苏教版七年级上数学知识点总结(最新最全)
- 格式:docx
- 大小:41.84 KB
- 文档页数:12
苏教版七年级数学上册知识点总结第一章有理数1.1 正数和负数⒈正数和负数的概念负数:比 0 小的数正数:比 0 大的数0 既不是正数,也不是负数注意:①字母 a 可以表示任意数,当 a 表示正数时, -a 是负数;当 a 表示负数时, -a是正数;当 a 表示 0 时, -a 仍是 0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如 +a,-a 就不能做出简单判断)②正数有时也可以在前面加“+”,有时“ +”省略不写。
所以省略“ +”的正数的符号是正号。
2.具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上 8℃表示为: +8℃;零下8℃表示为: -8 ℃3.0 表示的意义⑴0 表示“没有”,如教室里有0 个人,就是说教室里没有人;⑵0 是正数和负数的分界线, 0 既不是正数,也不是负数。
(3)0 表示一个确切的量。
如:0℃以及有些题目中的基准,比如以海平面为基准,则0 米就表示海平面。
1.2 有理数1. 有理数的概念⑴正整数、 0、负整数统称为整数(0 和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数, 0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①π是无限不循环小数,不能写成分数形式,不是有理数。
②有限小数和无限循环小数都可化成分数,都是有理数。
3,整数也能化成分数,也是有理数注意:引入负数以后,奇数和偶数的范围也扩大了,像 -2,-4,-6,-8 ⋯也是偶数,-1,-3,-5 ⋯也是奇数。
2. 有理数的分类⑴按有理数的意义分类⑵按正、负来分正整数正整数整数0 正有理数负整数正分数有理数有理数0 ( 0 不能忽视)正分数负整数分数负有理数负分数负分数总结:①正整数、 0 统称为非负整数(也叫自然数)②负整数、 0 统称为非正整数③正有理数、 0 统称为非负有理数1④负有理数、 0 统称为非正有理数3.数轴⒈数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
七年级数学(上)知识点总结第一章数学与我们同行知识点1 数字与生活生活中我们所遇到的很多数字都蕴含着很多的数学问题,数学已成为人们表达与交流的工具。
例如,身份证号码、学生的学籍号、火车的列次等。
知识点2 图形与生活生活中充满了图形,多姿多彩的图形不仅美化了我们的生活,还包含着丰富的信息和数学知识。
知识点3 动手操作动手操作主要是让学生在实际操作的基础上设计相关的图形及制作相关图案。
这类题病根是培养学生的创新能力和实践能力。
动手操作包括折叠、裁剪、拼图等各种活动。
知识点4 找规律这类问题主要是通过一些数字或图形信息,寻求其内在的共同之处,也就是具有规律性的问题。
知识点5 统计知识在进行生产、生活和科学研究时,往往需要收集数据,并把数据加以分类、整理,需要求出数据的平均数,或者制成统计表、统计图,用来反应所了解的情况,这样的工作就是统计。
第二章有理数2.1正数与负数正数:大于零的数,正数前面可以放“+”来表示(通常省略不写)。
正数可分为正整数和正分数。
负数:小于零的数,负数前面放上“-”来表示。
负数可分为负整数和负分数。
注意:0既不是正数,也不是负数。
同时,0属于偶数、整数、非正数、非负数、非正整数、非负整数。
我们把正整数、零和负整数统称为整数,正分数、负分数统称分数。
2.2 有理数与无理数整数和分数统称为有理数。
我们把能够写成分数形式mn(m、n是整数,n≠0)的数叫做有理数。
实际上,有限小数和循环小数都可以化为分数,它们都是有理数。
无限不循环小数叫做无理数。
有理数有理数知识点提示: (1)有理数可按不同标准分类,标准不同,分类也不同。
(2)在分类时,要注意0的地位和意义。
(3)有理数的分类方法有很多,不论采取哪种分类方法,在对有理数分类时,都要做到不重不漏。
(4)习惯上,把正整数、0统称为非负整数(也叫自然数);把负整数、0统称为非正整数,正有理数、0统称为非负有理数,负有理数、0统称为非正有理数。
苏教版七年级数学上册基本知识点苏教版七年级数学知识点一、有理数1、正数:比0大的数是正数;2、负数:比0小的数是负数;3、0既不是正数也不是负数。
