导数在生活中应用实例分析
- 格式:doc
- 大小:43.00 KB
- 文档页数:8
导数在生活中的应用例子
一、在经济学中
1、供求曲线中的供求应变:当价格发生变化时,需求量会出现波动,
以及需求量对价格的变化也变化,供求曲线受到价格变化的影响。
这
就是导致供求应变的原因,而这个原因可以用微积分的偏导数来证明。
2、市场竞争:随着竞争者数量的增加,市场价格也会发生变化,价格
作为变量,市场最终决定价格时,就会出现供需冲突,从而引起价格
波动,这就用微积分中的导数来分析。
二、在金融学中
1、货币政策传导机制:货币政策的实施使得利率的变化对经济的影响,用微积分的意义来看,利率是一种曲线,当利率变化时,曲线的斜率
也会变化,这就是利率传导机制。
2、投资机会成本:投资机会成本指的是投资者在一定条件下所承担的
投资风险,当利率下降时,投资机会成本也会发生变化,而这一变化
可以用微积分中的导数来进行分析。
三、在制造业中
1、公差计算:在计算机装配工艺中,产品的尺寸关系到了其加工的质量,如果所用的部件的尺寸不符合公差要求,就会出现不良的加工结
果,这时处理的办法就是计算出来最大的容许偏差,而这个最大容许
偏差就是通过微积分的偏微分来计算出来的。
2、工艺优化:为了确保加工出来的产品的质量,就必须对付诸如温度、压力、用料等参数进行优化调整,这可以使用微积分来分析各参数对
最终结果的影响,以达到最优化调整的效果。
试述导数在解决实际问题中的应用在实际生活中,我们经常会遇到如何才能使“选址最佳”“用料最省”“流量最大”“效率最高”等优化问题。
这类问题在数学上就是最大值、最小值问题,一般都可以应用导数知识得到解决,下面通过具体实例谈谈导数在实际生活中的应用。
一、生活中的优化问题:例1:在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?分析:生活中的优化问题:根据实际意义建立好目标函数,体会导数在解决实际问题中的作用。
例1:在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,箱底边长为多少时,箱子容积最大?最大容积是多少?分析:这是一道实际生活中的优化问题,建立的目标函数是三次函数,用过去的知识求其最值往往没有一般方法,即使能求出,也要涉及到较高的技能技巧。
而运用导数知识,求三次目标函数的最值就变得非常简单。
思路:设箱底边长为x cm,则箱高602xh-=cm,得箱子容积V是箱底边长x的函数:23260()(060)2x xr x x h x-==<<,从求得的结果发现,箱子的高恰好是原正方形边长的16,这个结论是否具有一般性?二、最大利润问题例2: 已知某商品生产成本C 与常量q 的函数关系式为1004C q =+,价格p 与产量q 的函数关系式1258p q =-。
求产量q 为何值时,利润L 最大。
分析:利润L 等于收入R 减去成本C ,而收入R 等于产量乘价格,由此可得出利润L 与产量q 的函数关系式,再用导数求最大利润。
解:收入211252588R q p q q q q ⎛⎫=⋅=-=- ⎪⎝⎭ 利润()212510048L R C q q q ⎛⎫=-=--+ ⎪⎝⎭ ()212110002008q q q =-+-<< '1214L q =-+ 令'0L =,即12104q -+= 求得唯一的极值点84q = 因为L 只有一个极值点,所以它是最大值。
导数在社会学中的应用举例1. 迁移率的研究迁移率是指人口在地理空间上的流动性,它在社会学中被广泛研究。
使用导数的概念,我们可以计算某一地区的人口迁入率和迁出率。
例如,研究人口迁入某城市的趋势时,我们可以通过计算该城市的人口变化率来得到迁入率的信息。
如果人口变化率为正值,那么说明该城市的人口正在增加,迁入率则较高。
反之,如果人口变化率为负值,说明该城市的人口正在减少,迁入率较低。
通过研究不同地区的迁入率和迁出率,我们可以了解人口在不同地理空间上的流动情况,进而分析人口迁移对社会结构和经济发展的影响。
2. 教育和职业发展的分析导数还可以应用于研究教育和职业发展领域。
我们可以利用导数来分析学生的研究成绩和职业发展的趋势。
以研究成绩为例,我们可以计算学生每次考试的成绩变化率。
如果学生的成绩变化率为正值,说明他们的研究成绩在增长,反之则说明成绩在下降。
通过比较不同学生的成绩变化率,我们可以找出研究成绩优秀的学生和需要改进的学生,进而提出有针对性的教育措施。
在职业发展方面,我们可以通过计算某个行业从业人员的就业率变化率来研究职业发展的趋势。
