2019年备战高考之高三数学(理科)小题狂练(13)
- 格式:docx
- 大小:17.89 KB
- 文档页数:2
【母题原题1】【2019年高考全国Ⅲ卷理数】已知a ,b 为单位向量,且a ·b =0,若2=c a ,则cos ,=a c ___________. 【答案】23【解析】因为2=c a ,0⋅=a b ,所以22⋅=⋅a c a b 2=,222||4||5||9=-⋅+=c a b b ,所以||3=c ,所以cos ,=a c22133⋅==⨯⋅a c a c .故答案为:23. 【名师点睛】本题主要考查平面向量的数量积、向量的夹角.渗透了数学运算、直观想象素养.使用转化思想得出答案.【母题原题2】【2018年高考全国Ⅲ卷理数】已知向量()=1,2a ,()=2,2-b ,()=1,λc .若()2∥c a +b ,则λ=___________.【答案】12【解析】由题可得()24,2+=a b ,()2Q ∥c a +b ,()=1,λc ,420λ∴-=,即12λ=,故答案为:12. 【名师点睛】本题主要考查向量的坐标运算,以及两向量共线的坐标关系,属于基础题.解题时,由两向量共线的坐标关系计算即可.【母题原题3】【2017年高考全国Ⅲ卷理数】在矩形ABCD 中,AB =1,AD =2,动点P 在以点C 为圆心且与BD 相切的圆上.若AP AB AD λμ=+u u u r u u u r u u u r,则λμ+的最大值为A .3B .专题13 平面向量CD .2【答案】A【解析】如图所示,建立平面直角坐标系.设()()()()()0,1,0,0,2,0,2,1,,A B C D P x y ,易得圆的半径r =,即圆C 的方程是()22425x y -+=,()()(),1,0,1,2,0AP x y AB AD =-=-=u u u r u u u r u u u r ,若满足AP AB AD λμ=+u u u r u u u r u u u r,则21x y μλ=⎧⎨-=-⎩,,12x y μλ==-,所以12xy λμ+=-+,设12x z y =-+,即102x y z -+-=,点(),P x y 在圆()22425x y -+=上, 所以圆心(20),到直线102xy z -+-=的距离d r ≤≤,解得13z ≤≤, 所以z 的最大值是3,即λμ+的最大值是3,故选A .【名师点睛】(1)应用平面向量基本定理表示向量是利用平行四边形法则或三角形法则进行向量的加、减或数乘运算.(2)用向量基本定理解决问题的一般思路是:先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.【命题意图】主要考查考生的直观想象能力、数学运算能力和方程思想、数形结合思想的运用.【命题规律】在高考中的命题重点有平面向量的线性运算、共线向量定理、平面向量基本定理及向量的坐标运算,主要以选择题和填空题的形式呈现,难度不大. 【答题模板】1.向量的坐标运算主要是利用向量加、减、数乘运算的法则来进行求解,若已知有向线段两端点的坐标,则应先求向量的坐标.2.解题过程中,常利用向量相等则其坐标相同这一原则,通过列方程(组)来进行求解. 3.两平面向量共线的充要条件有两种形式:(1)若a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件是x 1y 2-x 2y 1=0; (2)若a ∥b (a ≠0),则b =λa ,应视题目条件灵活选择. 【知识总结】 1.向量的有关概念向量的定义及表示:既有大小又有方向的量叫作向量.以A 为起点、B 为终点的向量记作 AB u u u r,也可用黑体的单个小写字母a ,b ,c ,…来表示向量.向量的长度(模):向量AB u u u r 的大小即向量AB u u u r 的长度(模),记为|AB u u u r|.(1)向量不同于数量,向量不仅有大小,而且还有方向. (2)任意向量a 的模都是非负实数,即|a |≥0.(3)向量不能比较大小,但|a |是实数(正数或0),所以向量的模可以比较大小. 2.几种特殊向量 特殊向量 定义备注零向量 长度为0的向量 零向量记作0,其方向是任意的. 单位向量长度等于1个单位的向量 单位向量记作a 0,a 0=||aa . 平行向量方向相同或相反的非零向量(也叫共线向量)0与任意向量共线 相等向量 长度相等且方向相同的向量 相等向量一定是平行向量,平行向量不一定是相等向量. 相反向量长度相等且方向相反的两个向量若a ,b 为相反向量,则a =–b .说明:(1)要注意0与0的区别,0是一个实数,0是一个向量,且|0|=0;(2)单位向量有无数个,它们大小相等,但方向不一定相同;(3)任一组平行向量都可以平移到同一直线上,因此平行向量也叫作共线向量; (4)与向量a 平行的单位向量有两个,即向量||a a 和–||a a . 3.平面向量运算的坐标表示运算坐标表示和(差) 已知a =(x 1,y 1),b =(x 2,y 2),则a +b =(x 1+x 2,y 1+y 2),a –b =(x 1–x 2,y 1–y 2). 数乘 已知a =(x 1,y 1),则λa =(λx 1,λy 1),其中λ是实数.任一向量的坐标已知A (x 1,y 1),B (x 2,y 2),则 AB u u u r=(x 2–x 1,y 2–y 1).说明:(1)相等的向量坐标相同;(2)向量的坐标与表示该向量的有向线段的端点无关,只与其相对位置有关. 4.平面向量共线的坐标表示(1)如果a =(x 1,y 1),b =(x 2,y 2),则a ∥b 的充要条件为x 1y 2–x 2y 1=0.(2)A (x 1,y 1),B (x 2,y 2),C (x 3,y 3)三点共线的充要条件为(x 2–x 1)(y 3–y 1)–(x 3–x 1)(y 2–y 1)=0,或(x 2–x 1)(y 3–y 2)=(x 3–x 2)(y 2–y 1),或(x 3–x 1)(y 3–y 2)=(x 3–x 2)(y 3–y 1). 5.向量的数量积(1)平面向量数量积的定义已知两个非零向量a 与b ,它们的夹角为θ,则数量|a ||b |cos θ叫作a 与b 的数量积,记作a ·b ,即a ·b =|a ||b |cos θ.规定:零向量与任一向量的数量积为零. (2)向量数量积的性质设a ,b 为非零向量,它们的夹角为θ,则①设e 是单位向量,且e 与a 的夹角为θ,则e ·a =a ·e =|a |cos θ; ②a ⊥b ⇔a ·b =0;③当a 与b 同向时,a ·b =|a ||b |;当a ,b 反向时,a ·b =–|a ||b |.特别地,a ·a =a 2=|a |2或|a ④|a ·b |≤|a ||b |,当且仅当a 与b 共线,即a ∥b 时等号成立;⑤cos θ=·||||a ba b . (3)向量数量积的运算律 ①交换律:a ·b =b ·a ;②数乘结合律:(λa )·b =λ(a ·b )=a ·(λb ); ③分配律:(a +b )·c =a ·c +b ·c . (4)平面向量数量积的几何意义 ①一个向量在另一个向量方向上的投影设θ是a ,b 的夹角,则|b |cos θ叫作向量b 在向量a 的方向上的投影,|a |cos θ叫作向量a 在向量b 的方向上的投影. ②a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积. 注意:投影和两向量的数量积都是数量,不是向量. 