电压和输入电流的测量,可以测得主绕组的额定电压和额定电流。
2. 短路实验:在短路实验中,变压器的主绕组接入短路电阻,即输出短路。
此时,输出电压几乎为零,可以忽略不计。
通过输入电流和输入电压的测量,可以测得主绕组的额定电压和额定电流。
实验步骤:1. 搭建实验电路,连接电压互感器、电流互感器、变压器和电阻箱;2. 将电压表连接到变压器的输入端,将电流表连接到电阻箱;3. 根据所给的空载电压和短路电流,调整电阻箱的电阻,使输入电压和输入电流在额定值附近;4. 分别记录空载和短路实验中的输入电压和输入电流;5. 根据实验数据计算主绕组的额定电压、额定电流和电压/电流变比;6. 分析比较实验结果与理论计算值的一致性,并讨论可能的误差来源。
实验数据处理:1. 空载实验:根据测得的输入电压和输入电流计算主绕组的额定电压和额定电流。
主绕组额定电压 = 输入电压主绕组额定电流 = 输入电流2. 短路实验:根据测得的输入电压和输入电流计算主绕组的额定电压和额定电流。
主绕组额定电流 = 输入电流主绕组额定电压 = 额定电流 ×变压器的电压/电流变比实验结果分析:1. 对比实验结果和理论计算值,分析两者之间的差距和误差来源;2. 探讨可能的实验误差,如电压表、电流表的精度、测量线路的阻抗等;3. 讨论变压器的空载损耗和短路阻抗对实验结果的影响;4. 分析实验数据的合理性,讨论变压器的工作特性和性能指标。
单相变压器空载与短路实验一.实验目的1 学习掌握做单相变压器空载、短路实验的方法。
2 通过空载、短路实验,测定变压器的参数和性能。
二.实验器材交流电压表,交流电流表,单三相智能功率因数表,三相组式变压器三.预习要点解答1 通过空载、短路实验,求取变压器的参数和损耗作了哪些假定?答:有如下假定: 空载实验①在做变压器的空载与短路试验的时候,首先我们假设变压器的铜耗足够小使得我们可以忽略它对实验的影响,这样我们才能够认为空载损耗0P 完全用来抵偿铁耗e F P ,也就是我们认为e 0F P P ≈,在这个假设下我们才能用后面的公式计算变压器的各项参数。
②因为一次漏电抗Xm X <<1,一次绕组电阻Rm R <<1,所以1m Z Z >>,故我们认为0/m I U Z =,2^/0m 0I P R =。
短路实验①由于做短路实验时电压很低,所以磁路中磁通很小,所以我们可以忽略励磁电流和铁耗,认为∞≈m Z ,电源输入的功率完全消耗在一二次侧的铜耗上。
2 作空载、短路实验时,各仪表应怎样接线才能减小测量误差?答:变压器空载实验中应当采用电流表内接法。
因为空载实验测量的是励磁阻抗,阻抗值较大,若采用电流表外接法,电压表会有明显的分流作用,从而产生较大误差。
变压器短路实验应当采用电流表外接法。
因为短路实验中测量的是漏阻抗,阻抗值较小,若采用电流表内接法,会产生明显的分压作用,导致测量不准确。
3 作变压器空载、短路时,应注意哪些问题?一般电源加在哪一方比较适合?答:在做变压器空载实验时,为了便于测量同时安全起见,应当在变压器低压侧加电源电压,让高压侧开路。
在实验过程中应当将激磁电流由小到大递升到1.15NU左右时,只能一个方向调节,中途不得有反方向来回升降。
否则,由于铁芯的磁滞现象,会影响测量的准确性。
在做变压器短路实验时,电流较大,外加电压很小,为了便于测量,通常在高压侧加电压,将低压侧短路。
第三章变压器实验3-1单相变压器一、实验目的1、通过空载和短路实验测定变压器的变比和参数。
2、通过负载实验测取变压器的运行特性。
二、预习要点1、变压器的空载和短路实验有什么特点?实验中电源电压一般加在哪一方较合适?2、在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小?3、如何用实验方法测定变压器的铁耗及铜耗。
三、实验项目1、空载实验测取空载特性U0=f(I0),P0=f(U0) , cosφ0=f(U0)。
2、短路实验测取短路特性U K=f(I K),P K=f(I K), cosφK=f(I K)。
3、负载实验(1)纯电阻负载保持U1=U N,cosφ2=1的条件下,测取U2=f(I2)。
(2)阻感性负载保持U1=U N,cosφ2=0.8的条件下,测取U2=f(I2)。
四、实验方法1、实验设备2、屏上排列顺序D33、D32、D34-3、DJ11、D42、D43图3-1 空载实验接线图3、空载实验1)在三相调压交流电源断电的条件下,按图3-1接线。
被测变压器选用三相组式变压器DJ11中的一只作为单相变压器,其额定容量P N=77W,U1N/U2N=220/55V,I1N/I2N=0.35/1.4A。
变压器的低压线圈a、x接电源,高压线圈A、X开路。
2)选好所有电表量程。
将控制屏左侧调压器旋钮向逆时针方向旋转到底,即将其调到输出电压为零的位置。
3)合上交流电源总开关,按下“开”按钮,便接通了三相交流电源。
调节三相调压器旋钮,使变压器空载电压U0=1.2U N,然后逐次降低电源电压,在1.2~0.2U N的范围内,测取变压器的U0、I0、P0。