如果就业率变化率为正值,说明该行业就业机会增加,职业发展前景较好。
反之,如果就业率变化率为负值,说明该行业就业机会减少,职业发展前景较差。
通过利用导数分析学生的研究成绩和职业发展的趋势,我们可以为教育和职业培训提供更科学的指导和决策。
3. 社会运动的分析社会运动是社会学中一个重要的研究领域,导数可以帮助我们分析社会运动的趋势和发展。
例如,我们可以利用导数来计算某个社会运动参与人数的变化率。
如果参与人数的变化率为正值,说明该社会运动的参与人数在增加,运动的影响力可能在扩大。
反之,如果参与人数的变化率为负值,说明该社会运动的参与人数在减少,运动的影响力可能在减弱。
通过分析社会运动的变化率,我们可以了解社会运动的兴起和衰退,从而对社会变革和社会发展提供深入的理解和引导。
结论导数在社会学中的应用非常广泛,可以帮助我们研究人口迁移、教育和职业发展以及社会运动等社会学问题。
导数与微分在实际问题中的应用导数与微分是微积分的重要概念,在实际问题中有着广泛的应用。
导数描述了函数在某一点处的变化率,微分则可以用来近似计算函数在某一点附近的变化。
本文将从实际问题的角度探讨导数与微分的应用。
一、速度与加速度导数可以描述物体的速度和加速度。
以物体在直线上的运动为例,如果我们已知物体位移随时间的变化关系,可以通过对位移函数进行求导,得到速度函数。
速度函数可以告诉我们物体在不同时间点的瞬时速度。
同理,对速度函数再求导,可以得到加速度函数。
加速度函数则描述了物体在不同时间点的瞬时加速度。
通过对位移函数、速度函数和加速度函数的分析,我们可以了解物体在运动过程中的行为特点,并做出相应的预测和决策。
二、最优化问题导数与微分在最优化问题中具有重要作用。
最优化问题是指在一定约束条件下,求解使得目标函数取得极大值或极小值的问题。
经济学、工程学等领域中充满了最优化问题。
通过对目标函数求导,我们可以找到使目标函数取极值的临界点。
通过对导数的符号分析,我们可以判断这个临界点是极大值还是极小值。
此外,微分也可以帮助我们对目标函数进行逼近,在找到准确解之前提供近似解。
三、图像的研究导数与微分在研究函数的图像特性方面发挥着重要作用。
我们可以通过导数来分析函数的单调性、凹凸性以及极值点等信息。
导数的正负可以告诉我们函数的增减情况,导数的变化可以告诉我们函数的凹凸情况,导数为零的点则是函数的极值点。
微分可以用来计算函数的局部线性逼近,进一步揭示函数的特性。
通过对函数图像的分析,我们可以了解函数在不同区间上的行为,这对于解决实际问题具有指导意义。
四、物理学中的应用导数与微分在物理学中应用广泛。
经典力学中,牛顿的运动定律指出物体的加速度与作用在物体上的力成正比。
通过对物体速度函数的导数,可以求解物体的加速度。
力学中的匀速直线运动、自由落体运动等问题都可以通过导数和微分的方法进行分析和求解。
此外,导数与微分还在电磁学、热学等物理学领域中有着广泛的应用。
导数在生活中应用实例分析导数知识是学习高等数学的基础,它在自然科学、工程技术及日常生活等方面都有着广泛的应用.导数是从生产技术和自然科学的需要中产生的,同时,又促进了生产技术和自然科学的发展,它不在天文、物理、工程领域有着广泛的应用,而且在日常生活及经济领域也是逐渐显示出重要的作用.类型一环境问题例1烟囱向其周围地区散落烟尘造成环境污染,已知落在地面某处的烟尘浓度与该处到烟囱的距离的平方成反比,而与该烟囱喷出的烟尘量成正比.现有A、B两座烟囱相距20km,其中B座烟囱喷出的烟尘量是A的8倍,试求出两座烟囱连线上的点C,使该点的烟尘浓度最低.分析由题意知要确定某点的烟尘浓度最低,显然其烟尘浓度源自这两座烟囱,与其距离密切相关,因此可考虑先设出与某个烟囱的距离,从而表示出相应的烟尘浓度,再确定其最小值即可.解不妨设A烟囱喷出的烟尘量是1,而B烟囱喷出的烟尘量为8,设AC=x(其中0<x<20),所以BC=20-x,依题意得点C处的烟尘浓度y=k/×2+k・8/(20-x)2(其中k是比例系数,且k>0),y′=2k(3x-20)(3x2+400)x2(20-x)2.令y′=0得(3x-20)(3x2+400)=0又0<x<20,所以x=20/3因为当x∈(0,20/3)时,y′<0;当x∈(20/3,20)时,y′>0,故当x=20/3时,y取得最小值,即当C位于距点A为20/3km时,使该点的烟尘浓度最低.类型二工程造价问题例2某地为了开发旅游资源,欲建一条连接风景点P和居民区O的公路,点P所在的山坡面与山脚所在水平面α所成的二面角为θ(0°<θ<90°),且sinθ=25,点P到平面α的距离PH=0.4(km).