设两个非零向量a 与b 的夹角为θ,则 ①θ为锐角⇔a ·b >0且向量a ,b 不共线; ②θ为钝角⇔a ·b <0且向量a ,b 不共线;③当a ·b >0时,cos θ>0,则θ是锐角或θ=0°(此时cos θ=1); ④当a ·b <0时,cos θ<0,则θ是钝角或θ=180°(此时cos θ=–1). 【方法总结】1.只有非零向量才能表示与之共线的其他向量,要注意待定系数法和方程思想的运用. (1)基底e 1,e 2必须是同一平面内的两个不共线向量,零向量不能作为基底; (2)基底给定,同一向量的分解形式唯一;(3)如果对于一组基底e 1,e 2,有a =λ1e 1+λ2e 2=μ1e 1+μ2e 2,则可以得到1122,.λμλμ=⎧⎨=⎩2.平面向量的线性运算的求解策略:(1)进行向量运算时,要尽可能转化到平行四边形或三角形中,选用从同一顶点出发的向量或首尾相接的向量,运用向量加、减法运算及数乘运算来求解.(2)除了充分利用相等向量、相反向量和线段的比例关系外,有时还需要利用三角形中位线、相似三角形对应边成比例等平面几何的性质,把未知向量转化为与已知向量有直接关系的向量来求解.3.向量的线性运算(1)向量的线性运算集中体现在三角形中,可构造三角形,利用向量加减法的三角形法则表示相关的向量,利用三角形中位线、相似三角形对应边成比例等平面几何的性质,得出含相关向量的关系式. (2)向量线性运算的常用结论:①在△AB C 中,若D 是BC 的中点,则AD u u u r =12(AC u u u r +AB u u u r);②O 为△ABC 的重心的充要条件是OA u u u r +OB uuu r +OC u u u r=0;③四边形ABCD 中,若E 为AD 的中点,F 为BC 的中点,则AB u u u r +DC u u u r =2EF u u u r.4.利用共线向量定理解题的策略(1)a ∥b ⇔a =λb (b ≠0)是判断两个向量共线的主要依据.注意待定系数法和方程思想的运用. (2)证明三点共线问题,可用向量共线来解决,但应注意向量共线与三点共线的区别与联系,当两向量共线且有公共点时,才能得出三点共线.即A ,B ,C 三点共线⇔,AB AC u u u r u u u r共线.(3)若a 与b 不共线且λa =μb ,则λ=μ=0.(4)OA u u u r =λOB uuu r +μOC u u u r(λ,μ为实数),若A ,B ,C 三点共线,则λ+μ=1.5.利用平面向量基本定理解题的策略(1)先选择一组基底,并运用平面向量基本定理将条件和结论表示成该基底的线性组合,再进行向量的运算.(2)在基底未给出的情况下,合理地选取基底会给解题带来方便,另外,要熟练运用线段中点的向量表达式.注意:(1)若a ,b 为非零向量,且a ∥b ,则a ,b 的夹角为0°或180°,求解时容易忽视其中一种情形而导致出错.(2)零向量和共线向量不能作基底,基底通常选取确定整个几何图形的从同一结点出发的两边所对应的向量.6.向量坐标运算问题的一般思路(1)向量问题坐标化:向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来,通过建立平面直角坐标系,使几何问题转化为数量运算. (2)巧借方程思想求坐标:向量的坐标运算主要是利用加法、减法、数乘运算法则进行,若已知有向线段两端点的坐标,则应先求出向量的坐标,求解过程中要注意方程思想的运用.(3)妙用待定系数法求系数:利用坐标运算求向量的基底表示,一般先求出基底和被表示向量的坐标,再用待定系数法求出系数.7.求向量模长利用数量积求模是数量积的重要应用,要掌握此类问题的处理方法:(1)a2=a·a=|a|2或|a(2)|a±b;(3)若a=(x,y),则|a8.求向量模的最值(范围)的方法(1)代数法,把所求的模表示成某个变量的函数,再用求最值的方法求解;(2)几何法(数形结合法),弄清所求的模表示的几何意义,结合动点表示的图形求解;(3)利用绝对值三角不等式||a|–|b||≤|a±b|≤|a|+|b|求模的取值范围.9.求向量夹角问题的方法(1)定义法:当a,b是非坐标形式,求a与b的夹角θ时,需求出a·b及|a|,|b|或得出它们之间的关系,由cos θ=·||||a ba b求得;(2)坐标法:若已知a=(x1,y1)与b=(x2,y2),则cos<a,b,<a,b>∈[0,π].10.用向量法解决平面(解析)几何问题的两种方法:(1)几何法:选取适当的基底(基底中的向量尽量已知模或夹角),将题中涉及的向量用基底表示,利用向量的运算法则、运算律或性质计算;(2)坐标法:建立平面直角坐标系,实现向量的坐标化,将几何问题中的长度、垂直、平行等问题转化为代数运算.一般地,存在坐标系或易建坐标系的题目适合用坐标法.11.平面向量常与几何问题、三角函数、解三角形等问题综合起来考查,解题关键是把向量关系转化为向量的有关运算,进一步转化为实数运算,进而利用相关知识求解.1.【广西南宁、梧州等八市2019届高三4月联合调研考试数学】若向量()2,3=a ,()1,2=-b ,则·(2)-=a a b A .5 B .6 C .7D .82.【广西壮族自治区南宁、梧州等八市2019届高三4月联合调研考试数学】若向量()2,3=a ,(),2x =b 且·(2)3-=a a b ,则实数x 的值为A .12-B .12C .3-D .33.【广西钦州市2019届高三4月综合能力测试(三模)数学】已知平面向量,AB AC u u u r u u u r的模都为2,,90AB AC =ouu u r uuu r ,若()0BM MC λλ=≠u u u u v u u u u v ,则()AM AB AC +=uuu r uu u r uuu r gA .4B .2C D .04.【广西壮族自治区柳州市2019届高三毕业班3月模拟考试数学】已知菱形ABCD 的边长为2,E 为AB 的中点,120ABC =o ∠,则DE AC ⋅u u u v u u u v的值为 A .4 B .–3C D .5.【四川省百校2019届高三模拟冲刺卷数学】已知向量()()2,1,1,λ=-=a b ,若()()22+-∥a b a b ,则实数λ= A .2 B .-2 C .12 D .1-26.【贵州省遵义航天高级中学2019届高三第四次模拟考试数学】已知向量(2,1),(1,7)=-=a b ,则下列结论正确的是 A .⊥a b B .∥a b C .()⊥-a a bD .()⊥+a a b7.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷三》数学】已知ABC △是边长为a 的正三角形,且AM AB λ=u u u u r u u u r ,(1)()AN AC R λλ=-∈u u ur u u u r ,设()f BN CM λ=⋅u u u r u u u u r ,当函数()f λ的最大值为–2时,a =A .3 B .C D .8.【贵州省凯里市第一中学2019届高三下学期模拟考试《黄金卷二》数学】已知向量()1,2=a ,()2,m =b ,且⊥a b ,则m = A .4 B .1 C .1-D .4-9.【贵州省遵义航天高级中学2019届高三第七次模拟考试数学】已知向量=a b ,a b 间的夹角为34π,则2-=a bA BC D 10.【西藏拉萨市2019届高三第三次模拟考试数学】已知向量,a b 的夹角为2π,且()2,1=-a ,2=b ,则2+=a bA .B .3C D11.【云南省2019届高三第一次高中毕业生复习统一检测数学】设向量(1,)x x =-a ,(1,2)=-b ,若∥a b ,则x =A .32- B .–1 C .23 D .3212.