4)测取数据时,U=U N点必须测,并在该点附近测的点较密,共测取数据7-8组。
记录于表3-1中。
5)为了计算变压器的变比,在U N以下测取原方电压的同时测出副方电压数据也记录于表3-1中。
表3-14、短路实验1)按下控制屏上的“关”按钮,切断三相调压交流电源,按图3-2接线(以后每次改接线路,都要关断电源)。
单相变压器的空载和短路实验报告一、实验目的本实验旨在通过对单相变压器进行空载和短路实验,了解变压器的基本性能参数,并掌握变压器的使用方法。
二、实验原理1. 变压器的结构和工作原理变压器是一种用于改变交流电压大小的电气设备。
其主要由铁芯和绕组两部分组成。
其中,铁芯是由硅钢片叠加而成,目的是减小磁通漏损和铜损;绕组则是由导线绕制而成,分为主绕组和副绕组。
当主绕组中通有交流电流时,会在铁芯中产生磁场,从而诱导出副绕组中的电动势。
2. 空载实验原理空载实验是指将变压器接入交流电源后,不接负载进行测试。
此时,主副绕组之间没有负载电流通过,在此情况下测量输出端口上的电压和输入端口上的电流大小。
通过测量得到空载电流、空载功率等参数来计算变压器的空载损耗。
3. 短路实验原理短路实验是指将变压器输出端口短接后进行测试。
此时,主副绕组之间通过大电流,在此情况下测量输入端口上的电压和电流大小。
通过测量得到短路电流、短路功率等参数来计算变压器的短路损耗。
三、实验步骤1. 空载实验步骤(1)将单相变压器接入交流电源,不接负载。
(2)使用万用表分别测量输入端口和输出端口的电压值,并记录下来。
(3)使用电流表测量输入端口的电流值,并记录下来。
(4)根据测量得到的数据,计算出空载功率和空载损耗。
2. 短路实验步骤(1)将单相变压器输出端口短接,将输入端口接入交流电源。
(2)使用万用表分别测量输入端口的电压值,并记录下来。
(3)使用电流表测量输入端口的电流值,并记录下来。
(4)根据测量得到的数据,计算出短路功率和短路损耗。
四、实验结果与分析1. 空载实验结果在本次空载实验中,我们分别测量了变压器的输入端口和输出端口的电压和电流大小。
根据公式P=UI,我们可以计算出变压器的空载功率。
同时,我们还可以通过空载功率和输入端口电流计算出变压器的空载损耗。
2. 短路实验结果在本次短路实验中,我们将变压器的输出端口短接,并测量了输入端口的电压和电流大小。
单相变压器的空载和短路实验报告实验背景:单相变压器是电气工程中常用的一种电力设备,用于将电压从一级变换到另一级。
在实际运行中,了解变压器的空载和短路特性对于其性能评估和故障诊断具有重要意义。
因此,进行单相变压器的空载和短路实验是必不可少的。
实验目的:1. 了解单相变压器的空载实验原理和方法。
2. 了解单相变压器的短路实验原理和方法。
3. 掌握实验中的数据采集和处理方法。
4. 分析实验结果,评估单相变压器的性能。
实验仪器和设备:1. 单相变压器2. 电压表3. 电流表4. 电源5. 电阻箱6. 接线板7. 记录表格实验步骤:1. 空载实验a. 搭建实验电路,连接电压表和电源。
b. 调节电源输出电压,记录单相变压器的空载电压和空载电流。
c. 计算空载电流的功率因数。
d. 根据实验数据绘制空载电流-电压特性曲线。
2. 短路实验a. 搭建实验电路,连接电流表和电源。
b. 调节电源输出电流,记录单相变压器的短路电流和短路电压。
c. 计算短路电流的电阻值。
d. 根据实验数据绘制短路电流-电压特性曲线。
实验结果与分析:1. 空载实验结果表明,随着电压的增加,空载电流也相应增加,但增长速率逐渐减缓,表明变压器的磁化特性。
2. 空载电流的功率因数接近1,说明变压器的电流和电压基本同相。
3. 空载电流-电压特性曲线呈现出近似线性的关系,表明变压器的电流和电压之间的关系稳定。
4. 短路实验结果表明,短路电流随电压的增加而增加,但电流增长速率较快,表明变压器的电阻特性。
5. 短路电流的电阻值可以反映变压器的电流承载能力。
6. 短路电流-电压特性曲线呈现出非线性的特点,表明变压器在短路状态下电流和电压的关系复杂。
结论:通过空载和短路实验,我们对单相变压器的电压电流特性有了更深入的了解,可以更好地评估变压器的性能和稳定性。
在实际运行中,我们应该根据变压器的实际使用情况,合理调节电压电流,确保变压器的安全运行和高效工作。
实验三 单相变压器空载、短路实验一.实验目的1.掌握用实验的方法测定单相变压器。
2.学习做单相变压器空载、短路实验。
二.实验仪器及设备1.单相变压器:(旧)U e1/ U e2 =220V/55V ,I e1/I e2=0.345A/1.38A ;(新)U e1/ U e2 =127V/31.8V ,I e1/I e2=0.4A/1.6A 。
2.交流电流表: 0.5A 。
3.交流电压表: 75V 。
4.单相功率表:75V 、0.5A 、cosφ=0.5 ; 三.实验内容及操作步骤1.单相变压器短路实验 (1)实验电路如图1-3所示。
按图1-3接线,单相变压器的高压边接调压器输出U 、N 端子,低压边短路。
调压器调在零位,正确选择各电表的档位,经教师检查无误后,闭合电源。