沿山脚原有一段笔直的公路AB可供利用.从点O到山脚修路的造价为a万元/km,原有公路改建费用为a2万元/km.当山坡上公路长度为lkm(1≤l≤2)时,其造价为(l2+1)a万元.已知OA⊥AB,PB⊥AB,AB=1.5(km),OA=3’km.(1)在AB上求一点D,使沿折线PDAO修建公路的总造价最小;(2)对于(1)中得到的点D,在DA上求一点E,使沿折线PDEO修建公路的总造价最小;(3)在AB上是否存在两个不同的点D′、E′,使沿折线PD′E′O修建公路的总造价小于(2)中得到的最小总造价,证明你的结论.分析由题意知要求修建公路的总造价最小值,可以先建立相应的总造价函数关系式,再确定其最小值即可.解(1)如图,PH⊥α,HB"α,PB⊥AB,由三垂线定理逆定理知,AB⊥HB,所以∠PBH是山坡与α所成二面角的平面角,则∠PBH=θ,PB=PHsinθ=1.设BD=x,0≤x≤1.5.则PD=x2+PB2&=x2+1&∈[1,2].记总造价为f1(x)万元,据题设有f1(x)=(PD2+1+12AD+AO)a=(x2-12x+114+3& )a=x-14(2a+4316+3&) a.当x=14,即BD=14(km)时,总造价f1(x)最小;(2)设AE=y,0≤y≤54,总造价为f2(y)万元,根据题设有f2(y)=PD2+1+y2+3&+1232-14则f′2(y)=yy2+3&-12a,由f′2(y)=0,得y=1;当y∈(0,1)时,f′2(y)<0,f2(y)在(0,1)内是减函数;当y∈(1,54)时,f′2(y)>0,f2(y)在(1,54)内是增函数.故当y=1,即AE=1时总造价f2 (y)最小,且最小总造价为6716a万元;(3)不存在这样的点D′、E′.事实上,在AB上任取不同的两点D′、E′.为使总造价最小,E显然不能位于D′与B之间.故可设E′位于D′与A之间,且BD′=x1,AE′=y1,0≤x1+y2≤32,总造价为S万元,则S=x21-x12+y21+3&-y12+114+ a.类似于(1)、(2)讨论知,x21-x12≥-116,y21+3&-y12≥32,当且仅当x1=14,y1=1同时成立时,上述两个不等式等号同时成立,此时BD′=14,AE=1,S取得最小值6716a,点D′、E′分别与点D、E重合,所以不存在这样的点D′、E′,使沿折线PD′E′O修建公路的总造价小于(2)中得到的最小总造价.类型三最省钱车速问题例3统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:y=1128000x3-380x+8(0<x≤120).已知甲、乙两地相距100千米.(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?分析要求确定从甲地到乙地要耗油量,这就涉及行驶时间与车速,因此根据题意先写出耗油量与车速间的关系,再利用导数知识确定其最小值.解(1)当x=40时,汽车从甲地到乙地行驶了10040=2.5小时,要耗油1128000×403-380×40++) 8×2.5=17.5(升).所以当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升;(2)当速度为x千米/小时时,汽车从甲地到乙地行驶了100x小时,设耗油量为h(x)升,依题意得h(x)=(1128000x3-380x+8)・100x=11280x2-800x-154(0<x≤120),h′(x)=x640-800x2=x3-803640x2(0<x≤120)令h′(x)=0得x=80.当x∈(0,80)时,h′(x)<0,h(x)是减函数;当x∈(80,120)时,h′(x)>0,h(x)是增函数.当x=80时,h(x)取到极小值h(80)=11.25.因为h(x)在(0,120]上只有一个极值,所以它是最小值.所以当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升..四、借助物理知识排列组合中有分类计数原理和分步记数原理.如果把这两个原理分别理解成电学中的并联和串联,并用此思想解答某些问题,显得特别方便快捷.例4甲、乙、丙3人独立地破译1个密码,他们能译出此密码的概率分别为15、13、14,则3人合作能译出此密码的概率为.解析3人破译密码,是相互独立而不互斥的事件,可以看成是并联问题,只要其中有1个或多人译出密码,问题即解决,故3人合作能译出密码的概率为:P(A+B+C)=1-P(A・B・C)=1-P(A)・P(B)・P(C)=1-(1-1/5)(1-1/3)(1-1/4)=3/5.