4、有理数包括整数和分数;整数包括正整数、0和负整数;分数包括正分数和负分数。
5、数轴:规定了原点、正方向和单位长度的直线叫做数轴,它包括三个方面:1)数轴的三要素:原点、正方向和单位长度,缺一不可。
2)数轴是一条直线,可以向两边无限延伸。
3)原点的选定、正方向的取向、单位长度大小的确定都是根据需要“规定”的。
6、数轴的画法1)画:画一条水平直线。
2)取:在直线上选取一点为原点,并在原点的下面标上“0”。
3)定:确定正方向,画上箭头(向右为正)。
4)选:根据需要选取适当的长度作为单位长度。
根据需要从原点右向左选取各点。
7、数轴上的点与有理数的关系1)任何一个有理数都可以数轴的一个点来表示。
2)正数可以用原点右边的点表示,负数可以用原点左边的点表示,0用原点表示。
3)数轴上的点右边的点总比左边的点表示的数大(右边为数轴正方向)。
8、最小的正整数是“1”;最大的负正数是“-1”;没有最大的正整数,也没有最小的负整数。
9、绝对值的概念1)绝对值的几何意义:一个数a的绝对值就是数轴上表示a的点与原点的距离,数a的绝对值记作“│a│”。
2)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.也就是说:如果a>0那么│a│=a;如果a< 0那么│a│=-a;如果a=0那么│a│=03) 绝对值的非负性:任何一个有理数的绝对值都不可能是一个负数,即非负数。
│a│≥04)要求一个数(或一个代数式)的绝对值,首先应判断这个数(或这个代数式的值)是正数、0,还是负数。
再根据绝对值的意义确定去掉绝对值符号后的形式。
如:是正数,就等于它的本身;是负数,就等于它的相反数。
是0,就等于0。
5)0是绝对值最小的有理数;绝对值等于同一正数的有理数有两个,它们互为相反数。
苏教版初一数学上册知识点苏教版初一数学上册知识点1普查:为了一定的目的而对考察对象进行的全面调查.总体:所要考察对象的全体称为总体个休:组成总体的每一个考察对象称为个体.抽样调查:从总体中抽取部分个体进行调查.样本:总体中抽取的一部分个体叫做总体的一个样本.样本容量:样本中个体的`数目.频数:每个对象出现的次数频率:每个对象出现的次数与总次数的比值苏教版初一数学上册知识点21定义在平面内,如果一个图形沿一条直线折叠,直线两旁的部分能够完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴,并且对称轴用点画线表示;这时,我们也说这个图形关于这条直线对称。
比如说圆、正方形、等腰三角形、等边三角形、等腰梯形等。
2举例例如等腰三角形、正方形、等边三角形、等腰梯形和圆和正多边形都是轴对称图形.有的轴对称图形有不止一条对称轴,但轴对称图形最少有一条对称轴。
圆有无数条对称轴,都是经过圆心的直线。
要特别注意的是线段,它有两条对称轴,一条是这条线段所在的直线,另一条是这条线段的中垂线。
3性质1.对称轴是一条直线。
2.垂直并且平分一条线段的'直线称为这条线段的垂直平分线,或中垂线。
线段垂直平分线上的点到线段两端的距离相等。
3.在轴对称图形中,对称轴两侧的对应点到对称轴两侧的距离相等。
4.在轴对称图形中,沿对称轴将它对折,左右两边完全重合。
5.如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连线段的垂直平分线6.图形对称。
定理定理1:关于某条直线对称的两个图形是全等形。
定理2:如果两个图形关于某条直线对称,那么对称轴是对应点连线的垂直平分线。
定理3:两个图形关于某条直线对称,如果对称轴和某两条对称线段的延长线相交,那么交点在对称轴上。
定理3的逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称。