(2)监视电流表,缓慢增加电压,使电流为单相变压器高压边的额定电流0.4A (0.345A)。
读取 电流I 电流表A )、电压U (电压表V )、功率P (功率表W ),并记录在电机与拖动实验报告册上。
(3)将电压调到零,关闭电源,记录室温θ。
2.单相变压器空载实验ax图1-3 单相变压器短路实验电路实验电路如图1-4所示。
(1)按图1-4接线,单相变压器的低压边接调压器输出U 、N 端子,高压边开路。
调压器调在零位,正确选择各电表的档位,经教师检查无误后,闭合电源。
(2)监视电压表,缓慢增加电压,使电压为单相变压器低压边的额定电压31.8V (55V)。
读取电流I (电流表A )、电压U (电压表V )、功率P (功率表W ),并记录在电机与拖动实验报告册上。
(3)逐渐减小电压U ,读取电流I (电流表A )、电压U (电压表V ),至电压U=0V 为止。
共测5~6点。
读取的数据并记录在电机与拖动实验报告册上。
四、实验报告要求 1.根据空载实验数据:(1)画出空载特性U 0=f(I 0)的曲线。
(2)计算额定时的空载参数:励磁阻抗 Zm’= U 0 /I 0 励磁电阻Rm’= P 0 /(I 0)2 励磁电抗Xm’=((Zm)2-(Rm)2)1/2折算到单相变压器高压边:Zm=K 2 Zm’ Rm=K 2 Rm’ Xm=K 2 Xm’。
2021年整理单相变压器空载和短路实验.doc
单相变压器是电工行业中比较常见的设备,其主要作用是对电压进行控制。
在使用单相变压器时,需要进行空载和短路实验来检测其性能指标。
一、空载实验
1、实验目的:检测单相变压器在空载状态下的电性能指标,包括空载电流、空载损耗、空载电压。
2、实验器材:单相变压器、电压表、电流表、电源表。
3、实验步骤:
(1)将单相变压器的高压侧和低压侧均接入电源,使其处于空载状态。
(2)将电压表和电流表分别接在高压侧和低压侧,记录空载电压和空载电流。
(3)根据记录的数据计算出单相变压器的空载损耗。
二、短路实验
4、实验结果:根据实验记录得到的数据,可以计算出单相变压器的短路电流、短路损耗和短路阻抗等性能指标。
总结:单相变压器的空载和短路实验是检测其性能指标的重要方法,通过实验可以得出变压器的电性能指标数据,为后续的使用和维护提供参考。
实验一单相变压器一.实验目的1.通过空载和短路实验测定变压器的变比和参数。
2.通过负载实验测取变压器的运行特性。
二.预习要点1.变压器的空载和短路实验有什么特点?实验中电源电压一般加在哪一方较合适?2.在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小?3.如何用实验方法测定变压器的铁耗及铜耗。
三.实验项目1.空载实验测取空载特性UO =f(IO),PO=f(UO)。
2.短路实验测取短路特性UK =f(IK),PK=f(IK)。
3.负载实验(1)纯电阻负载保持U1=U1N,2cosϕ=1的条件下,测取U2=f(I2)。
(2)阻感性负载保持U1=U1N,2cosϕ=0.8的条件下,测取U2=f(I2)。
四.实验设备及仪器1.MEL系列电机教学实验台主控制屏(含交流电压表、交流电流表)2.功率及功率因数表(MEL-20或含在主控制屏内)3.三相组式变压器(MEL-01)或单相变压器(在主控制屏的右下方)4.三相可调电阻900Ω(MEL-03)5.波形测试及开关板(MEL-05)6.三相可调电抗(MEL-08)五.实验方法变压器T额定容量P N=77W,U1N/U2N=220V/55V,I1N/I2N=0.35A/1.4A 1.空载实验表2-2 室温θ=25℃3.负载实验六.注意事项1.在变压器实验中,应注意电压表、电流表、功率表的合理布置。
2.短路实验操作要快,否则线圈发热会引起电阻变化。
七.实验报告1.计算变比由空载实验测取变压器的原、副方电压的三组数据,分别计算出变比,然后取其平均值作为变压器的变比K 。
K=U 1U1.1U2/U 2U1.2U22.绘出空载特性曲线和计算激磁参数(1)绘出空载特性曲线U O =f(I O ),P O =f(U O ),O ϕcos =f(U O )。
式中:OO O oI U P =ϕcos(2)计算激磁参数从空载特性曲线上查出对应于Uo=U N 时的I O 和P O 值,并由下式算出激磁参数2oo m I P r =oo m I U Z =22mm m r Z X -=3.绘出短路特性曲线和计算短路参数(1)绘出短路特性曲线U K =f(I K )、P K =f(I K )、K ϕcos =f(I K )。
单相变压器空载与短路实验报告材料实验目的:掌握单相变压器的空载和短路实验,了解变压器的基本性能参数。
实验仪器:单相变压器、电压表、电流表、电阻箱、电源。
实验原理:单相变压器是电能传输和变换的常用电力设备,根据电压变换的原理,可以将一个交流电压转换为另一个不同大小的交流电压。
变压器的主要性能参数有空载电流和短路阻抗。
空载电流是指在变压器的一侧开路时所需的电流,短路阻抗是指在变压器的一侧短路时所得到的阻抗。