五、借助表格知识运用表格解概率问题,可以使复杂问题条理化、抽象问题直观化,从而达到化难为易的目的.例5一个均匀的正方体玩具的各个面分别标有数字1,2,3,4,5,6,将这个玩具先后抛掷两次,试问:(1)向上的数之和为5的概率是多少?(2)向上的数之和至少是9的概率是多少?(3)向上的数之和为多少时概率最大?解析将正方体玩具先后抛掷两次可能出现的36种结果用图表来表示(如图),所有的答案都可在图形中寻找.(1)向上的数之和为5的概率是436=19;(2)向上的数之和至少是9的概率是10/36=5/18;(3)由图知向上的数之和为7时有6种情形,概率最大,最大概率为1/6.总结除了上诉例子,对经济学家来说,对其经济环节进行定量分析是非常必要的,而将数学作为分析工具,不仅可以给企业经营者提供客观、精确的数据,而且在分析的演绎和归纳过程中,可以给企业经营者提供新的思路和视角,也是数学应用性的具体体现。
导数在实际生活中的应用举例
1. 工程设计中:当设计一个桥梁时,需要考虑桥梁的结构,桥梁的载重量,以及桥梁的弯曲变形,而对于桥梁的弯曲变形,需要使用导数求解,以此来确定桥梁的设计参数。
2. 地质勘探中:当地质勘探时,需要知道地质结构的变化,以及地质变化的趋势,而这些变化的趋势,都可以使用导数来求解。
3. 气象预报中:当气象预报时,需要知道气象要素的变化趋势,以及气象要素的变化速度,这些变化的速度,都可以使用导数来求解。
利用导数解决实际问题导数是微积分中的重要概念,广泛应用于解决实际问题。
本文将以实例为基础,介绍如何利用导数解决一些实际问题,进一步展示导数在数学和现实生活中的实际应用。
I. 利用导数求函数的极值函数的极值是导数在某点为零时的取值,通过求解导数等于零的方程,可以确定函数的极小值和极大值。
例如,我们考虑一条抛物线的问题。
假设有一条抛物线,其顶点的坐标为(a,b),通过求解该抛物线的导数,可以确定其极值点坐标。
假设抛物线的方程为y = ax² + bx + c,其中a、b、c为常数。
求解导数dy/dx = 2ax + b = 0,可以得到极值点的x坐标为-x = b / (2a)。
将这个x坐标带入抛物线方程,可以确定y坐标,从而得到顶点的坐标。
通过上述方法,我们可以利用导数求解抛物线的顶点坐标,以及其他函数的极值点坐标。
这在实际问题中具有广泛的应用,例如优化问题、最小二乘法等。
II. 利用导数求函数的增减性导数可以判断函数在某个点附近的增减性。
通过导数的正负性,可以确定函数的单调增或单调减的区间。
例如,在经济学中,利润函数与产量函数之间存在一定的关系。
假设利润函数为P(x),产量函数为Q(x),则利润函数的增减与产量函数的边际收益有关。
边际收益是指单位产量增加所带来的额外利润。
利润函数的导数就是边际收益函数。
如果边际收益大于零,说明产量的增加会带来利润的增加,此时利润函数是单调增的;如果边际收益小于零,则说明产量的增加会带来利润的减少,此时利润函数是单调减的。
通过以上例子,我们可以看到导数在确定函数的增减性上的实际应用。
利用导数可以帮助我们分析函数的特点,并做出相应的决策。
III. 利用导数求曲线的切线与法线导数可以帮助我们求解曲线的切线和法线方程。
切线是曲线在某点的切线,法线是与切线垂直的直线。
求解曲线的切线和法线方程常常用于解决几何和物理问题,例如求解质点在曲线上的运动轨迹。
假设有一条曲线的方程为y = f(x),其中f(x)为可导函数。
导数在实际生活中的运用导数是微积分中的重要概念,它描述了函数在某一点上的变化率。
导数在实际生活中有许多应用,例如:1. 物理学:导数被广泛应用于物理学中的运动学和动力学。
导数可以描述物体在某一时刻的加速度和速度,以及其位置和速度之间的关系。
例如,在抛物线运动中,导数可以用来描述物体在不同时间点的速度和加速度,从而可以预测物体的轨迹。
2. 经济学:导数在经济学中的应用非常广泛。
例如,在微观经济学中,导数可以用来描述供求关系、生产函数和成本函数。
在宏观经济学中,导数可以用来描述经济增长率、通货膨胀率和失业率等关键绩效指标。
3. 工程学:导数在工程学中的应用也非常广泛。
例如,在电力工程中,导数可以用来描述电流的变化率和电压的变化率,从而可以预测电路的性能。
在机械工程中,导数可以用来描述速度和加速度等关键参数,从而可以预测机械元件的性能。
4. 生物学:导数在生物学中的应用也很重要。
例如,在生物医学中,导数可以用来描述药物的代谢率和药物的效果,从而可以设计更有效的药物。
在生态学中,导数可以用来描述物种群的增长率和灭绝率,从而可以预测生态系统的稳定性和可持续性。