生活作用1、为了美观,比如天安门,对称就显的美观漂亮;2、保持平衡,比如飞机的两翼;3、特殊工作的需要,比如五角星,剪纸苏教版初一数学上册知识点31.有理数:(1)凡能写成形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;(2)有理数的分类:①②(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;(4)自然数0和正整数;a>0a是正数;a<0a是负数;a≥0a是正数或0a是非负数;a≤0a是负数或0a是非正数.2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.3.相反数:(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;(2)注意:a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;(3)相反数的.和为0a+b=0a、b互为相反数.4.绝对值:(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;(2)绝对值可表示为:或;绝对值的问题经常分类讨论;(3);;(4)|a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,.5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数>0,小数-大数<0.6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若a≠0,那么的倒数是;倒数是本身的数是±1;若ab=1a、b互为倒数;若ab=-1a、b互为负倒数.7.有理数加法法则:(1)同号两数相加,取相同的符号,并把绝对值相加;(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;(3)一个数与0相加,仍得这个数.8.有理数加法的运算律:(1)加法的交换律:a+b=b+a;(2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).10有理数乘法法则:(1)两数相乘,同号为正,异号为负,并把绝对值相乘;(2)任何数同零相乘都得零;(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定.11有理数乘法的运算律:(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);(3)乘法的分配律:a(b+c)=ab+ac.12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,.13.有理数乘方的法则:(1)正数的任何次幂都是正数;(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时:(-a)n=-an或(a-b)n=-(b-a)n,当n为正偶数时:(-a)n=an或(a-b)n=(b-a)n. 14.乘方的定义:(1)求相同因式积的运算,叫做乘方;(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;(3)a2是重要的非负数,即a2≥0;若a2+|b|=0a=0,b=0;(4)据规律底数的小数点移动一位,平方数的小数点移动二位.15.科学记数法:把一个大于10的数记成a某10n的形式,其中a是整数数位只有一位的数,这种记数法叫科学记数法.16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明.苏教版初一数学上册知识点4一个整数a和一个非零整数b的比是有理数(rationalnumber)正数与负数像3,2,1。
初一数学上知识点总结归纳代数初步知识 1.代数式:用运算符号“+ - X 十……”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义; 单独一个数或一个字母也是代数式)2. 列代数式的几个注意事项:(1) 数与字母相乘,或字母与字母相乘通常使用“ •”乘,或省略不写;(2) 数与数相乘,仍应使用“X”乘,不用“•”乘,也不能省略乘号;(3) 数与字母相乘时,一般在结果中把数写在字母前面,如a x 5应写成5a;1 3(4) 带分数与字母相乘时,要把带分数改成假分数形式,如a x 1丄应写成-a;2 2(5) 在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3十a写成?的形式;a(6) a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类, 写做a-b和b-a .3. 