【云南省保山市2019年普通高中毕业生市级统一检测数学】已知向量,a b 满足()+=⊥+a a b a a b ,则a 与b 的夹角是A .56π B .23π C .π3D .6π13.【云南省红河州2018届高三复习统一检测数学】在ABC △中,2CM MB =u u u u r u u u r ,AN CN =+0u u u r u u u r,则A .2136MN AB AC =+u u u u r u u u r u u u rB .2376MN AB AC =+u u u u r u u u r u u u rC .1263MN AC AB =-u u u u r u u u r u u u rD .7263MN AC AB =-u u u u r u u u r u u u r14.【四川省高2019届高三第一次诊断性测试数学】已知向量()1,1=-a ,()8,k =b ,若∥a b ,则实数k =__________.15.【广西柳州高级中学2017–2018学年高三5月模拟考试数学】已知向量()2,3=a ,(),6m =-b ,若⊥a b ,则|2|+=a b __________.16.【四川省峨眉山市2019届高三高考适应性考试数学】已知向量=a ,(,6)m =-b ,若⊥a b ,则m =__________.17.【广西桂林市、崇左市2019届高三下学期二模联考数学】已知向量()1,5=a ,()2,1=-b ,(),3m =c .若()⊥+b a c ,则m =__________.18.【四川省内江市2019届高三第三次模拟考试数学】设向量(,1),(4,2)x ==a b ,且∥a b ,则实数x 的值是__________.19.【广西南宁市2019届高三毕业班第一次适应性测试数学】在正方形ABCD 中,E 为线段AD 的中点,若EC AD AB λμ=+u u u v u u u v u u u v,则λμ+=__________.20.【广西桂林市、贺州市、崇左市2019届高三下学期3月联合调研考试数学】已知1=b ,2⋅=a b ,则向量(2)-⋅=a b b __________.21.【四川省棠湖中学2019届高三高考适应性考试数学】在直角坐标系xOy 中,已知点(1,1),(2,3),(3,2)A B C ,若点P 满足PA PB PC ++=0u u u v u u u v u u u v ,则||OP uuu v =__________.22.【四川省绵阳市2019届高三下学期第三次诊断性考试数学】已知向量a =(sin2α,1),b =(cos α,1),若∥a b ,π02α<<,则=α__________. 23.【四川省宜宾市2019届高三第三次诊断性考试数学】如图,已知AB 为圆C 的一条弦,且2AB AC ⋅=u u u r u u u r,则AB u u u r =______.24.【四川省百校2019年高三模拟冲刺卷数学】已知向量()()2,1,1,λ=-=a b ,若()()22+-∥a b a b ,则实数λ=__________.25.【四川省乐山市高中2019届高三第三次调查研究考试数学】在ABC △中,4AB =,O 为三角形的外接圆的圆心,若AO x AB y AC =+u u u r u u u r u u u r (),x y ∈R ,且21x y +=,则ABC △的面积的最大值为_____.26.【四川省乐山市高中2019届高三第三次调查研究考试数学】已知O 为原点,点()2,3A ,()1,5B ,(),3C m ,若AB OC ⊥u u u r u u u r ,则实数m =__________.27.【贵州省贵阳市2019届高三5月适应性考试(二)数学】直线230x y +-=与圆22220x y x y +--=相交于A ,B 两点,O 为坐标原点,则||OA OB +=u u u r u u u r__________.28.【贵州省遵义市绥阳中学2019届高三模拟卷(二)数学】已知向量()()1,1,,2m =-=a b ,若5-=a b ,则实数m =__________. 29.【云南省昆明市2019届高三1月复习诊断测试数学】已知向量()1,3=-a ,()1,t =b ,若()2-⊥a b a ,则t =__________.30.【云南省昆明市2019届高三高考模拟(第四次统测)数学】在边长为6的等边三角形ABC 中,23BD BC =u u u r u u u r .则AB AD ⋅=u u u r u u u r __________. 31.【西藏山南市第二高级中学2019届高三下学期第一次模拟考试数学】已知向量()(),1,3,2x ==-a b ,a b,则x __________.若∥。
2019高考数学选择填空狂练之 一 集合与简易逻辑(理)1.[2018·盱眙中学]已知全集{}1,2,3,4,5,6U =,集合{}235A =,,,集合{}1346B =,,,,则集合()UAB =( )A .{}3B .{}25,C .{}146,, D .{}235,, 2.[2018·洪都中学]已知全集U =R ,集合{}01234A =,,,,,{}20B x x x =><或,则图中阴影部分表示的集合 为( )A .{}0,1,2B .{}1,2C .{}3,4D .{}0,3,43.[2018·八一中学]集合{}26y y x x ∈=-+∈N N ,的真子集的个数是( ) A .9B .8C .7D .64.[2018·洪都中学]已知集合{}12A x x =-≤<,{}B x x a =<,若 A B ≠∅,则实数a 的取值范围为( ) A .12a -<≤B .1a >-C .2a >-D .2a ≥5.[2018·唐山摸底]命题“0x ∀>,1ln 1x x≥-”的否定是( )A .00x ∃≤,01ln 1x x ≥-B .00x ∃>,01ln 1x x <-C .00x ∃>,01ln 1x x ≥- D .00x ∃≤,01ln 1x x <-一、选择题6.[2018·静宁县一中]已知a 、b 都是实数,那么>”是“ln ln a b >”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件7.[2018·大同中学]已知a ,b ∈R ,下列四个条件中,使a b >成立的必要而不充分的条件是( ) A .1a b >-B .1a b >+C .a b >D .22a b >8.[2018·静宁县一中]下列说法错误的是( )A .对于命题:p x ∀∈R ,210x x ++>,则0:p x ⌝∃∈R ,2010x x ++≤ B .“1x =”是“2320x x -+=”的充分不必要条件 C .若命题p q ∧为假命题,则p ,q 都是假命题D .命题“若2320x x -+=,则1x =”的逆否命题为:“若1x ≠,则2320x x -+≠” 9.[2018·甘肃模拟]{}1381x A x =≤≤,(){}22log 1B x x x -=>,则A B =( ) A .(]2,4B .[]2,4C .()(],00,4-∞ D .()[],10,4-∞-10.[2018·辽宁联考]已知集合{}12A x a x a =-≤≤+,{}35B x x =<<,则能使A B ⊇成立的实数a 的取值 范围是( ) A .{}34a a <≤B .{}34a a <<C .{}34a a ≤≤D .∅11.[2018·曲靖一中]命题p :“0a ∀>,不等式22log a a >成立”;命题q :“函数()212log 21y x x =-+的单调递增区间是(],1-∞”,则下列复合命题是真命题的是( )A .