实验步骤:1.实验前,首先检查变压器、电压表、电流表和电源等设备是否正常工作,并确认实验电压的大小。
2.先进行变压器的空载实验。
(1)将所需的线圈接入实验电路并接通电源。
(2)调整电源电压,使电压表读数稳定在变压器的输入端。
(3)记录电源电压、变压器输入电压和变压器空载电流的数值。
3.然后进行变压器的短路实验。
(1)将所需的线圈接入实验电路并接通电源。
(2)根据实验需求,设置所需的电源电压。
(3)测量变压器的短路电压和短路电流的数值。
(4)断开电源并记录实验结果。
实验结果:1.空载实验结果:电源电压:220V变压器输入电压:120V变压器空载电流:1A2.短路实验结果:电源电压:220V变压器短路电流:10A分析与讨论:1.空载实验结果表明变压器在无负载时所需的电流很小,主要用于维持磁通的运动。
由于输入电压远大于输出电压,所以变压器的空载电流较小。
2.短路实验结果表明变压器在短路时所需的电流较大,主要用于绕组中电流的流动。
由于短路时,输出电压接近于零,所以变压器的短路电流较大。
结论:通过空载和短路实验,我们可以得到变压器的空载电流和短路阻抗等性能参数。
在实际应用中,空载和短路实验的结果对于变压器的使用和保护具有重要的参考价值。
三相变压器的空载及短路实验实验报告实验报告:三相变压器的空载及短路实验一、实验目的1.理解和掌握三相变压器的空载特性和短路特性;2.测定三相变压器的空载电流、空载损耗和短路电压;3.分析和比较实验结果,验证理论的正确性。
二、实验设备1.三相变压器;2.电源(可调节电压);3.电流表;4.电压表;5.功率表;6.保险丝;7.电源滤波器;8.实验记录本。
三、实验原理1.空载实验:当变压器一次侧开路,二次侧接入额定电压时,变压器消耗的功率为空载功率,空载电流为一次侧电流。
通过测量空载电压和空载电流,可以得到变压器的空载损耗。
2.短路实验:当变压器一次侧短路,二次侧接入额定负载时,变压器消耗的功率为短路功率,短路电压为一次侧电压。
通过测量短路电流和短路电压,可以得到变压器的短路阻抗。
四、实验步骤1.准备阶段:检查实验设备完好无损,确认电源接入正确;2.空载实验:将变压器二次侧接至额定电压,一次侧开路,记录空载电压和空载电流。
逐渐调高电源电压,重复以上操作,得到多组数据;3.短路实验:将变压器一次侧短路,二次侧接入额定负载,记录短路电流和短路电压。
逐渐调高电源电压,重复以上操作,得到多组数据;4.数据处理:将实验数据整理成表格,计算空载损耗和短路阻抗;5.结果分析:将实验结果与理论值进行比较,分析误差原因。
五、实验结果六、结果分析根据实验数据,我们发现实验结果与理论值存在一定误差。
这主要是由于以下原因:1.测量误差:由于实验过程中使用仪表进行测量,可能存在读数误差和仪表误差;2.电路连接:由于变压器线圈电阻和线路电感的存在,可能导致电路连接阻抗和实际测量结果存在偏差;3.温度影响:实验过程中,由于线圈发热等原因,可能影响变压器性能参数的稳定性;4.非线性特性:对于非线性变压器,其空载特性和短路特性可能随电源频率变化而变化。
为了提高实验精度,可以采取以下措施:1.使用高精度仪表进行测量;2.在稳定的室温环境下进行实验;3.对不同类型的变压器分别进行实验,以综合评估误差影响。
电机学实验之三相变压器的空载及短路实验实验报告学院:电气信息学院专业:电气工程及其自动化班级:电力102班小组成员:一、实验目的1、用实验方法求取变压器的空载特性和短路特性。
2、通过空载及短路实验求取变压器的参数和损耗。
3、计算变压器的电压变化百分率和效率。
4、掌握三相调压器的正确联接和操作。
5、复习用两瓦特法测三相功率的方法。
二、实验仪器1、钳形谐波小功率表2、变压器综合实验台3、连接导线若干实验仪器介绍:钳形谐波小功率表用于测量测量交流电压、交流电流、交流电压峰值、交流电流峰值、有功功率、无功功率、视在功率(单相或三相)、功率因数、相角。
交流电压谐波(达20次),交流电路谐波(达20次)及总谐波失真度。
低电压指示、数据保持、自动关机。
变压器综合实验台:额定容量6N S KVA=额定电压12/660/380N N U U V V=额定电流12/ 5.26/9.09N N I I A A =变压器接法Y/Y三、实验原理四、实验内容1测变比K 。
2空载实验,测取空载特性。
U 0=f(I 0)P 0=f(u 0)co sØ0=f(u 0)3短路实验,测取短路特性U k =f(I k )P k =f(I k )co sØk =f(I k )五、实验线路及步骤(一)测量变压器变比:按图7—1调压器原边接电源,副边接电流插合一边,电流插合另一边接变压器低压绕组,高压绕组开路,合上电源开关K,调节调压器副边输出电压,使外施电压为低压绕组额定电压的一半左右(即U 20≈0.5U 2N )对应不同的外施电压,测量高低压绕组的U AB、U BC、U CA、U ab、U bc、U ca 对应不同外施电压测量三组数据。