几个重要的代数式:(m n表示整数)(1)a与b的平方差是: a 2-b 2;a 与b差的平方是:(a-b ) 2(2)若a、b、c是正整数,则两位整数是:10a+b ,则三位整数是:100a+10b+c ;(3)若m n是整数,则被5除商m余n的数是:5m+n ;偶数是:2n,奇数是:2n+1;三个连续整数是:n-1、n、n+1 ;(4)若b> 0,则正数是:a 2+b,负数是:-a 2-b,非负数是:aj_,非正数是:-a2.正数和负数1•正数和负数的概念负数:比0小的数正数:比0大的数0 既不是正数,也不是负数注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的, 例如+a,-a就不能做出简单判断)②正数有时也可以在前面加“+”,有时“ +”省略不写。
所以省略“ +”的正数的符号是正号。
苏教版七年级数学上册知识点详细全面精华本篇文章旨在详细介绍苏教版七年级数学上册的知识点,旨在为学生提供全面而有效的数学学习资料。
文章将深入浅出地解释每个知识点,帮助读者更好地理解并掌握数学的基础概念和方法。
一、数与代数数与代数是数学的基础,学好这一部分对于掌握后续的数学知识至关重要。
在这一章节中,我们将学习自然数、整数、有理数和实数的概念,并掌握它们的运算规则。
1.自然数自然数是人们最早形成的一种数字概念,用于计数。
从1开始,一直往上递增,没有终点。
2.整数整数是由正整数、负整数和0组成的,可以用来表示具有方向的数量。
3.有理数有理数是指整数和分数的集合,可以用来表示除了整数之外的所有数。
4.实数实数是包含有理数和无理数的集合,是数轴上的所有点。
二、比例与比例的应用比例是数学中常见的概念之一,在生活中也有广泛的应用。
本章将帮助我们理解比例的含义,并学习如何运用比例解决实际问题。
1.比例比例是指两个或多个数之间的关系,又称为比。
比例的表示形式为“:”或“/”。
2.比例的性质比例有三个性质:比例恒等、比例反比例和比例倍数。
3.比例的应用场景比例在解决实际问题时有着广泛的应用。
例如,我们可以通过比例计算物体的相似性、解决商品折扣问题等。
三、图形与空间几何图形与空间几何是数学中的一个重要分支,它涉及形状、位置、尺寸等概念。
本章将介绍各种图形的性质以及它们在实际生活中的应用。
1.点、线、面点是没有大小和形状的,用来表示位置;线是由无数个点组成的,长度没有限制;面是由无数条线组成的,有面积的概念。
2.多边形多边形是有限个线段按一定次序连接而成的封闭图形,包括三角形、四边形、五边形等。
3.角与三角形角是由两条射线公共的端点组成的,用来度量物体之间的旋转程度;三角形是由三条线段围成的封闭图形。
四、数据与统计数据与统计是将大量的数据按照一定的方式进行整理和处理的过程。
本章将帮助我们学习如何收集和整理数据,并运用统计方法进行分析和解释。
七年级上册数学苏教版笔记嘿呀,咱这就来整理一下七年级上册数学苏教版的笔记哈。
一、有理数。
咱得先搞清楚啥是有理数哈,有理数就是整数和分数的统称。
像1、2、3这些整数,还有1/2、3/4这种分数,都是有理数哦。
1. 正数和负数。
正数就是大于0的数,像1、2、3.5啥的;负数呢,就是小于0的数,比如 -1、-2、-3.6这些。
0既不是正数也不是负数哦,这个可别搞混啦。
2. 数轴。
数轴可是个好东西,它有三要素:原点、正方向和单位长度。
咱可以把数在数轴上表示出来,这样就更直观啦。
比如2就在原点右边2个单位长度的地方,-3就在原点左边3个单位长度的地方。
3. 相反数。
相反数就是绝对值相等,符号相反的两个数。
比如说2和 -2就是一对相反数,0的相反数还是0哦。
二、整式。
整式这部分也挺重要的哈。
1. 单项式。
由数与字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
像3x、-5、a这些都是单项式。
单项式中的数字因数叫做这个单项式的系数,所有字母的指数和叫做这个单项式的次数。
比如3x的系数是3,次数是1。
2. 多项式。
几个单项式的和叫做多项式。
在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。
多项式里,次数最高项的次数,就是这个多项式的次数。
比如2x² + 3x 1这个多项式,有三项,分别是2x²、3x和 -1,其中 -1是常数项,这个多项式的次数是2。
三、一元一次方程。
这可是解方程的基础哈。
1. 方程的概念。
含有未知数的等式叫做方程。
像x + 1 = 2就是一个方程,这里面x就是未知数。
2. 一元一次方程的定义。