()()p q ⌝∨⌝B .p q ∧C .()p q ⌝∨D .()()p q ∧⌝12.[2018·长春外国语]已知集合(){}43120,B x y x y x y **=+-<∈∈N N ,,,则B 的子集个数为( ) A .3 B .4 C .7 D .813.[2018·哈尔滨期末]{}221A x y x x ==-+,{}221B y y x x ==-+则A B =____________.14.[2018·浦东三模]已知集合205x A x x ⎧-⎫=<⎨⎬+⎩⎭,{}2230,B x x x x =--≥∈R ,则AB =_________.15.[2018·甘谷县一中]已知集合{}121P x a x a =+≤≤+,{}2310Q x x x -=≤.若P Q Q =,求实数a 的取值范围__________. 16.[2018·清江中学] “2ϕπ=”是“函数()sin y x ϕ=+的图象关于y 轴对称”的__________条件(填“充分必要”、“充分不必要”、“必要不充分”、“既不充分也不必要”).二、填空题1.【答案】B【解析】∵{}1,2,3,4,5,6U =,{}1346B =,,,,∴{}25UB =,,∵{}235A =,,,则(){}25UA B =,;故选B .2.【答案】A【解析】∵全集U =R ,集合{}01234A =,,,,,{}20B x x x =><或, ∴{}02U B x x =≤≤,∴图中阴影部分表示的集合为{}012UA B =,,,故选A .3.【答案】C【解析】0x =时,6y =;1x =时,5y =;2x =时,2y =;3x =时,3y =-; ∵函数26y x =-+在[)0+∞,上是减函数,∴当3x ≥时,0y <;{}{}262,5,6y y x x ∈=-+∈=N N ,,共3个元素, 根据公式可得其真子集的个数为3217-=个,故选C . 4.【答案】B【解析】∵{}12A x x =-≤<,{}B x x a =<, A B ≠∅, 作出图形如下:∴1a >-,故选B .答案与解析一、选择题5.【答案】B【解析】由全称命题与存在性命题的关系,可得命题“0x ∀>,1ln 1x x≥-”的否定是“00x ∃>,01ln 1x x <-”,故选B .6.【答案】B,b 有可能为0,故不能推出ln ln a b >,反过来,ln ln a b >则a b >成立, 故为必要不充分条件.故选B . 7.【答案】A【解析】“a b >”能推出“1a b >-”,故选项A 是“a b >”的必要条件, 但“1a b >-”不能推出“a b >”,不是充分条件,满足题意;“a b >”不能推出“1a b >+”,故选项B 不是“a b >”的必要条件,不满足题意; “a b >”不能推出“a b >”,故选项C 不是“a b >”的必要条件,不满足题意; “a b >”能推出“22a b >”,且“22a b >”能推出“a b >”,故是充要条件,不满足题意; 故选A . 8.【答案】C【解析】根据全称命题的否定是特称命题知A 正确;由于1x =可得2320x x -+=,而由2320x x -+=得1x =或2x =, ∴“1x =”是“2320x x -+=”的充分不必要条件正确; 命题p q ∧为假命题,则p ,q 不一定都是假命题,故C 错; 根据逆否命题的定义可知D 正确,故选C . 9.【答案】A【解析】{}{}138104x A x x x =≤≤=≤≤,(){}{}22log 112B x x x x x x =><--=>或,则{}24A B x x =<≤.故选A . 10.【答案】C 【解析】∵A B ⊇,∴1325a a -≤⎧⎨+≥⎩,∴34a ≤≤,故选C .11.【答案】A【解析】由题意,命题p :“0a ∀>,不等式22log a a >成立”;根据指数函数与对数函数的图象可知是不正确的,∴命题p 为假命题;命题q :“函数()212log 21y x x =-+的单调递增区间应为()1-∞,”,∴为假命题, ∴()()p q ⌝∨⌝为真命题,故选A . 12.【答案】D【解析】∵集合(){}43120,B x y x y x y **=+-<∈∈N N ,,, ∴()()(){}1,1,1,2,2,1B =,∴B 中含有3个元素,集合B 的子集个数有328=,故选D .13.【答案】[)0,+∞【解析】{}221A x y x x ==-+=R ,{}[)2210,B y y x x ==-+=+∞, ∴[)0,A B =+∞. 14.【答案】(]51--, 【解析】∵集合{}20525x A xx x x ⎧-⎫=<=-<<⎨⎬+⎩⎭,{}{}2230,13B x x x x x x x =--≥∈=≤-≥R 或,二、填空题∴{}51A B x x =-<≤-,故答案为(]51--,.15.【答案】(]2-∞,【解析】{}{}231025Q x x x x x =≤=-≤≤-, ∵P Q Q =,∴P Q ⊆,(1) P =∅,即121a a +>+,解得0a <,(2) P ≠∅,即12112215a a a a +≤+⎧⎪+≥-⎨⎪+≤⎩,解得02a ≤≤,综上所述,实数a 的取值范围为(]2-∞,.故答案为(]2-∞,. 16.【答案】充分不必要【解析】若函数()sin y x ϕ=+的图象关于y 轴对称,则2k ϕπ=+π,k ∈Z . ∴必要性不成立, 若2ϕπ=,则函数()sin cos y x x ϕ=+=的图象关于y 轴对称∴充分性成立, ∴“2ϕπ=”是“函数()sin y x ϕ=+的图象关于y 轴对称”的充分不必要条件; 故答案为充分不必要.2019高考数学选择填空狂练之 二 复数(理)1.[2018·唐山一摸]设()()123z i i =-+,则z =( ) A .5B .26C .52D .532.[2018·温州九校]已知复数z 满足()12i z i -=+,则z 的共轭复数为( )A .3322i +B .1322i -C .3322i -D .1322i +3.[2018·辽宁联考]复数()212miA Bi m AB i -=+∈+R 、、,且0A B +=,则m 的值是( ) A .23-B .23C .2D .24.[2018·青岛调研]已知复数z 满足()3425i z +=(i 为虚数单位),则z =( ) A .34i +B .34i -C .34i --D .34i -+5.[2018·南昌测试]已知复数z 满足()22z i i ⋅+=-(i 为虚数单位),则复数z 所对应的点位于复平面的( ) A .第一象限B .第二象限C .第三象限D .第四象限6.[2018·胶州一中]若复数11iz ai+=+为纯虚数,则实数a 的值为( ) A .1-B .12-C .1D .27.[2018·南昌测试]已知复数z 满足关于x 的方程()220x x b b -+=∈R ,且z 的虚部为1,则z =( )A .2B .3C .2D .5一、选择题8.[2018·莆田六中]设有下面四个命题,其中的真命题为( ) A .若复数12z z =,则12z z ∈RB .若复数1z ,2z 满足12z z =,则12z z =或12z z =-C .若复数z 满足2z ∈R ,则z ∈RD .若复数1z ,2z 满足12z z +∈R ,则1z ∈R ,2z ∈R9.[2018·信阳高级中学]复数()z a i a =+∈R 的共轭复数为z ,满足1z =,则复数z =( ) A .2i +B .2i -C .1i +D .i10.