液相循环加工艺
- 格式:ppt
- 大小:1.06 MB
- 文档页数:49
四川理工学院课程设计年产10万吨/年甲醇法制二氯甲烷学生:傅建川学号:1103080105专业:过程装备与控制工程班级:过控11.1指导教师:林海波、曾涛四川理工学院机械工程学院二O一五年一月四川理工学院课程设计(论文)任务书设计(论文)题目:甲醇法制二氯甲烷学院:机械工程学院专业:过程装备与控制工程班级:过控111班学号1103108105学生:傅建川指导教师:林海波接受任务时间2014年12月27日教研室主任(签名)院长(签名)1.毕业设计(论文)的主要内容及基本要求(1)工艺流程图一张(2号图纸)(2)设备布置图一张(3号图纸)(3)设计说明书一份(不少于8000字)2.指定查阅的主要参考文献及说明《过程装备成套技术设计指南》(兼用本课程设计指导书)、《过程装备成套技术》、《化工单元过程及设备课程设计》3.进度安排摘要本次课程设计主要完成工艺计算和工程图设计,对化工生产过程和生产管理有一个比较全面的了解,达到社会对人才知识的基本要求。
本设计采用甲醇氯化法制二氯甲烷,主要进行了工艺流程论证、物料衡算与能量衡算、典型机器设备选型与论证、工艺流程图与设备平面布置图的绘制。
关键词:甲醇氯化法;二氯甲烷目录第一章.前言1.1氯甲烷的介绍1.1.1二氯甲烷的物理性质1.1.2二氯甲烷的化学性质1.2二氯甲烷的用途1.3二氯甲烷的质量标准第二章生产工艺流程选择与论证2.1 甲醇氯化法制二氯甲烷概述2.2.1气相法2.2.2液相法2.2二氯甲烷方法的选择第三章.工艺流程概述3.1甲醇的氢氯化工序3.2一氯甲烷氯化工序3.3精馏工序3.4产物的组成第五章.物料衡算5.1计算基准5.2物料衡算和热量衡算第六章、设备选择与论证6.1吸收塔的选择6.1.1 塔设备的分类6.1..2 塔设备的选择6.2 压缩机的选择总结参考文献致谢第一章.前言1.1氯甲烷的介绍氯甲烷是甲烷分子中的氢原子被氯原子取代的产物,包括四种化合物:一氯甲烷,二氯甲烷,三氯甲烷(氯仿),四氯化碳。
羰基的合成摘要基于合成丙烯酸(酯)、丁⼆酸酸酐、丁烯⼆酸⼆丁酯和丙烯醛等系列有机产品进⾏了综述.重点探讨了⼄炔羰基合成丙烯酸(酯)的催化剂和反应⼯艺条件.镍基和钯基催化剂是催化⼄炔羰基合成:对⼄炔羰丙烯酸(酯)的良好催化剂,同时钯基催化剂也是催化⼄炔羰基合成丁⼆酸酸酐和丁烯⼆酸⼆酯的良好催化剂.镍基和钯基催化剂的复合及负载化是今后⼄炔羰基合成研究的主要发展⽅向关键词:⼄炔;羰基合成;丁⼆酸酸酐;丁烯⼆酸⼆酯;镍基和钯基催化剂⼆、前⾔2.1羰基的性质由于氧的强吸电⼦性,碳原⼦上易发⽣亲核加成反应。
其它常见化学反应包括:亲核还原反应,羟醛缩合反应。
2.1.1羟醛缩合在稀碱或稀酸的作⽤下,两分⼦的醛或酮可以互相作⽤,其中⼀个醛(或酮)分⼦中的α-氢加到另⼀个醛(或酮)分⼦的羰基氧原⼦上,其余部分加到羰基碳原⼦上,⽣成⼀分⼦β-羟基醛或⼀分⼦β-羟基酮。
这个反应叫做羟醛缩合或醇醛缩合(aldolcondensation)。
通过醇醛缩合,可以在分⼦中形成新的碳碳键,并增长碳链。