记录于下表7—1中:表7—1序号ABU abU A K BCU bcU B K ACU acU cK K伏伏伏伏伏伏1174.51001.745172.499.71.729173.099.81.733 1.7362156.490 1.738155.299.6 1.732155.389.7 1.731 1.7343138.8801.735138.079.81.729137.779.51.7321.732最后取3次计算的平均值,所以K=1.734(二)空载实验实验线路如7—1所示,空载实验在低压侧进行,调压器原边接电源,副边接电流插合一端,电流插合另一端接低压侧首端a,b,c,,高压侧开路。
单相变压器的空载和短路实验报告单相变压器是电力系统中常见的一种设备,主要用于电压变换。
在变压器的使用过程中,需要进行空载和短路实验,以验证变压器的性能是否符合要求。
本文将就单相变压器的空载和短路实验进行详细介绍。
一、空载实验空载实验是指在变压器的高压侧不接负载,低压侧接通电源,测量变压器的空载电流、空载损耗和空载电压等参数,以评估变压器的性能。
空载实验的目的是为了检验变压器的空载电流和空载损耗是否符合设计要求,以及变压器的磁路性能是否良好。
1. 实验原理在变压器的高压侧不接负载的情况下,低压侧接通电源,变压器的磁通量基本不变,但是变压器中会有感应电动势产生,从而在变压器的低压侧会有一定的空载电流流动,同时会产生空载损耗。
因此,通过测量空载电流和空载损耗,可以评估变压器的性能。
2. 实验步骤(1)将单相变压器的高压侧不接负载,低压侧接通电源。
(2)接通电源后,待变压器达到稳定工作状态后,测量变压器的空载电流和空载损耗。
(3)重复以上步骤,记录多组数据,并计算平均值,以提高实验的准确性。
3. 实验结果与分析通过空载实验,我们可以得到变压器的空载电流、空载损耗和空载电压等参数。
其中,空载电流是指在变压器低压侧接通电源时,变压器的高压侧不接负载时流过变压器的电流。
空载损耗是指在变压器高压侧不接负载的情况下,变压器内部产生的损耗。
空载电压是指变压器低压侧接通电源时,变压器的高压侧不接负载时的电压。
通过对空载实验得到的数据进行分析,我们可以评估变压器的性能是否符合设计要求。
如果变压器的空载电流和空载损耗过大,说明变压器的磁路性能不佳,需要进行调整和改进。
二、短路实验短路实验是指在变压器的高压侧和低压侧均接短路,测量变压器短路电流和短路损耗等参数,以评估变压器的性能。
短路实验的目的是为了检验变压器的短路电流和短路损耗是否符合设计要求,以及变压器的绕组和绝缘是否能够承受短路电流的冲击。
1. 实验原理在变压器的高压侧和低压侧均接短路的情况下,变压器的磁通量会急剧减小,从而会产生很大的感应电动势和短路电流。
单相变压器的空载和短路实验报告一、实验目的了解单相变压器的基本原理和特性,观察其空载和短路时的变化,掌握测量变压器的各项参数的方法。
二、实验原理1. 变压器的基本原理:变压器是一个基于电磁感应原理的电器设备,主要由两个或更多的线圈组成,它们彼此电绝缘并互相绕排,通过电磁场在线圈中传递的能量来完成电压转换。
其中一个线圈称为主要线圈,其余的线圈称为副次线圈。
当通过主要线圈加上交流电压时,通过电磁場可以在副次线圈内产生副次电压。
2. 变压器的结构和特点:变压器由铁芯和线圈组成,其主要特点是能够实现电压或电流的变换,并具有高效率、体积小、质量轻、使用方便等特点。
3. 空载实验:空载指变压器的负载电流为零,其实验过程是在变压器的一端加上一定的电压,并根据此电压测量变压器的参数,包括:实际输入电压、实际输出电压、输入电流、输出电流及等效电阻等参数。
此时变压器的绕组内并没有负载电流流过,所以变压器的电流是十分小的。
4. 短路实验:短路指变压器的输出端短路,其实验过程是在变压器的输出端短路,并根据输入端的电流、输出端的电压测量变压器的参数,包括:短路电流、输入电压、等效电阻等参数。
三、实验步骤1. 空载实验:(1) 连接变压器的输入端和电源,将电源的电压调节到变压器额定电压。
(2) 测量变压器的参数,包括实际输入电压、实际输出电压、输入电流、输出电流、等效电阻等参数。
2. 短路实验:(1) 连接变压器的输入端和电源,将电源的电压调节到变压器额定电压。
(2) 短路变压器的输出端。
(3) 测量变压器的参数,包括短路电流、输入电压、等效电阻等参数。
四、实验结果1. 空载实验:(1) 实际输入电压:220V(2) 实际输出电压:90V(3) 输入电流:0.4A(4) 输出电流:0.01A(5) 等效电阻:22650Ω2. 短路实验:(1) 短路电流:5A(2) 输入电压:220V(3) 等效电阻:44Ω五、实验分析1. 空载实验结果表明,当变压器的负载电流为零时,输入电流非常小,主要损耗来自变压器的电阻和铁芯的磁损耗。
实验三单相变压器实验一、实验目的1、通过空载、短路实验,掌握变压器参数的测取方法。
2、通过负载实验,掌握变压器性能参数及特性的测取方法。
3、提高实验数据处理及特性分析的能力。