[2018·全国I 卷]设121iz i i -=++,则z =( )A .0B .12C .1D 11.[2018·双流中学]已知i 为虚数单位,现有下面四个命题1:p 若复数z 满足210z +=,则z i =;2:p 若复数z 满足()11i z i +=-,则z 为纯虚数; 3:p 若复数1z ,2z 满足12z z ∈R ,则12z z =;4:p 复数1z a bi =+与2z a bi =-,a ,b ∈R ,在复平面内对应的点关于实轴对称.其中的真命题为( ) A .1p ,3pB .1p ,4pC .2p ,3pD .2p ,4p12.[2018·哈尔滨六中]若复数23201834134i z i i i i i-=++++⋯++-,则z 的共轭复数z 的虚部为( )A .15-B .95-C .95iD .9i 5-13.[2018·浦东三模]设复数z 满足()132i z i +=-+,则z =_________. 14.[2018·桃江县一中]若复数z 满足()12532z i i +=+,则z ________. 15.[2018·大同中学]复数122ii-+的虚部为__________. 16.[2018·仪征中学]已知2a ib i i+=+(a ,b 是实数),其中i 是虚数单位,则ab =______. 二、填空题1.【答案】C【解析】由题意,复数()()12355z i i i =-+=-,∴()225552z =+-=,故选C .2.【答案】B【解析】()12i z i -=+,∴()()()()1121i i z i i -+=++,化为213z i =+,∴1322z i =+. 则z 的共轭复数为1322i -,故选B .3.【答案】A 【解析】因为212miA Bi i-=++,∴()()212mi A Bi i -=++,即()222mi A B A B i -=-++, 由此可得222A B A B m -=⎧⎨+=-⎩,结合0A B +=可解之得232323A B m ⎧=⎪⎪⎪=-⎨⎪⎪=-⎪⎩,故选A .4.【答案】B【解析】复数z 满足()3425i z +=,()()()25342534343434i z i i i i -===-++-,故选B . 5.【答案】D 【解析】由题得:()()()()2223434222555i i i i z i i i i ----====-++-, 故z 所对应的坐标为3455⎛⎫- ⎪⎝⎭,,为第四象限;故选D . 答案与解析一、选择题【解析】复数()()()()221111111111i ai i a a z i ai ai ai a a +-++-===+++-++为纯虚数, ∴2101a a +=+且2101aa -≠+,解得1a =-,故选A .7.【答案】A【解析】∵复数z 满足关于x 的方程()220x x b b -+=∈R ,且z 的虚部为1, ∴设复数z a i =+,则()()220a i a i b +-++=.∴()221220a a b a i --++-=,∴1a =,2b =,∴1z i =+,即z =A .8.【答案】A【解析】设()1,z a bi a b =+∈R ,则由12z z =,得()2z a bi a b =-∈R ,, 因此2212z z a b =+∈R ,从而A 正确;设()1,z a bi a b =+∈R ,()2z c di c d =+∈R ,,则由12z z =B 错误;设()z a bi a b =+∈R ,,则由2z ∈R ,得22200a b abi ab a -+∈⇒=⇒=R 或0b =,因此C 错误;设()1,z a bi a b =+∈R ,()2z c di c d =+∈R ,,则由12z z +∈R , 得()a c b d i +++∈R ,∴0b d +=,因此D 错误;故选A . 9.【答案】D【解析】根据题意可得z a i =-,∴1z ==,解得0a =,∴复数z i =.故选D . 10.【答案】C【解析】∵()()()21122221112i i iz i i i i i i i ---=+=+=+=++-,∴1z ==,故选C .【解析】对于1:p 由210z +=,得21z =-,则z i =±,故1p 是假命题;对于2:p 若复数z 满足()11i z i +=-,则()()()211111i i z i i i i --===-++-, 故z 为纯虚数,则2p 为真命题;对于3:p 若复数1z ,2z 满足12z z ∈R ,则12z z =,是假命题,如1z i =,2z i =-; 对于4:p 复数1z a bi =+与2z a bi =-,a ,b ∈R 的实部相等,虚部互为相反数, 则在复平面内对应的点关于实轴对称,故4p 是真命题.故选D . 12.【答案】B【解析】∵()201923201811345134134i i z i i i i iii⨯--=++++⋯++=+--- ()()()()50443153413439134341555i i i i i i ii i i -⋅+++=+=+=+--+-, ∴3955z i =-;则z 的共轭复数z 的虚部为95-.故选B .13.【答案】13i -【解析】∵复数z 满足()132i z i +=-+,∴32123iz i i-++==+,∴13z i =+, 故而可得13z i =-,故答案为13i -. 14.【答案】513【解析】由题设有1235212253169169z i +-=+,二、填空题故z =. 15.【答案】1-【解析】由复数的运算法则有:()()()()1221252225i i i i i i i i ----===-++-,则复数122i i-+的虚部为1-. 16.【答案】2- 【解析】∵()()2222a i i a i ai b i i i +-+==-=+-,∴21b a =⎧⎨-=⎩,即1a =-,2b =,∴2ab =-,故答案为2-.2019高考数学选择填空狂练之三 框图(理)1.[2018·唐山一摸]已知程序框图如右图所示则该程序框图的功能是( )A .求1111357+++的值B .求111113579++++的值C .求1111357-++的值D .求111113579-+++的值2.[2018·东师附中]执行如图所示的程序框图,如果输入的[]2,2x ∈-,则输出的y 值的取值范围是( )一、选择题A .52y ≤-或0y ≥B .223y -≤≤C .2y ≤-或203y ≤≤ D .2y ≤-或23y ≥3.[2018·宝安区调研]定义某种运算:S m n ⊗=⊗的运算原理如右边的流程图所示,则6547⊗-⊗=( )A .3B .1C .4D .04.[2018·南昌测试]某程序框图如图所示,若输出3S =,则判断框中M 为( )A .14?k <B .14?k ≤C .15?k ≤D .15?k >A.14 B.15 C.24 D.30 6.[2018·拉萨中学]执行如图所示的程序框图,输出的k值为()A.4 B.5 C.6 D.7A .15B .16C .24D .258.[2018·南昌检测]根据某校10位高一同学的身高(单位:cm )画出的茎叶图(图1),其中左边的数字从左到右分别表示学生身高的百位数字和十位数字,右边的数字表示学生身高的个位数字,设计一个程序框图(图2),用()1210i A i =,,,表示第i 个同学的身高,计算这些同学身高的方差,则程序框图①中要补充的语句是( )A .iB B A =+B .2i B B A =+C .