只含有一个未知数,并且未知数的次数都是1,等号两边都是整式的方程叫做一元一次方程。
比如2x + 3 = 5就是一元一次方程。
3. 解方程。
解方程的步骤一般就是去分母、去括号、移项、合并同类项、系数化为1。
比如说解方程3x + 2 = 5x 4,咱先移项,把5x移到左边变成 -5x,把2移到右边变成 -2,就得到3x 5x = -4 2,然后合并同类项得到 -2x = -6,最后系数化为1,两边同时除以 -2,就得到x = 3啦。
2024年苏教版七年级数学知识点总结一、数与式1. 自然数、整数、有理数的认识和比较2. 分数的概念及其表示方法3. 数的运算:加法、减法、乘法、除法4. 整数的四则运算5. 分数的加减运算及混合运算6. 数的乘方和乘法运算律7. 简单的代数式二、比1. 比的定义和性质2. 比例和比例的性质3. 比例中的四则运算4. 百分数与百分数的运算5. 比例的应用三、形状与运动1. 平面图形:点、线、面、角的基本概念2. 直线与角3. 三角形和四边形的性质4. 平行线与它们的性质5. 梯形、菱形和平行四边形的性质6. 圆的基本性质四、数据和图表1. 数据收集与整理2. 图表的读取和分析3. 表格的制作和应用4. 统计的基本概念和统计图的绘制5. 常见统计图形的分析五、方程与不等式1. 一元一次方程与一元一次不等式2. 代数式与方程式的应用3. 做运算与解方程之间的关系六、正比例与反比例1. 直接比例与反比例2. 比例线性方程和反比例函数图形的认识3. 比例线性方程和反比例函数的应用七、整式的加减1. 代数式的加减法则和乘法法则2. 积的分配率和提公因式3. 化简代数式八、三角形的面积1. 三角形的面积及其性质2. 面积公式的推导和应用3. 相似三角形与面积的计算九、数与式的应用1. 问题的变式及解法2. 数与式的应用问题3. 代数方法解决应用问题十、数据和不等式1. 数据和不等式的综合应用2. 数据的分析、预测和预测误差3. 解决实际问题以上是____年苏教版七年级数学的主要知识点,总结如上,希望对您有所帮助。
初一数学上册苏教版知识点七年级数学知识点变量之间的关系一理论理解1、若Y随X的变化而变化,则X是自变量Y是因变量。
自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量,数值保持不变的量叫做常量。
3、若等腰三角形顶角是y,底角是x,那么y与x的关系式为y=180-2x.2、能确定变量之间的关系式:相关公式①路程=速度×时间②长方形周长=2×(长+宽)③梯形面积=(上底+下底)×高÷2④本息和=本金+利率×本金×时间。
⑤总价=单价×总量。
⑥平均速度=总路程÷总时间二、列表法:采用数表相结合的形式,运用表格可以表示两个变量之间的关系。
列表时要选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出因变量的对应值。
列表法的特点是直观,可以直接从表中找出自变量与因变量的对应值,但缺点是具有局限性,只能表示因变量的一部分。
三.关系式法:关系式是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。
四、图像注意:a.认真理解图象的含义,注意选择一个能反映题意的图象;b.从横轴和纵轴的实际意义理解图象上特殊点的含义(坐标),特别是图像的起点、拐点、交点八、事物变化趋势的描述:对事物变化趋势的描述一般有两种:1.随着自变量x的逐渐增加(大),因变量y逐渐增加(大)(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而增加(大));2.随着自变量x的逐渐增加(大),因变量y逐渐减小(或者用函数语言描述也可:因变量y随着自变量x的增加(大)而减小).注意:如果在整个过程中事物的变化趋势不一样,可以采用分段描述.例如在什么范围内随着自变量x的逐渐增加(大),因变量y逐渐增加(大)等等.九、估计(或者估算)对事物的估计(或者估算)有三种:1.利用事物的变化规律进行估计(或者估算).例如:自变量x每增加一定量,因变量y的变化情况;平均每次(年)的变化情况(平均每次的变化量=(尾数-首数)/次数或相差年数)等等;2.利用图象:首先根据若干个对应组值,作出相应的图象,再在图象上找到对应的点对应的因变量y的值;3.利用关系式:首先求出关系式,然后直接代入求值即可.初一数学知识点一元一次方程的应用1.