二、实验设备单相变压器(副边一个绕组):S N=1kV A,U1N/U2N=220/110V,I1N /I2N =4.55/9.09A,f N=50HZ单相变压器(副边二个绕组):S N =2kV A,U1N/U2N =220/110,I1N /I2N =9/18A,f N =50HZ电流表、瓦特表、万用表等三、实验内容(一)单相变压器空载实验1.实验线路:如图3.1,为了安全和易于测量,空载实验一般在低压边做。
即副边ax接在电源上,原边AX开路。
2.实验方法:先将调压器输出电压调为零,然后合上开关QS。
调节调压器输出电压在(0.5~1.2)倍的额定电压范围内(一定包含U2N,并在U2N附近多测几点),测取6~7组数据。
空载实验看电压,调节调压器输出电压,密切注视U2的变化。
图3.1单相变压器空载实验线路图3.测取参数:U 2、U 10、I 0、P 0 计算出: 02I U Z m =r m =20I Px m =22m m r Z -cos Φ=20I U P(二)单相变压器短路实验1.实验线路:如图3.2,为了安全和易于测量,短路实验一般在低电流边做。
即原边AX 接在电源上,副边ax 短路。
图3.2单相变压器短路实验线路图2.实验方法:注意!在合开关QS 之前,调压器输出电压一定要调为零,否则烧坏电表。
缓慢调节调压器输出电压,使电流I K 在(0.5~1.2)倍额定电流范围内(一定包含额定电流I e 1点),测出6~7组数据。
短路实验看电流,调节调压器输出电压,密切注视I k 的变化。
3.测取参数:U k 、I k 、P k 计算出: Z z =kkI Urk =2kk I Pxk =22kkrZ-r℃k75=rk·θ++5.234755.234coskΦ=kkkIUP(三)单相变压器负载实验1.实验线路:如图3.3。
华北电力大学电机学实验报告实验名称三相变压器的空载实验和短路实验系别班级姓名学号同组人姓名实验台号日期教师成绩一、实验目的1、通过空载和短路实验,测定三相变压器的变比和参数。
二、实验项目1、短路实验测取短路特性U KL=f(I KL),P K=f(I KL) ,cosφK=f(I KL)。
2、空载实验测取空载特性U0L=f(I0L),P0=f(U0L), cosφ0=f(U0L)。
三、实验方法12、短路实验1) 将三相交流电源的输出电压调至零值。
按下“关”按钮,在断电的条件下,按图1接线。
被测变压器选用DJ12 三相三线圈心式变压器,额定容量P N=152/152/152W,U N=220/63.6/55V,I N=0.4/1.38/1.6A, Y/△/Y接法。
实验时只用高、低压两组线圈。
变压器高压线圈接电源,低压线圈直接短路。
2) 按下“开”按钮,接通三相交流电源,缓慢增大电源电压,使变压器的短路电流I KL=1.1I N。
3) 逐次降低电源电压,电流在1.1~0.2I N的范围内,测取变压器的三相输入电压、电流及功率。
4) 测取数据时,其中I KL=I N点必测,共取数据5-6组。
记录于表3-1中。
实验时记下周围环境温度(℃),作为线圈的实际温度。
图3-1 三相变压器短路实验接线图表3-1 室温 ℃3、空载实验1)测定变比实验线路如图3-2所示,被测变压器选用DJ12 三相三线圈心式变压器, Y/△/Y 接法。
实验时只用高、低压两组线圈,低压线圈接电源,高压线圈开路。
将三相交流电源调到输出电压为零的位置。
开启控制屏上电源总开关,按下“开”按钮,电源接通后,调节外施电压U=U N =55V 测取高、低线圈的线电压U AB 、U BC 、U CA 、U ab 、U bc 、U ca (高压侧的开路电压可用D33交流电压表箱上的模拟指针式交流电压表测取),数据记录于表3-3中。
变比K :平均变比:图3-2三相变压器空载实验接线图2)空载实验caCA CA bc BC BC U U K U U K ===ab ABAB U U K )(31CA BC AB K K K K ++=a) 将控制屏左侧三相交流电源的调压旋钮调到输出电压为零的位置,按下“关”按钮,在断电的条件下,按图3-2接线。
第三章变压器实验欧阳家百(2021.03.07)3-1单相变压器一、实验目的1、通过空载和短路实验测定变压器的变比和参数。
2、通过负载实验测取变压器的运行特性。
二、预习要点1、变压器的空载和短路实验有什么特点?实验中电源电压一般加在哪一方较合适?2、在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小?3、如何用实验方法测定变压器的铁耗及铜耗。
三、实验项目1、空载实验测取空载特性U0=f(I0),P0=f(U0) , cosφ0=f(U0)。
2、短路实验测取短路特性U K=f(I K),P K=f(I K), cosφK=f(I K)。
3、负载实验(1)纯电阻负载保持U1=U N,cosφ2=1的条件下,测取U2=f(I2)。
(2)阻感性负载保持U1=U N,cosφ2=0.8的条件下,测取U2=f(I2)。
四、实验方法1、实验设备2、屏上排列顺序D33、D32、D34-3、DJ11、D42、D43图3-1 空载实验接线图3、空载实验1)在三相调压交流电源断电的条件下,按图3-1接线。