()2i B B A A =+- D .22i B B A =+A.1-B.0 C.1 D.210.[2018·哈尔滨六中]《九章算术》中盈不足章中有这样一则故事:“今有良马与驽马发长安,至齐.齐去长安三千里.良马初日行一百九十三里,日增一十二里;驽马初日行九十七里,日减二里.” 为了计算每天良马和驽马所走的路程之和,设计框图如下图.若输出的S的值为350,则判断框中可填()A.6?i>i>D.9?i>B.7?i>C.8?11.[2018·山东模拟]下面程序框图是为了求出满足321000n n ->的最小偶数n ,,那么在◇和□两个空白框中,可以分别填入( )A .1000A >和1n n =+B .1000A >和2n n =+C .1000A ≤和1n n =+D .1000A ≤和2n n =+12.[2018·银川一中]我国古代名著《庄子•天下篇》中有一句名言“一尺之棰,日取其半,万世不竭”,其意思为:一尺的木棍,每天截取一半,永远都截不完.现将该木棍依此规律截取,如图所示的程序框图的功能就是计算截取7天后所剩木棍的长度(单位:尺),则①②③处可分别填入的是( )A .7i <,1S S i=-,2i i =B .7i ≤,1S S i=-,2i i =C .7i <,2SS =,1i i =+ D .7i ≤,2SS =,1i i =+13.[2018·南昌检测]某程序框图如图所示, 则输出的结果是__________.14.[2018·中原名校]如图所示的程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入a ,b ,i 的值分别为8,6,1,输出a 和i 的值,若正数x ,y满足251x y+=,则ax iy +的最小值为__________.15.[2018·宁德质检]我国南北朝时期的数学家张丘建是世界数学史上解决不定方程的第一人,他在《张丘建算经》中给出一个解不定方程的百鸡问题,问题如下:鸡翁一,值钱五,鸡母一,值钱三,鸡雏三,值钱一.百钱买百鸡,问鸡翁母雏各几何?用代数方法表述为:设鸡翁、鸡母、鸡雏的数量分别为x ,y ,z ,则鸡翁、鸡母、鸡雏的数量即为方程组531003100z x y x y z ⎧++=⎪⎨⎪++=⎩的解.其解题过程可用框图表示如下图所示,则框图中正整数m 的值为 ______.二、填空题16.[2018·湖北模拟]如图所示的茎叶图为高三某班54名学生的政治考试成绩,程序框图中输入的1a ,2a ,,54a 为茎叶图中的学生成绩,则输出的S 和n 的值分别是__________.1.【答案】C【解析】由题意,执行如图所示的程序框图可知:开始1a =,1n =,0S =;第一次循环:1S =,1a =-,3n =;第二次循环:113S =-,1a =,5n =;第三次循环:11135S =-+,1a =-,7n =;第四次循环:1111357S =-++,1a =,9n =;此时终止循环,输出结果,所以该程序框图是计算输出1111357S =-++的值,故选C .2.【答案】C【解析】由题意知,该程序的功能是求函数()021120xx x f x x x x ⎧≤≤⎪⎪+=⎨⎪+-≤<⎪⎩,,的值域.①当02x ≤≤时,()1111x f x x x ==-++在区间[]0,2上单调递增,∴()()()02f f x f ≤≤,即()203f x ≤≤; ②当20x -≤<时,()11122f x x x x x x x ⎛⎫=+=--+≤-⋅=- ⎪--⎝⎭,当且仅当1x x -=-,即1x =-时等号成立.综上输出的y 值的取值范围是2y ≤-或203y ≤≤.故选C . 3.【答案】A【解析】由流程图得()6565124⊗=⨯-=,()4774121⊗=⨯-=,∴654724213⊗-⊗=-=,故选A .答案与解析一、选择题4.【答案】B【解析】由框图程序可知1S k =+++,=,∴11S n =++∴13S ==,解得15n =,即当15n =时程序退出,故选B .5.【答案】C【解析】结合流程图可知流程图运行过程如下: 首先初始化数据:0S =,1i =,第一次循环,满足5i <,执行12i i =+=,此时不满足i 为奇数,执行1222i S S S -=+=+=; 第二次循环,满足5i <,执行13i i =+=,此时满足i 为奇数,执行2157S S i S =+-=+=; 第三次循环,满足5i <,执行14i i =+=,此时不满足i 为奇数,执行12815i S S S -=+=+=; 第四次循环,满足5i <,执行15i i =+=,此时满足i 为奇数,执行21924S S i S =+-=+=; 第五次循环,不满足5i <,跳出循环,输出S 的值为24. 故选C . 6.【答案】B【解析】模拟程序的运行,可得:1a =,1k =,不满足条件10a >,执行循环体,2a =,2k =;不满足条件10a >,执行循环体,4a =,3k =;不满足条件10a >,执行循环体,8a =,4k =;不满足条件10a >,执行循环体,16a =,5k =;满足条件10a >,退出循环体,输出k 的值为5,故选B . 7.【答案】B【解析】进入循环,当1i =时,15<,i 为奇数,1S =;当2i =时,25<,i 为偶数,123S =+=;当3i =时,35<,i 为奇数,358S =+=;当4i =时,45<,i 为偶数,8816S =+=; 当5i =时,55≥,结束循环,输出16S =.故选B . 8.【答案】B【解析】由()()()()222222212121222n n n x x x x x x x x x x x x x nx s nn-+-+⋅⋅⋅+-++⋅⋅⋅+-++⋅⋅⋅++==22222222212122n n x x x nx nx x x x x n n++⋅⋅⋅+-+++⋅⋅⋅+==-,循环退出时11i =,知221A x i ⎛⎫= ⎪-⎝⎭.∴2221210B A A A =++⋅⋅⋅+,故程序框图①中要补充的语句是2i B B A =+.故选B . 9.【答案】D【解析】由循环结构的计算原理,依次代入求得如下:1S =,1i =, ①2S =,2i =;②2S =,3i =;③1S =,4i =; ④1S =,5i =;⑤2S =,6i =;⑥2S =,7i =;⑦1S =,8i =;⑧1S =,9i =;⑨2S =,10i =;∴输出2S =.故选D . 10.【答案】B【解析】模拟程序的运行,可得0S =,1i =;执行循环体,290S =,2i =; 不满足判断框内的条件,执行循环体,300S =,3i =; 不满足判断框内的条件,执行循环体,310S =,4i =; 不满足判断框内的条件,执行循环体,320S =,5i =; 不满足判断框内的条件,执行循环体,330S =,6i =; 不满足判断框内的条件,执行循环体,340S =,7i =;不满足判断框内的条件,执行循环体,350S =,8i =;由题意,此时,应该满足判断框内的条件,退出循环,输出S 的值为350. 可得判断框中的条件为7?i >.故选B . 11.【答案】D【解析】本题考查程序框图问题.∵要求1000A >时输出,且框图中在“否”时输出,∴“◇”内不能输入“1000A >”, 又要求n 为偶数,且n 的初始值为0,∴“□”中n 依次加2可保证其为偶数, ∴D 选项满足要求,故选D . 12.【答案】D【解析】算法为循环结构,循环7次,每次对长度折半计算,也就是2SS =,因此②填2S S =, 又①填判断语句,需填7i ≤,③填1i i =+.故选D .13.