一元一次方程解应用题的类型(1)探索规律型问题;(2)数字问题;(3)销售问题(利润=售价﹣进价,利润率=利润进价×100%);(4)工程问题(①工作量=人均效率×人数×时间;②如果一件工作分几个阶段完成,那么各阶段的工作量的和=工作总量);(5)行程问题(路程=速度×时间);(6)等值变换问题;(7)和,差,倍,分问题;(8)分配问题;(9)比赛积分问题;(10)水流航行问题(顺水速度=静水速度+水流速度;逆水速度=静水速度﹣水流速度).2.利用方程解决实际问题的基本思路:首先审题找出题中的未知量和所有的已知量,直接设要求的未知量或间接设一关键的未知量为x,然后用含x的式子表示相关的量,找出之间的相等关系列方程、求解、作答,即设、列、解、答。
苏教版七年级数学上册知识点总结(苏科版)知识点总结第1章数学与我们同行一、生活数学1、生活中的数学观察、积累生活中常见的数学符号,了解它们表达的意义如:身份证号码、邮政编码……2、生活中的图形观察、认识生活中的图形,感知它们与数学知识的联系如:城市建筑群、超市的商品……二、活动思考1、数学活动——动手操作、探索新知数学活动包括观察、试验、操作、猜想、归纳等。
2、数学思考——规律探索数形结合、从特殊到一般的思想方法图形规律、数字规律三、思想方法转化思想、建模思想、归纳思想、从特殊到一般……四、常见题型探究数字、图形规律题实践操作题图案设计题简单的数字推理题第二章有理数一、正数和负数1、正数和负数的概念(1)负数:比0小的数。
(2)正数:比0大的数。
0既不是正数,也不是负数。
(3)注意:①字母a可以表示任意数,当a表示正数时,-a是负数;当a表示负数时,-a是正数;当a表示0时,-a仍是0。
(如果出判断题为:带正号的数是正数,带负号的数是负数,这种说法是错误的,例如+a,-a就不能做出简单判断)。
②正数有时也可以在前面加“+”,有时“+”省略不写。
所以省略“+”的正数的符号是正号。
2、具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8℃表示为:+8℃;零下8℃表示为:-8℃。
3、0表示的意义(1)0表示“ 没有”,如教室里有0个人,就是说教室里没有人;(2)0是正数和负数的分界线,0既不是正数,也不是负数。
二、有理数1、有理数的概念(1)正整数、0、负整数统称为整数(0和正整数统称为自然数)。
(2)正分数和负分数统称为分数。
(3)正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
2、理解:只有能化成分数的数才是有理数。
(1)π是无限不循环小数,不能写成分数形式,不是有理数。
(2)②有限小数和无限循环小数都可化成分数,都是有理数。
3、注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6,-8…也是偶数,-1,-3,-5…也是奇数。
第一章我们与数学同行(略)第二章有理数一、 正数和负数1. 正数和负数的概念负数:比0小的数 正数:比0大的数 0既不是正数,也不是负数2•具有相反意义的量若正数表示某种意义的量,则负数可以表示具有与该正数相反意义的量,比如:零上8°C 表示为:+8°C;零下8X :表示为:-8°C3.0表示的意义 (1)0表示“没有”,如教室里有0个人,就是说教室里没有人;(2)0是正数和负数的分界线,0既不是正数,也不是负数。
如:二、 有理数1. 有理数的概念⑴正整数、0、负整数统称为整数(0和正整数统称为自然数)⑵正分数和负分数统称为分数⑶正整数,0,负整数,正分数,负分数都可以写成分数的形式,这样的数称为有理数。
理解:只有能化成分数的数才是有理数。
①开是无限不循环小数,不能写成分数形式,不是有理数。
②有限 小数和无限循环小数都可化成分数,都是有理数。
注意:引入负数以后,奇数和偶数的范围也扩大了,像-2,-4,-6.-8-也是偶数,-1,-3,-5…也是奇数。
⑵按正、负来分正整数 '正有理数. ,正分数 有理数彳0 「负整数 、负有理数・ .负分数 总结:①正整数、0统称为非负整数(也叫自然数) ② 负整数、0统称为非正整数③ 正有理数、0统称为非负有理数④ 负有理数、0统称为非正有理数 三、数轴1. 数轴的概念规定了原点,正方向,单位长度的直线叫做数轴。
2. 数轴上的点与有理数的关系⑴所有的有理数都可以用数轴上的点来表示,正有理数可用原点右边的点表示,负有理数可用原点左边的点 表示,0用原点表示。