羟醛缩合反应历程,以⼄醛为例说明如下:第⼀步,碱与⼄醚中的α-氢结合,形成⼀个烯醇负离⼦或负碳离⼦:第⼆步是这个负离⼦作为亲核试剂,⽴即进攻另⼀个⼄醛分⼦中的羰基碳原⼦,发⽣加成反应后⽣成⼀个中间负离⼦(烷氧负离⼦)。
第三步,烷氧负离⼦与⽔作⽤得到羟醛和OH。
稀酸也能使醛⽣成羟醛,但反应历程不同。
酸催化时,⾸先因质⼦的作⽤增强了碳氧双键的极化,使它变成烯醇式,随后发⽣加成反应得到羟醛。
⽣成物分⼦中的α-氢原⼦同时被羰基和β-碳上羟基所活化,因此只需稍微受热或酸的作⽤即发⽣分⼦内脱⽔⽽⽣成,α,β-不饱和醛。
凡是α-碳上有氢原⼦的β-羟基醛、酮都容易失去⼀分⼦⽔。
这是因为α-氢⽐较活泼,并且失⽔后的⽣成物具有共轭双键,因此⽐较稳定。
除⼄醛外,由其他醛所得到的羟醛缩合产物,都是在α-碳原⼦上带有⽀链的羟醛或烯醛。
羟醛缩合反应在有机合成上有重要的⽤途,它可以⽤来增长碳链,并能产⽣⽀链。
TDI的生产工艺一、TDI的合成工艺流程甲苯二异氰酸酯(TDI)是1930s由O.Bayer首先合成和使用的芳香族有机二异氰酸酯之一。
它是由甲苯经连续二硝化、还原、光气化而制得。
TDI主要存在2,4-和2,6-甲苯二异氰酸酯两种异构体。
根据两种异构体的含量不同,分别以TDI-65、TDI-80和TDI-100三种商品形式出售,而以80/20混合物为主。
三种TDI异构体产品的工业化光气法生产工艺流程如下图所示。
二、工艺流程描述以甲苯为基础原料合成TDI,需经过一段硝化反应,结晶分离后财经过二段硝化反应、还原反应和光气化反应等几步合成出TDI,基本反应程序如下:(1)硝化反应使用25%~30%至55%~58%的硝酸硫酸的混合酸与甲苯反应,可生成二硝基甲基,本过程分为一段硝化和二段硝化。
一段硝化使之生成一硝基甲苯,反应比较容易进行,而二段硝化反应条件则要苛刻得多,硝酸在混酸中的比例必须加大,通常它与硫酸的混合比例将达到60%。
生成的二硝基甲苯应经过无离子水进行水洗、碱洗等后处理步骤,脱除重金属等杂质进行提纯,如若要生产2,4-TDI,在硝化产物阶段就应该采用结晶等方法将2,4-二硝基甲苯从混合物中单独分离出来。
(2)还原反应在二硝基甲苯中间体中中加入甲醇溶剂和2%(质量)雷尼镍(Raney Ni)催化剂的悬浮液,采用中压连续加氢法,在100℃下反应,生成物一部分进行循环,一部分则除去催化剂后蒸馏而获得二氨基甲苯中间体。
早期采用的硫酸铁粉还原法,因收率低、铁粉废渣污染等原因,现已逐渐被淘汰。
(3)光气化反应MDI、TDI等大吨位异氰酸酯产品生产所广泛采用的是液相直接光气化生产工艺。
将二氨基甲苯溶于氯苯或二氯苯溶剂中,通入干燥的氯化氢气体,使之生成含75%左右的二胺盐酸盐浆状物,然后通入光气,使之在较缓和的条件下进行光气化反应,光气用量约为理论量用量的2~3倍,以有利于反应。
过量的光气经二氯苯或氯苯吸收,副产氯化氢经水吸收后再循环利用。
甲醇合成原理方法与工艺图1 煤制甲醇流程示意图煤气经过脱硫、变换,酸性气体脱除等工序后,原料气中的硫化物含量小于0.1mg/m3。