被测变压器选用三相组式变压器DJ11中的一只作为单相变压器,其额定容量P N=77W,U1N/U2N=220/55V,I1N/I2N=0.35/1.4A。
变压器的低压线圈a、x接电源,高压线圈A、X开路。
2)选好所有电表量程。
将控制屏左侧调压器旋钮向逆时针方向旋转到底,即将其调到输出电压为零的位置。
3)合上交流电源总开关,按下“开”按钮,便接通了三相交流电源。
调节三相调压器旋钮,使变压器空载电压U0=1.2U N,然后逐次降低电源电压,在 1.2~0.2U N的范围内,测取变压器的U0、I0、P0。
4)测取数据时,U=U N点必须测,并在该点附近测的点较密,共测取数据7-8组。
记录于表3-1中。
5)为了计算变压器的变比,在U N以下测取原方电压的同时测出副方电压数据也记录于表3-1中。
表3-14、短路实验1)按下控制屏上的“关”按钮,切断三相调压交流电源,按图3-2接线(以后每次改接线路,都要关断电源)。
上海开放大学电气传动技术及应用实验三单相变压器空载和短路实验实验报告分校:_____ ______班级:__________________学生姓名:__________________学号:__________________实验成绩:__________________批阅教师:__________________实验日期年月日实验三单相变压器空载和短路实验一、实验目的1、通过空载和短路实验测定变压器的变比和参数。
2、通过负载实验测取变压器的运行特性。
二、实验项目1、空载实验测取空载特性U0=f(I0),P0=f(U0) , cosφ0=f(U0)。
2、短路实验测取短路特性U K=f(I K),P K=f(I K), cosφK=f(I K)。
3、负载实验(选做)(1)纯电阻负载保持U1=U N,cosφ2=1的条件下,测取U2=f(I2)。
(2)阻感性负载保持U1=U N,cosφ2=0.8的条件下,测取U2=f(I2)。
三、实验方法1、实验设备2、屏上排列顺序D33、D32、D34-3、DJ11、D42、D43图3-1 空载实验接线图3、空载实验1)在三相调压交流电源断电的条件下,按图3-1接线。
被测变压器选用三相组式变压器DJ11中的一只作为单相变压器,其额定容量 P N =77W ,U 1N /U 2N =220/55V ,I 1N /I 2N =0.35/1.4A 。
变压器的低压线圈a 、x 接电源,高压线圈A 、X 开路。
2)选好所有电表量程。
将控制屏左侧调压器旋钮向逆时针方向旋转到底,即将其调到输出电压为零的位置。
3)合上交流电源总开关,按下“开”按钮,便接通了三相交流电源。
调节三相调压器旋钮,使变压器空载电压U 0=1.2U N ,然后逐次降低电源电压,在1.2~0.2U N 的范围内,测取变压器的U 0、I 0、P 0。
4)测取数据时,U=U N 点必须测,并在该点附近测的点较密,共测取数据7-8组。
记录于表3-1中。
5)为了计算变压器的变比,在U N 以下测取原方电压的同时测出副方电压数据也记录于表3-1中。
4、短路实验1)按下控制屏上的“关”按钮,切断三相调压交流电源,按图3-2接线(以后每次改接线路,都要关断电源)。
将变压器的高压线圈接电源,低压线圈直接短路。
图3-2 短路实验接线图2)选好所有电表量程,将交流调压器旋钮调到输出电压为零的位置。
3)接通交流电源,逐次缓慢增加输入电压,直到短路电流等于1.1I N 为止,在(0.2~1.1)I N 范围内测取变压器的U K 、I K 、P K 。
4)测取数据时,I K=I N点必须测,共测取数据6-7组记录于表3-2中。
实验时记下周围环境温度(℃)。
5、负载实验实验线路如图3-3所示。
变压器低压线圈接电源,高压线圈经过开关S1和S2,接到负载电阻RL 和电抗XL上。
RL选用D42上900Ω加上900Ω共1800Ω阻值,XL选用D43,功率因数表选用D34-3,开关S1和S2选用D51挂箱图3-3 负载实验接线图(1)纯电阻负载1)将调压器旋钮调到输出电压为零的位置,S1、S2打开,负载电阻值调到最大。
2)接通交流电源,逐渐升高电源电压,使变压器输入电压U1=U N。
3)保持U1=U N,合上S1,逐渐增加负载电流,即减小负载电阻R L的值,从空载到额定负载的范围内,测取变压器的输出电压U2和电流I2。
4)测取数据时,I2=0和I2=I2N=0.35A必测,共取数据6-7组,记录于表3-3中。
12 1)用电抗器X L 和R L 并联作为变压器的负载,S 1、S 2打开,电阻及电抗值调至最大。
2)接通交流电源,升高电源电压至U 1=U 1N3)合上S 1、S 2,在保持U 1=U N 及cos φ2=0.8条件下,逐渐增加负载电流,从空载到额定负载的范围内,测取变压器U 2和I 2。
4)测取数据时,其I 2=0,I 2=I 2N 两点必测,共测取数据6-7组记录于表3-4中。
四、注意事项1、在变压器实验中,应注意电压表、电流表、功率表的合理布置及量程选择。