5. 计算机科学:导数在计算机科学中的应用也非常广泛。
例如,在计算机图形学中,导数可以用来定义曲线和曲面,从而可以绘制出复杂的图形。
在人工智能中,导数可以用来设计更高效的算法,例如反向传播算法用于神经网络的训练。
总之,导数在实际生活中有多种应用,涵盖了许多不同的领域,包括物理学、经济学、工程学、生物学和计算机科学。
了解导数的应用有助于我们更好地理解和应用微积分的原理。
例谈导数的几个简单的应用王耀辉高中阶段学习导数以后,常常把导数作为研究函数单调性、极大(小)值、最大(小)值和解决生活中优化问题等来运用.实际上,它还有其他方面更多的应用.本文就根据高中学过的一些内容,列举了导数的几个简单的应用,供读者学习时参考.1.利用导数的定义求极限 在一些教辅资料、高考题中,出现了一类特殊极限求值问题,最常见的是00型,感觉不好求.若能灵活运用导数的定义,问题便会迎刃而解.例1.求值:(1)0sin lim x x x →,(2)0ln(1)lim x x x→+. 解:(1)根据导数的定义,该式实际上为求函数()sin f x x =在点0x =处的导数. 所以00sin sin sin 0lim =lim x x x x x x→→-00(sin )|cos |cos 01x x x x =='====. (2)根据导数的定义,该式实际上为求函数()ln(1)f x x =+在点0x =处的导数. 所以000ln(1)1lim=[ln(1)]||11x x x x x x x ==→+'+==+. 例2.(2010年全国卷文科21题)设函数2()(1)x f x x e ax =--.若当0x ≥时()0f x ≥,求实数a 的取值范围.解:由已知得()(1)x f x x e ax =--≥0(x ≥0),即1x e ax --≥0(x ≥0), 当0x =时,a R ∈;当0x >时,分离参数得1x e a x -≤(0x >),令1()x e g x x-=(0x >),求导得21()x x xe e g x x-+'=(0x >),再令()1x x h x xe e =-+(0x >),则()0x h x xe '=>(0x >),∴()1x x h x xe e =-+在(0,)+∞上递增,∴()(0)0h x h >=,∴()0g x '>,∴1()x e g x x-=在(0,)+∞上递增.∴0()lim ()x g x g x →>,所以0lim ()x a g x →≤.因为00001lim ()=lim =lim 0x x x x x e e e g x xx →→→---00()||1x x x x e e =='===,所以1a ≤. 综上所述,实数a 的取值范围为1a ≤.2.利用函数极值点导数为零的性质,在三角函数中求值例3.已知()sin 2cos 2()f x a x x a R =+∈图像的一条对称轴方程为2x π=,则a 的值为( )A .12B C .3 D .2 解析:由于三角函数的对称轴与其曲线的交点为极值点,所以由()2cos 22sin 2f x a x x '=-,得()2cos 2sin =0266f a πππ'=-,故3a =. 例4.已知函数()cos f x x x =的图像向左平移ϕ(0)ϕ>个单位所得图像对应的函数为偶函数,则ϕ的最小值是( )A .6πB .3πC .23πD .56π解析:设函数()f x 图像向左平移ϕ(0)ϕ>个单位后的函数解析式为:()cos())g x x x ϕϕ=++,由于()g x 为偶函数,所以(0)0g '=.又()sin())g x x x ϕϕ'=-+-+,所以sin 0ϕϕ-=,tan ϕ=ϕ的最小值为23π.例5.已知2cos sin x x -=,求tan x 的值.解析:设()2cos sin f x x x =-,则曲线()2cos sin f x x x =-过点(,t .由于2cos sin )x x x x -=+cos cos sin )x x ϕϕ=+)x ϕ=+,其中cos ϕϕ==所以函数()2cos sin f x x x =-在点(,t 处取极小值,导数为零.即()2sin cos 0f t t t '=--=,所以1tan 2t =-,从而1tan 2x =-.3.导数在数列求和中的应用例6.已知数列{}n a 的通项为12n n a n -=⋅,求数列{}n a 前n 项的和n S .