进入合成气压缩机,经压缩后的工艺气体进入合成塔,在催化剂作用下合成粗甲醇,并利用其反应热副产3.9MPa 中压蒸汽,降温减压后饱和蒸汽送入低压蒸汽管网,同时将粗甲醇送至精馏系统。
一、甲醇合成反应机理自CO加氢合成甲醇工业化以来,有关合成反应机理一直在不断探索和研究之中。
早期认为合成甲醇是通过CO在催化剂表面吸附生成中间产物而合成的,即CO是合成甲醇的原料。
但20世纪70年代以后,通过同位素示踪研究,证实合成甲醇中的原子来源于CO2,所以认为CO2是合成甲醇的起始原料。
为此,分别提出了CO和CO2合成甲醇的机理反应。
但时至今日,有关合成机理尚无定论,有待进一步研究。
为了阐明甲醇合成反应的模式,1987年朱炳辰等对我国C301型铜基催化剂,分别对仅含有CO或CO2或同时含有CO和CO2三种原料气进行了甲醇合成动力学实验测定,三种情况下均可生成甲醇,试验说明:在一定条件下,CO和CO2均可在铜基催化剂表面加氢生成甲醇。
因此基于化学吸附的CO连续加氢而生成甲醇的反应机理被人们普遍接受。
对甲醇合成而言,无论是锌铬催化剂还是铜基催化剂,其多相(非匀相)催化过程均按下列过程进行:①扩散——气体自气相扩散到气体一催化剂界面;②吸附——各种气体组分在催化剂活性表面上进行化学吸附;③表面吸附——化学吸附的气体,按照不同的动力学假说进行反应形成产物;④解析——反应产物的脱附;⑤扩散——反应产物自气体一催化剂界面扩散到气相中去。
甲醇合成反应的速率,是上述五个过程中的每一个过程进行速率的总和,但全过程的速率取决于最慢步骤的完成速率。
研究证实,过程①与⑤进行得非常迅速,过程②与④的进行速率较快,而过程③分子在催化剂活性界面的反应速率最慢,因此,整个反应过程的速率取决于表面反应的进行速率。
提高压力、升高温度均可使甲醇合成反应速率加快,但从热力学角度分析,由于CO、C02和H2合成甲醇的反应是强放热的体积缩小反应,提高压力、降低温度有利于化学平衡向生成甲醇的方向移动,同时也有利于抑制副反应的进行。
混合制冷剂循环液化天然气工艺探究陈泽华【摘要】总结对比了目前国内外运营的经典混合制冷剂液化天然气(LNG)工艺技术,探究介绍了一种改进的混合制冷剂单循环多流道液化工艺及其控制方法,经20万Nm3/d LNG装置改造试验,其技术、经济、安全等指标均比改造前有所提高或优化,可为今后在LNG生产技术开发工作上提供借鉴.【期刊名称】《低温与特气》【年(卷),期】2019(037)003【总页数】7页(P17-23)【关键词】混合制冷剂;单级循环;液化;流道;三级节流【作者】陈泽华【作者单位】内蒙古鄂尔多斯市伊东集团九鼎化工有限责任公司,内蒙古鄂尔多斯010400【正文语种】中文【中图分类】TB640 引言随着目前世界各国对环境的日益重视,LNG作为一种优质、高效的清洁能源,广泛应用于工业燃气、城市公交和重型卡车等领域,对改善城市空气质量,节能减排具有重大意义[1]。
近年来LNG项目发展迅速。
我国经过十几年的快速发展,实现了由主要依靠引进国外成套技术和设备到目前完全拥有LNG生产装备自主知识产权的转变。