【答案】333+【解析】由题意得330tan 0tan tan tan tan 231331264333S ππππ=+++++=-+++=+. 14.【答案】49【解析】输入a ,b ,i 的值分别为8,6,1;第一次循环,2i =,2a =;第二次循环,3i =,4b =;第三次循环,4i =,2b =;第四次循环,5i =,b a =; 退出循环,输出2a =,5i =,()2510102542549y xax iy x y xy x y⎛⎫+=++=+++≥ ⎪⎝⎭, 二、填空题当x y =时,等号成立,即ax iy +的最小值为49,故答案为49. 15.【答案】4【解析】由531003100z x y x y z ⎧++=⎪⎨⎪++=⎩得7254y x =-,故x 必为4的倍数, 当4x t =时,257y t =-,由 得t 的最大值为3,故判断框应填入的是4t <?,即4m =,故答案为4. 16.【答案】86,13【解析】S 为大于等于80分的学生的平均成绩,计算得86S =;n 表示60分以下的学生人数,由茎叶图可知13n =.2019高考数学选择填空狂练之四 不等式(理)1.[2018·眉山一中]若01a <<,1b c >>,则正确的是( )A .1ab c ⎛⎫< ⎪⎝⎭B .c a cb a b->- C .11a a c b --<D .log log c b a a <2.[2018·南昌测试]已知实数x 、y ,满足224x y +=,则xy 的取值范围是( ) A .2xy ≤B .2xy ≥C .4xy ≤D .22xy -≤≤3.[2018·张家界期末]下列不等式中,正确的是( ) A .若a b >,c d >,则a c b d +>+ B .若a b >,则a c b c +<+ C .若a b >,c d >,则ac bd >D .若a b >,c d >,则a bc d> 4.[2018·邢台二中]不等式121xx >-的解集为( ) A .1,12⎛⎫⎪⎝⎭B .(),1-∞C .()11,2⎛⎤-∞+∞ ⎥⎝⎦, D .1,22⎛⎫⎪⎝⎭5.[2018·邵阳期末]若关于x 的不等式1220x x a +--->的解集包含区间()0,1,则a 的取值范围为( ) A .7,2⎛⎤-∞ ⎥⎝⎦B .(),1-∞C .7,2⎛⎫-∞ ⎪⎝⎭D .(],1-∞6.[2018·鄂尔多斯一中]关于x 的不等式()222800x ax a a --<>的解集为()12,x x ,且2115x x -=,则a =( )A .154B .72C .52D .1527.[2018·东师属中]直线l 过抛物线24y x =的焦点F 且与抛物线交于A ,B 两点,若线段AF ,BF 的长分别为m ,n ,则4m n +的最小值是( )一、选择题A .10B .9C .8D .78.[2018·河南一模]设函数()21f x mx mx =--,若对于[]1,3x ∈,()4f x m <-+恒成立,则实数m 的取值范围为( )A .(],0-∞B .50,7⎡⎫⎪⎢⎣⎭C .()5,00,7⎛⎫-∞ ⎪⎝⎭D .5,7⎛⎫-∞ ⎪⎝⎭9.[2018·胶州一中]若两个正实数x ,y 满足211x y+=,且222x y m m +>+恒成立,则实数m的取值范围是( ) A .()[),24,-∞-+∞ B .][(),42,-∞-+∞ C .()4,2- D .()2,4-10.[2018·上高二中]若关于x 的不等式210x kx +->在[]1,2区间上有解,则k 的取值范围是( ) A .(),0-∞B .3,02⎛⎫- ⎪⎝⎭C .3,2⎡⎫-+∞⎪⎢⎣⎭D .3,2⎛⎫-+∞ ⎪⎝⎭11.[2018·黑龙江模拟]在ABC △中,E 为AC 上一点,3AC AE =,P 为BE 上任一点, 若()0,0AP mAB nAC m n =+>>,则31m n+的最小值是( ) A .9B .10C .11D .1212.[2018·衡水金卷]已知点E ,F 分别在正方形ABCD 的边BC ,CD 上运动,且()2,2AB =,设CE x =,CF y =,若AF AE AB -=,则x y +的最大值为( )A .2B .4C .22D .4213.[2018·七宝中学]若25x y -<<<,则x y -的取值范围是________. 14.[2018·铜仁一中]已知0ab >,5a b +=,则2111a b +++的最小值为__________. 二、填空题15.[2018·东北四市一模]已知角α,β满足22αβππ-<-<,0αβ<+<π,则3αβ-的取值范围是__________.16.[2018·涟水中学]对一切实数x 恒成立,则实数a 的取值范围是 .1.【答案】D【解析】对于A ,∵1b c >>,∴1b c >,∵01a <<,则1ab c ⎛⎫> ⎪⎝⎭,故错误,对于B ,若c a cb a b->-,则bc ab cb ca ->-,即()0a c b ->,这与1b c >>矛盾,故错误, 对于C ,∵01a <<,∴10a -<,∵1b c >>,则11a a c b -->,故错误, 对于D ,∵1b c >>,∴log log c b a a <,故正确.故选D . 2.【答案】D【解析】由2242x y xy +=≥,知22xy -≤≤,故选D . 3.【答案】A【解析】若a b >,则a c b c +>+,故B 错, 设3a =,1b =,1c =-,2d =-,则ac bd <,a bc d<,∴C 、D 错,故选A . 4.【答案】A【解析】原不等式等价于1021x x ->-,即()21021x x x -->-,整理得1021x x -<-,不等式等价于()()2110x x --<,解得112x <<.故选A .5.【答案】D【解析】原不等式等价于1min 122x x a +⎛⎫≤-⎪⎝⎭,由于函数1122x xy +=-在区间()0,1上为增函数, 当0x =,1y =,故1a ≤.故选D .答案与解析一、选择题6.【答案】C【解析】∵()222800x ax a a --<>,∴()()()2400x a x a a +-<>,即24a x a -<<, 又1215x x -=,∴615a =,解得52a =.故选C . 7.【答案】B【解析】由抛物线焦点弦的性质可知:1121m n p+==,则()11444559m n m n m n m n n m ⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当32m =,3n =时等号成立.即4m n +的最小值是9.故选B . 8.【答案】D【解析】由题意,()4f x m <-+,可得()215m x x -+<, ∵当[]1,3x ∈时,[]211,7x x -+∈,∴不等式()0f x <等价于251m x x <-+,∵当3x =时,251x x -+的最小值为57,∴若要不等式251m x x <-+恒成立,则必须57m <, 因此,实数m 的取值范围为5,7⎛⎫-∞ ⎪⎝⎭,故选D .9.【答案】C【解析】∵正实数x ,y 满足211x y+=,∴()212142448y x x y xy x y x y ⎛⎫+=++=++≥+= ⎪⎝⎭, 当且仅当4y xx y=时,即4x =,2y =时取得最小值8, ∵222x y m m +>+恒成立,∴282m m >+,即2280m m +-<,解得42m -<<,故选C . 10.