解析:令2x =,则11ni i i x -=⋅∑1()n i i x ='=∑12(1)1(1)=1(1)nn n x x n x n x x x +'⎡⎤--++⋅=⎢⎥--⎣⎦所以n S 121(1)22=(12)n n n n +-+⋅+⋅-1=1(1)22n nn n +-+⋅+⋅4.导数在二项式中的应用例7.证明:1231232n n n n n n C C C nC n -+++⋯+=⋅.证明:令012233(1)n n nn n n n n x C C x C x C x C x +=+++++…,对等式两边求导,得:1121321(1)23n n n n n n n n x C C x C x nC x --+=++++…, 令1x =,代入上式即得1123223n n n n n n n C C C nC -⋅=+++⋯+,即1231232n n n n n n C C C nC n -+++⋯+=⋅.5.导数在三角恒等变换公式中的应用在三角恒等变换公式中,公式多,不易记,应用导数可以将这些恒等式进行沟通.(1)两角和、差的三角函数公式cos cos cos sin sin αβαβαβ-=+(),①视α为变量,β为常量,对等式①两边求导,得sin()sin cos cos sin αβαβαβ--=-+即sin()sin cos cos sin αβαβαβ-=-,②反过来,视α为变量,β为常量,对等式②两边求导,得cos cos cos sin sin αβαβαβ-=+()故利用上述求导方法有:cos cos cos sin sin αβαβαβ±=()αα对求导对求导sin()sin cos cos sin αβαβαβ±=±(2)二倍角公式 22cos 2cos sin ααα=-αα对求导对求导sin 22sin cos ααα=(3)积化和差公式 1sin cos [sin()sin()]2αβαβαβ⋅=++- αα对求导对求导1cos cos [cos()cos()]2αβαβαβ⋅=++-, 1cos sin [sin()sin()]2αβαβαβ⋅=+-- αα对求导对求导1sin sin [cos()cos()]2αβαβαβ⋅=-+--. 当然,导数的应用不只这些,本文只是抛砖引玉,有兴趣的读者还可以继续探索.。
导数在实际生活中的运用【摘要】导数在实际生活中的运用十分重要。
物体运动的描述与预测中,导数可以帮助我们计算速度、加速度等参数,从而更好地预测物体的运动轨迹。
在成本与收益优化中,导数可以帮助企业优化生产成本,最大化利润。
在信号处理与数据分析中,导数可以帮助我们提取信号中的有用信息,进行数据分析和预测。
医学和工程领域中,导数也有着广泛的应用,比如在医学影像分析和工程设计中起着至关重要的作用。
导数在实际生活中有着丰富的应用场景,帮助我们更好地理解和应用数学知识。
【关键词】导数、实际生活、物体运动、成本、收益、优化、信号处理、数据分析、医学、工程技术、应用、广泛应用1. 引言1.1 导数在实际生活中的运用的重要性导数在实际生活中的运用是非常重要的。
导数是微积分中的一个重要概念,表示函数在某一点上的变化率。
在实际生活中,导数可以帮助我们描述和预测物体的运动。
通过对物体位置或速度的导数进行计算,我们可以更准确地预测物体未来的位置或速度,这在航天飞行、交通运输等领域具有重要意义。
除了物体运动的描述与预测,导数还在成本与收益优化中扮演着重要角色。
在商业领域,通过对成本函数或收益函数的导数进行分析,我们可以找到使利润最大化或成本最小化的最优决策方案,从而提高企业的竞争力。
导数在信号处理与数据分析、医学、工程技术等领域也有着广泛的应用。
在信号处理中,导数可以帮助我们分析信号的频率、幅度等特性;在医学中,导数可以帮助医生分析患者的生理数据;在工程技术领域,导数可以帮助工程师设计更高效的系统和设备。
导数在实际生活中有着广泛的应用,对于提高生产效率、提升科技发展水平具有重要意义。
通过深入理解和应用导数,我们可以更好地解决现实生活中的问题,推动社会的发展和进步。
2. 正文2.1 物体运动的描述与预测物体运动的描述与预测是导数在实际生活中的一个重要应用领域。
在物理学和工程学中,导数被广泛用于描述和预测物体的运动状态。
通过对物体位置关于时间的导数,我们可以得到物体的速度和加速度,进而了解物体运动的特性。
导数在生活中应用实例分析
导数知识是学习高等数学的基础,它在自然科学、工程技术及日常生活等方面都有着广泛的应用.导数是从生产技术和自然科学的需要中产生的,同时,又促进了生产技术和自然科学的发展,它不在天文、物理、工程领域有着广泛的应用,而且在日常生活及经济领域也是逐渐显示出重要的作用.