2、短路实验操作要快,否则线圈发热引起电阻变化。
五、实验报告1、计算变比由空载实验测变压器的原副方电压的数据,分别计算出变比,然后取其平均值作为变压器的变比K 。
K=U AX /U ax2、绘出空载特性曲线和计算激磁参数(1)绘出空载特性曲线U 0=f(I 0),P 0=f(U 0),cos φ0=f(U 0)。
式中:0000cos I U P =Φ(2)计算激磁参数从空载特性曲线上查出对应于U 0=U N 时的I 0和P 0值,并由下式算出激磁参数3(1)绘出短路特性曲线U K =f(I K ) 、P K =f(I K )、cos φK =f(I K )。
(2)计算短路参数从短路特性曲线上查出对应于短路电流I K =I N 时的U K 和P K 值由下式算出实验环境温度为θ(℃)时的短路参数。
折算到低压方由于短路电阻r K 随温度变化,因此,算出的短路电阻应按国家标准换算到基准工作温度75℃时的阻值。
2'2'2'''KK K K K K KK K r Z X I P r I U Z -===222'''K X X K r r K Z Z KK K K K K ===2202mm m m m r Z X I UZ I P r -===式中:234.5为铜导线的常数,若用铝导线常数应改为228。
计算短路电压(阻抗电压)百分数I K =I N 时短路损耗P KN = I N 2r K75℃4、利用空载和短路实验测定的参数,画出被试变压器折算到低压方的“T ”型等效电路。
5、变压器的电压变化率u ∆(1)绘出cos φ2=1和 cos φ2=0.8两条外特性曲线U 2=f(I 2),由特性曲线计算出I 2=I 2N 时的电压变化率%10020220⨯-=∆U U U u 227575755.234755.234K C K C K K C K X r Z r r +=++=︒︒︒θθ%100%100%1007575⨯=⨯=⨯=︒︒NK N KX N C K N Kr NC K N K U XI u U r I u U ZI u(2)根据实验求出的参数,算出I 2=I 2N 、cos φ2=1和I 2=I 2N 、cos φ2=0.8时的电压变化率Δu 。
将两种计算结果进行比较,并分析不同性质的负载对变压器输出电压U 2的影响。
6、绘出被试变压器的效率特性曲线(1)用间接法算出cos φ2=0.8不同负载电流时的变压器效率,记录于表3-5中。
式中:P KN 为变压器I K =I N 时的短路损耗(W); P 0为变压器U 0=U N 时的空载损耗(W)。
为副边电流标么值(2)2(3)计算被试变压器η=ηmax 时的负载系数βm 。
%100)cos 1(22022220⨯+++-=***KN N KN P I P P I P I P ϕη22sin cos ϕϕKX Kr u u u +=∆KNm P P 0=β)(cos 222W P P I N =*ϕN I I I 22*2=六、思考题1、变压器空载和短路实验应注意哪些问题?实验中电源电压一般加在哪一方较合适?答:(1)空载试验:①选好所有电表量程。
将控制屏左侧调压器旋钮向逆时针方向旋转到底,即将其调到输出电压为零的位置。
②合上交流电源总开关,按下“开”按钮,便接通了三相交流电源。
调节三相调压器旋钮,使变压器空载电压U0=1.2U N,然后逐次降低电源电压,在1.2~0.2U N的范围内,测取变压器的U0、I0、P0。
③测取数据时,U=U N点必须测,并在该点附近测的点较密,共测取数据7-8组。
记录于表3-1中。
短路试验:①选好所有电表量程,将交流调压器旋钮调到输出电压为零的位置。
②接通交流电源,逐次缓慢增加输入电压,直到短路电流等于1.1I N为止,在(0.2~1.1)I N范围内测取变压器的U K、I K、P K。
③测取数据时,I K=I N点必须测,共测取数据6-7组记录于表3-2中。
实验时记下周围环境温度(℃)。
(2)空载试验时:可在高压侧或低压侧进行,考虑到空载试验电压要加到额定电压,当高压侧的额定电压较高时,为了便于试验和安全起见,通常在低压侧进行试验,即:变压器的低压线圈a、x接电源,高压线圈A、X开路。
短路试验时:由于短路试验电流较大,而外加电压却很低,一般电力变压器为额定电压的4%~10%,因此为便于测量,一般在高压侧试验,低压侧短路。
即:变压器的高压线圈A、X接电源,低压线圈a、x短路。
2、在空载和短路实验中,各种仪表应怎样联接才能使测量误差最小?答:空载试验时:电压表V1放在功率表W前,电流表A放在功率表W后。
短路试验时:电流表A放在功率表W前,电压表V1放在功率表W后。
这样联接才能使测量误差最小3、如何用实验方法测定变压器的铁耗及铜耗。
答:空载试验时:由于空载电流I0很小,绕组损耗I20R很小,所以认为变压器空载时的输入功率P0完全用来平衡变压器的铁芯损耗,即P0≈ΔP Fe。
短路试验时:由于外加电压很低,主磁通很小,所以铁损和励磁电流均可忽略不计,这时输入的功率P K可认为完全消耗在绕组的电阻损耗上,即P K≈ΔP Cu。