从2008年起,国内很多业主陆续使用国产技术和设备投资建设了LNG工厂,目前运行状况良好。
LNG工艺流程有不同类型,按制冷方式分为以下三种:1.级联式液化流程;2.混合制冷剂液化流程;3.带膨胀机的液化流程[2]。
目前,在基本负荷型和调峰型LNG装置中应用最多、最广的是混合制冷剂液化流程,该流程在LNG生产中占据主导地位。
级联式液化流程能耗低,但有机组繁多,冷箱换热器流程和控制系统复杂等缺点。
膨胀制冷液化流程适用于液化能力较小的调峰型装置[3-4]。
本研究结合几种经典混合制冷剂液化流程的特点,提出了一种对混合冷剂单级循环多级节流制冷液化天然气的可行性工艺改造方案,在国产化小型装置上运行效果良好,可供专门从事深冷、LNG研发、生产的单位参考。
1 经典混合制冷剂LNG工艺混合冷剂制冷工艺简称MRC(Mixed Refrigerant Cycle),是以C1、C2、C3、C5碳氢化合物和N2等5种以上的多组分混合制冷剂为制冷介质,对制冷剂进行逐级的压缩、冷凝、气液分离、节流、蒸发而得到不同温度水平的制冷量,以达到逐步冷却和液化原料天然气的目的。
丁辛醇●●技术进展及市场分析◎鲁凤兰中国石油和化工・综合版弋‘辛醇是重要的基本有机化工原料,它有三个重要的品种:正丁醇、异丁醇、辛醇(或称2一乙基己醇)。
用正丁醇生产的邻苯二甲酸二丁酯和脂肪族二元酸酯类增塑剂.广泛用于各种塑料和橡胶制品的生产;用正丁醇生产的丙烯酸丁脂可用于涂料和粘合剂;正丁醇还是生产丁醛、丁酸、丁胺和醋酸丁酯等有机化合物的原料,可用作树脂、油漆、粘接剂的溶剂及选矿用消泡剂.也可用做油脂、药物(如抗菌素、激素和维生素)和香料的萃取剂及醇酸树脂涂料的添加剂。
辛醇主要用于生产苯二甲酸二辛酯(DOP)。
DOP产品素有王牌增塑剂之称,是一种物美价廉的理想增塑剂,广泛用于聚氯乙烯、合成橡胶、纤维素脂的加工等。
辛醇还可用作柴油和润滑油的添加剂,以及照相、造纸、涂料、油漆和纺织等行业的溶剂、陶瓷工业釉浆分散剂、矿石浮选剂、消泡剂、清净剂等。
1、丁辛醇的生产技术及发展动向生产工艺技术二战期间,德国开发了乙醛缩合法(Ald01)法,其工艺流程长,收率低,成本囫较高。
故在国外也已被淘汰。
目前全球丁辛醇的主要生产方法为丙烯羰基合成法,或称为氢甲酰化合成法。
丙烯羰基合成法的主要工艺过程为:(1)丙烯氢甲酰化反应,粗醛精制得到正丁醛和异丁醛;(2)正丁醛和异丁醛加氢得到产品正丁醇和异丁醇;(3)正丁醛经缩合,加氢得到产品丁辛醇。
根据压力和催化剂的不同,丙烯羰基合成反应分为钻法f高压钻法、改性钻法)和铑法(高压铑法、改性铑法)两种。
其中改性铑法具有温度低、压力低、催化剂寿命长并可回收再利用以及没备少、投资小、丁醇和辛醇可切换生产等优点.是当代丁辛醇合成技术的主流。
改性铑法又分为气相循环法和液相循环法两种。
经过若干年的发展.液相循环改性铑法已成为当今世界最先进、应用最广泛的丁辛醇合成技术。
目前主要有戴维、三菱化成、鲁尔化学和巴斯夫4家公司拥有此项专利技术。
(1)DAvY羰基合成工艺DAVY/DOWf原Kvaemer/UCC)联合开发了第二代低压铑法羰基合成工艺——液相循环工艺。