类型一环境问题
例1
烟囱向其周围地区散落烟尘造成环境污染,已知落在地面某处的烟尘浓度与该处到烟囱的距离的平方成反比,而与该烟囱喷出的烟尘量成正比.现有A、B两座烟囱相距20km,其中B座烟囱喷出的烟尘量是A的8倍,试求出两座烟囱连线上的点C,使该点的烟尘浓度最低.
分析
由题意知要确定某点的烟尘浓度最低,显然其烟尘浓度源自这两座烟囱,与其距离密切相关,因此可考虑先设出与某个烟囱的距离,从而表示出相应的烟尘浓度,再确定其最小值即可.
解
不妨设A烟囱喷出的烟尘量是1,而B烟囱喷出的烟尘量为8,设AC=x(其中0<x<20),所以BC=20-x,依题意得点C处的烟尘浓度y=k/×2+k・8/(20-x)2(其中k是比例系数,且k>0),
y′=2k(3x-20)(3x2+400)x2(20-x)2.令y′=0得(3x-20)(3x2+400)=0
又0<x<20,所以x=20/3
因为当x∈(0,20/3)时,y′<0;当x∈(20/3,20)时,y′>0,故当x=20/3时,y取得最小值,
即当C位于距点A为20/3km时,使该点的烟尘浓度最低.类型二工程造价问题
例2
某地为了开发旅游资源,欲建一条连接风景点P和居民区O的公路,点P所在的山坡面与山脚所在水平面α所成的二面角为θ(0°<θ<90°),且sinθ=25,点P到平面α的距离PH=0.4(km).沿山脚原有一段笔直的公路AB可供利用.从点O到山脚修路的造价为a万元/km,原有公路改建费用为a2万元/km.当山坡上公路长度为lkm(1≤l≤2)时,其造价为(l2+1)a万元.已知OA⊥AB,PB⊥AB,AB=1.5(km),OA=3’km.
(1)在AB上求一点D,使沿折线PDAO修建公路的总造价最小;
(2)对于(1)中得到的点D,在DA上求一点E,使沿折线PDEO修建公路的总造价最小;
(3)在AB上是否存在两个不同的点D′、E′,使沿折线PD′E′O修建公路的总造价小于(2)中得到的最小总造价,证明
你的结论.
分析
由题意知要求修建公路的总造价最小值,可以先建立相应的总造价函数关系式,再确定其最小值即可.解(1)如图,PH⊥α,HB"α,PB⊥AB,由三垂线定理逆定理知,AB⊥HB,所以∠PBH是山坡与α所成二面角的平面角,则∠PBH=θ,PB=PHsinθ=1.设BD=x,0≤x≤1.5.
则PD=x2+PB2&=x2+1&∈[1,2].
记总造价为f1(x)万元,据题设有f1(x)=(PD2+1+12AD+AO)a=(x2-12x+114+3& )a=x-14(2a+4316+3&) a.当x=14,即BD=14(km)时,总造价f1(x)最小;
(2)设AE=y,0≤y≤54,总造价为f2(y)万元,根据题设有f2(y)=PD2+1+y2+3&+1232-14则f′2(y)=yy2+3&-12a,
由f′2(y)=0,得y=1;
当y∈(0,1)时,f′2(y)<0,f2(y)在(0,1)内是减函数;当y∈(1,54)时,f′2(y)>0,f2(y)在(1,54)内是增函数.故当y=1,即AE=1时总造价f2 (y)最小,且最小总造价为6716a万元;
(3)不存在这样的点D′、E′.事实上,在AB上任取不同的两点D′、E′.为使总造价最小,E显然不能位于D′与B之
间.故可设E′位于D′与A之间,且BD′=x1,AE′=y1,0≤x1+y2≤32,总造价为S万元,则S=x21-x12+y21+3&-y12+114+ a.类似于(1)、(2)讨论知,x21-x12≥-116,y21+3&-y12≥32,当且仅当x1=14,y1=1同时成立时,上述两个不等式等号同时成立,此时BD′=14,AE=1,S取得最小值6716a,点D′、E′分别与点D、E重合,所以不存在这样的点D′、E′,使沿折线PD′E′O修建公路的总造价小于(2)中得到的最小总造价.
类型三最省钱车速问题
例3统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y(升)关于行驶速度x(千米/小时)的函数解析式可以表示为:y=1128000x3-380x+8(0<x≤120).已知甲、乙两地相距100千米.(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?
分析
要求确定从甲地到乙地要耗油量,这就涉及行驶时间与车速,因此根据题意先写出耗油量与车速间的关系,再利用导数知识确定其最小值.