⑵所有的有理数都可以用数轴上的点表示出来,但数轴上的点不都表示有理数,也就是说,有理数与数轴上 的点不是一一对应关系。
(如,数轴上的点兀不是有理数)2.有理数的分类⑴按有理数的意义分类 ■■正整数 r整数"0I 负整数有理数<「正分数、分数-(0不能忽视)3•利用数轴表示两数大小⑴在数轴上数的大小比较,右边的数总比左边的数大;⑵正数都大于0,负数都小于0,正数大于负数;(3)两个负数比较,距离原点远的数比距离原点近的数小。
4•数轴上特殊的最大(小)数⑴最小的自然数是0,无最大的自然数;(2)最小的正整数是1,无最大的正整数;(3)最大的负整数是-1,无最小的负整数5.a可以表示什么数(l)a>0表示a是正数;反之,a是正数,则a>0;(2)a<0表示a是负数;反之,a是负数,则a<0(3)a=0表示a是0;反之,a是0,,则a=06•数轴上点的移动规律根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。
四、相反数1.相反数只有符号不同的两个数叫做互为相反数,其中一个是另一个的相反数,0的相反数是0。
注意:⑴相反数是成对出现的;(2)相反数只有符号不同,若一个为正,则另一个为负;(3)0的相反数是它本身;相反数为本身的数是0。
2.相反数的性质与判定⑴任何数都有相反数,且只有一个;(2)0的相反数是0;⑶互为相反数的两数和为0,和为0的两数互为相反数,即°, b互为相反数,则a-b 03.相反数的几何意义在数轴上与原点距离相等的两点表示的两个数,是互为相反数;互为相反数的两个数,在数轴上的对应点(0 除外)在原点两旁,并且与原点的距离相等。
0的相反数对应原点;原点表示0的相反数。
说明:在数轴上,表示互为相反数的两个点关于原点对称。
4.相反数的求法⑴求一个数的相反数,只要在它的前面添上负号“-”即可求得(如:5的相反数是-5);⑵求多个数的和或差的相反数是,要用括号括起来再添“-”,然后化简(如;5a+b的相反数是-(5a+b)。
化简得-5a-b);⑶求前面带“-”的单个数,也应先加括号再添然后化简(如:-5的相反数是-(-5),化简得5)5.相反数的表示方法⑴一般地,数a的相反数是-a ,其中a是任意有理数,可以是正数、负数或0。
当a〉0时,-a<0 (正数的相反数是负数)当a<0时,-a〉0 (负数的相反数是正数)当a=0时,-a=0, (0的相庾数是0)6.多重符号的化简多重符号的化简规律:“+”号的个数不影响化简的结果,可以直接省略;"-”号的个数决定最后化简结果;即:“-”的个数是奇数时,结果为负,“-”的个数是偶数时,结果为正。
五、绝对值1.绝对值的几何定义一般地,数轴上表示数a的点与原点的距离叫做a的绝对值,记作|a|。
2•绝对值的代数定义⑴一个正数的绝对值是它本身;(2)—个负数的绝对值是它的相反数;(3)0的绝对值是0.可用字母表示为:①如果a>0,那么a\=a;②如果a〈0,那么|a|=-a;③如果a=0,那么a|=0。
可归纳为①:a$0, <—> |a|=a②a£0, <—> ) a | =~a3.绝对值的性质任何一个有理数的绝对值都是非负数,也就是说绝对值具有非负性。
所以,a取任何有理数,都有|a|>0o 即(1)0的绝对值是0;绝对值是0的数是0•即:a=0 <—> |a|=0;(2)—个数的绝对值是非负数,绝对值最小的数是0.即:a|>0;⑶任何数的绝对值都不小于原数。
即:|a| Ma;⑷绝对值是相同正数的数有两个,它们互为相反数。
即:若|x|=a(a>0),则x=±a;⑸互为相反数的两数的绝对值相等。
EP: |-a| = |a|或若a+b=O,则|a| = |b|;⑹绝对值相等的两数相等或互为相反数。
即:a|=|b|,则a=b或a=-b;(7)若几个数的绝对值的和等于0,则这几个数就同时为0。
即|a| + |b|=0,则a=0且b=0。
4•有理数大小的比较⑴利用数轴比较两个数的大小:数轴上的两个数相比较,左边的总比右边的小;⑵利用绝对值比较两个负数的大小:两个负数比较大小,绝对值大的反而小;异号两数比较大小,正数大于负数。
5.绝对值的化简①当aMO时,a|=a ;②当aWO时,lal—a6.已知一个数的绝对值,求这个数一个数a的绝对值就是数轴上表示数a的点到原点的距离,一般地,绝对值为同一个正数的有理数有两个,它们互为相反数,绝对值为0的数是0,没有绝对值为负数的数。