解
(1)当x=40时,汽车从甲地到乙地行驶了10040=
2.5小时,要耗油1128000×403-380×40++) 8×2.5=17.5(升).所以当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油17.5升;
(2)当速度为x千米/小时时,汽车从甲地到乙地行驶了100x小时,设耗油量为h(x)升,依题意得
h(x)=(1128000x3-380x+8)・100x=11280x2-800x-154(0<x≤120),h′(x)=x640-800x2=x3-803640x2(0<x≤120)
令h′(x)=0得x=80.当x∈(0,80)时,h′(x)<0,h(x)是减函数;当x∈(80,120)时,h′(x)>0,h(x)是增函数.当x=80时,h(x)取到极小值h(80)=11.25.
因为h(x)在(0,120]上只有一个极值,所以它是最小值.所以当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为11.25升.
.四、借助物理知识
排列组合中有分类计数原理和分步记数原理.如果把这两个原理分别理解成电学中的并联和串联,并用此思想解答某些问题,显得特别方便快捷.
例4甲、乙、丙3人独立地破译1个密码,他们能译出此密码的概率分别为15、13、14,则3人合作能译出此密码的概率
为.
解析
3人破译密码,是相互独立而不互斥的事件,可以看成是并联问题,只要其中有1个或多人译出密码,问题即解决,故3人合作能译出密码的概率为:
P(A+B+C)=1-P(A・B・C)=1-P(A)・P(B)・P(C)=1-(1-1/5)(1-1/3)(1-1/4)=3/5.
五、借助表格知识
运用表格解概率问题,可以使复杂问题条理化、抽象问题直观化,从而达到化难为易的目的.
例5一个均匀的正方体玩具的各个面分别标有数字1,2,3,4,5,6,将这个玩具先后抛掷两次,试问:(1)向上的数之和为5的概率是多少?(2)向上的数之和至少是9的概率是多少?(3)向上的数之和为多少时概率最大?
解析
将正方体玩具先后抛掷两次可能出现的36种结果用图表来表示(如图),所有的答案都可在图形中寻找.
(1)向上的数之和为5的概率是436=19;
(2)向上的数之和至少是9的概率是10/36=5/18;(3)由图知向上的数之和为7时有6种情形,概率最大,最大概率为1/6.
总结
除了上诉例子,对经济学家来说,对其经济环节进行定量分析是非常必要的,而将数学作为分析工具,不仅可以给企业经营者提供客观、精确的数据,而且在分析的演绎和归纳过程中,可以给企业经营者提供新的思路和视角,也是数学应用性的具体体现。
因此,在当今国内外,越来越多地应用数学知识,使经济学走向了定量化、精密化和准确化。
导数的概念是从良多现实的科学问题抽象而发生的,在经济剖析、经济抉择妄想、经济打点中,有着普遍的应用意义。
其作为数学剖析课程中最主要的根基概念之一,反映了一个变量对另一个变量的转变率。
在经济学中,也存在转变率问题,如:边际问题和弹性问题。
运用导数可以对经济活动中的实际问题进行边际分析、需求弹性分析和最值分析,从而为企业经营者科学决策提供量化依据。
导数在经济领域中的应用非常之泛,其中“边际”和“弹性”是导数在经济分析应用中的两个重要概念。
随着市场经济的不断发展,利用数学知识解决经济问题显得越来越重要,而导数是高等数学中的重要概
念,是经济分析的重要工具。
把经济活动中一些现象归纳到数学领域中,用数学知识进行解答,对很多经营决策起了非常重要的作用。
数学在现代经济学中的作用越来越重要,导数作为高等数学中的一个重要概念,是经济学应用的一个重要工具。
导数在经济学中有许多应用,其中边际分析、弹性分析是导数在经济学中的两个重要应用。
如今许多企业在判断一项经济活动对企业的利弊时,仅仅依据它的全部成本。
而我认为还应当依据它所引起的边际收益与边际成本的比较。
在讨论经济问题时绝对数分析问题常常被作为首要因素考虑。
我认为应当进一步研究相对变化率。
总而言之,当代研究文学中分别研究了弹性和边际函数对经济的影响,缺乏从总体上深入研究经济过程中每个环节中导数的应用情况。
在商品经济活动中进行编辑分析和弹性分析是非常重要的,导数作为边际分析与弹性分析的工具,可以为企业决策者做出合理的决策。
通过研究成本所引起的边际收益与边际成本的的比较,分析绝对数相对变化率的经济问题,特别具体分析因缺乏弹性的商品和富有弹性的商品的价格变动所产生的影响。
同时将弹性分析与边际分析有机结合,衡量出如何确定最优的价格,获得最大的利润。
从而帮助企业做出更精明的决策,为其提供精确的数值和创新思路。