六、有理数的加减法1.有理数的加法法则⑴同号两数相加,取相同的符号,并把绝对值相加;⑵绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;⑶互为相反数的两数相加,和为零;⑷一个数与零相加,仍得这个数。
2•有理数加法的运算律⑴加法交换律:a+b=b+a ⑵加法结合律:(a+b)+c=a+(b+c)在运用运算律时,一定要根据需要灵活运用,以达到化简的目的,通常有下列规律:① 互为相反数的两个数先相加一一“相反数结合法”;② 符号相同的两个数先相加一一“同号结合法”;③ 分母相同的数先相加一一"同分母结合法”;④ 几个数相加得到整数,先相加一一“凑整法S⑤ 整数与整数、小数与小数相加一一“同形结合法駕3 •加法性质一个数加正数后的和比原数大;加负数后的和比原数小;加0后的和等于原数。
即: ⑴当b>0时,a+b>a ⑵当b<0时,a+b<a ⑶当b=0时,a+b=a4 •有理数减法法则减去一个数,等于加上这个数的相反数。
用字母表示为:a-bF+(-b )。
5.有理数加减法统一成加法的意义在有理数加减法混合运算中,根据有理数减法法则,可以将减法转化成加法后,再按照加法法则进行计算。
在和式里,通常把各个加数的括号和它前面的加号省略不写,写成省略加号的和的形式。
如:(-8) + (-7) + (-6) + (+5) =-8-7 - 6+5.和式的读法:①按这个式子表示的意义读作'‘负8、负7、负6、正5的和”②按运算意义读作“负8减7减6加5"6. 有理数加滅混合运算中运用结合律时的一些技巧:I •把符号相同的加数相结合(同号结合法) (-33) - (-18) + (T 5) - (+1) + (+23)原式=-33+ (+18) + (-15) + (-1) + (+23) =-33+18-15-1+23 =(-33-15-1)+(18+23) =-49+41 =-8 【II•把分母相同或便于通分的加数相结合(同分母结合法) 3 13 2 17一 —一_ + —5 2 4 5 2 8原式二(一一一一)+ (- — + —) + (+ — - —) =一1 +0 - — =~1 —5 5 2 2 4 8 8 8IV.既有小数又有分数的运算要统一后再结合(先统一后结合) (将减法转换成加法)(省略加号和括号)(把符号相同的加数相结合) (运用加法法则一进行运算) (运用加法法则二进II•把和为整数的加数相结合(凑整法)(+6. 6) + (-5. 2) 一 (-3. 8) + (-2. 6)一 (+4. 8) 原式=(+6. 6) + (-5. 2) + (+3. 8) + (-2. 6) + (-4. 8) =6. 6-5. 2+3. 8-2. 6-4. 8= (6. 6-2. 6) + (-5・ 2-4. 8)+3. 8 =4 -10+3.8 =7. 8-10 =-2.2 (将减法转换成加法)(省略加号和括号)(把和为整数的加数相结合)(运用加法法则进行运算)(把符号相同的加数相结合,并进行运算) (得出结论)3 1 2(+0. 125)-(-3 — ) + (-3— )-(-10 — )-(+1. 25)4 8 31 3 12 1原式=(+ —) + (+3 —) + (一3 —) + (+10 —) + ("1 —)8 4 8 3 43 1 11 2=(3 二—1 —) + (_-3 —)+10 二4 4 8 8 3V.把带分数拆分后再结合(先拆分后结合)16 17一3 — +10 —-12—+4 —5 11 22 15丨 7 6 I原式=(-3+10-12+4)+ (-— + —) + ( — -—) VI•分组结合2-3-4+5+6-7-8+9• • • +66-67-68+69原式=(2-3-4+5) + (6-7-8+9) +•••+ (66-67-68+69) =0VII.先拆项后结合(1+3+5+7-+99) 一 (2+4+6+8・・・+100)七. 有理数的乘除法1•有理数的乘法法则法则一:两数相乘,同号得正,异号得负,并把绝对值相乘;(“同号得正,异号得负”专指“两数相乘”的 情况,如果因数超过两个,就必须运用法则三)法则二:任何数同0相乘,都得0;法则三:几个不是0的数相乘,负因数的个数是偶数时,积是正数;负因数的个数是奇数时,积是负数; 法则四:几个数相乘,如果其中有因数为0,则积等于0.2. 倒数乘积是1的两个数互为倒数,其中一个数叫做另一个数的倒数,用式子表示为a •丄二1 (aHO),就是说3和a丄互为倒数,即0是丄的倒数,丄是3的倒数。