【答案】D【解析】关于x 的不等式210x kx +->在[]1,2区间上有解, ∴21kx x >-在[]1,2x ∈上有解,即1k x x>-在[]1,2x ∈上成立; 设函数()1f x x x =-,[]1,2x ∈,∴()2110f x x'=--<恒成立, ∴()f x 在[]1,2x ∈上是单调减函数,且()f x 的值域为3,02⎡⎤-⎢⎥⎣⎦,要1k x x >-在[]1,2x ∈上有解,则32k >-, 即实数k 的取值范围为3,2⎛⎫-+∞ ⎪⎝⎭.故选D . 11.【答案】D【解析】由题意可知:3AP mAB nAC mAB nAE =+=+,A ,B ,E ,三点共线, 则31m n +=,据此有()313199366212n m n m m n m n m n m n m n⎛⎫+=++=++≥+⨯= ⎪⎝⎭, 当且仅当12m =,16n =时等号成立.综上可得31m n +的最小值是12.故选D . 12.【答案】C【解析】222AB =+=,AF AE AB -=,∵222AF AE EF x y -==+=, ∴224x y +=,()()22222228x y x y xy x y +=++≤+=,当且仅当x y =时取等号,∴22x y +≤,即x y +的最大值为22,故选C .二、填空题13.【答案】()7,0-【解析】∵25x y -<<<,∴25x -<<,52y -<-<,∴77x y -<-<, 又∵x y <,∴0x y -<,∴x y -的取值范围是70x y -<-<.14. 【解析】∵0ab >,5a b +=知0a >,0b >, 又117a b +++=,∴()11117a b +++=, 而()()(21211211111133117117117b a a b a b a b a b +⎛⎫+⎛⎫+=++++=++≥+ ⎪ ⎪++++++⎝⎭⎝⎭,经检验等号成立,故填37+. 15.【答案】(),2-ππ【解析】结合题意可知:()()32αβαβαβ-=-++, 且()()2,αβ-∈-ππ,()()0,αβ+∈π,利用不等式的性质可知:3αβ-的取值范围是(),2-ππ. 16.【答案】01a ≤<【解析】对一切实数x 恒成立, 那么可知221ax ax ->-恒成立即可,即当0a =时,显然01>-恒成立, 当0a ≠时,由于二次函数开口向上,判别式小于零能满足题意, 故可知为0a >,2440a a -< ,解得01a <<, 那么综上可知满足题意的a 的范围是01a ≤<.2019高考数学选择填空狂练之 五 线性规划(理)1.[2018·柳州高级中学]已知变量x ,y 满足约束条件4022 1x y x y --≤-≤<⎧⎪⎨⎪⎩≤,若2z x y =-,则z 的取值范围是( ) A .[)5,6-B .[]5,6-C .()2,9D .[]5,9-2.[2018·和诚高中]实数x ,y 满足2220 2y x x y x ≤++-≥⎧⎪⎨⎪⎩≤,则z x y =-的最大值是( )A .2B .4C .6D .83.[2018·北京一轮]由直线10x y -+=,50x y +-=和1x =所围成的三角形区域(包括边界),用不等式组可表示为( )A .10501x y x y x -+≤+-≤≥⎧⎪⎨⎪⎩B .10501x y x y x -+≥+-≤≥⎧⎪⎨⎪⎩C .10501x y x y x -+≥+-≥≤⎧⎪⎨⎪⎩D .10501x y x y x -+≤+-≤≤⎧⎪⎨⎪⎩4.[2018·和诚高中]已知实数x ,y 满足22021020x y x y x y -+≥-+≤+-≤⎧⎪⎨⎪⎩,则()()2211z x y =-++的取值范围为( )A .2,10⎡⎤⎣⎦B .45,105⎡⎤⎢⎥⎣⎦C .16,105⎡⎤⎢⎥⎣⎦D .[]4,10一、选择题5.[2018·咸阳联考]已知实数x ,y 满足40300x y y x y +-≥-≤-≤⎧⎪⎨⎪⎩,则11y z x -=+的最大值为( )A .1B .12C .13D .26.[2018·宜昌一中]若实数x ,y 满足不等式组1010240x y x y x y +-≥-⎧+≥+-≤⎪⎨⎪⎩,则目标函数23x y z x -+=-的最大值是( ) A .1B .13-C .12-D .357.[2018·黑龙江模拟]已知实数x ,y 满足103101x y x y x -+≥--≤≤⎧⎪⎨⎪⎩,若z kx y =-的最小值为5-,则实数k 的值为( )A .3-B .3或5-C .3-或5-D .3±8.[2018·名校联盟]设2z x y =+,其中x ,y 满足2000x y x y y k +≥-≤≤≤⎧⎪⎨⎪⎩,若z 的最小值是9-,则z 的最大值为( ) A .9-B .9C .2D .69.[2018·莆田九中]设关于x ,y 的不等式组21000x y x m y m -+>+<->⎧⎪⎨⎪⎩,表示的平面区域内存在点()00,P x y ,满足0022x y -=,求得m 取值范围是( )A .4,3⎛⎫-∞ ⎪⎝⎭B .2,3⎛⎫-∞- ⎪⎝⎭C .1,3⎛⎫-∞ ⎪⎝⎭D .5,3⎛⎫-∞- ⎪⎝⎭10.[2018·皖江八校]已知x ,y 满足2080y x y -≥+-≤⎨⎪⎩时,()0z ax by a b =+≥>的最大值为2,则直线10ax by +-=过定点( ) A .()3,1B .()1,3-C .()1,3D .()3,1-11.[2018·齐鲁名校]在满足条件210310 70x y x y x y --≥+-≥-≤⎧⎪⎨⎪⎩+的区域内任取一点(),M x y ,则点(),M x y 满足不等式()2211x y -+<的概率为( )A .π60B .π120C .π160-D .π1120-12.[2018·江南十校]已知x ,y 满足02323x x y x y ≥⎧+≥+≤⎪⎨⎪⎩,z xy =的最小值、最大值分别为a ,b ,且210x kx -+≥对[],x a b ∈上恒成立,则k 的取值范围为( )A .22k -≤≤B .2k ≤C .2k ≥-D .14572k ≤13.[2018·哈尔滨六中]已知实数x 、y 满足约束条件2040 250x y x y x y -+≥+⎧⎪⎨-≥-≤⎪⎩-,若使得目标函数ax y +取最大值时有唯一最优解()1,3,则实数a 的取值范围是_______________(答案用区间表示). 14.[2018·衡水金卷]某儿童玩具生产厂一车间计划每天生产遥控小车模型、遥控飞机模型、遥控火车模型这三种玩具共30个,生产一个遥控小车模型需10分钟,生产一个遥控飞机模型需12分钟,生产一个遥控火车模型需8分钟,已知总生产时间不超过320分钟,若生产一个遥控小车模型可获利160元,生产一个遥控飞机模型可获利180元,生产一个遥控火车模型可获利120元,该公司合理分配生产任务可使每天的利润最大,则最大利润是__________元.二、填空题15.[2018·吉安一中]若点(),P x y 满足2340 0x y y ⎨+≥≥⎪⎩-,点()3,1A ,O 为坐标原点,则OA OP⋅的最大值为__________.16.[2018·宜昌一中]已知函数()2f x x ax b =-++,若a ,b 都是从区间[]0,3内任取的实数,则不等式()20f >成立的概率是__________.1.【答案】A【解析】变量x ,y 满足约束条件4022 1x y x y --≤-≤<⎧⎪⎨⎪⎩≤,不等式组表示的平面区域如图所示,当直线2z x y =-过点A 时,z 取得最小值, 由21x y =-=⎧⎨⎩,可得()2,1A -时,在y 轴上截距最大,此时z 取得最小值5-. 当直线2z x y =-过点C 时,z 取得最大值, 由240x x y =--=⎧⎨⎩,可得()2,2C -时,因为C 不在可行域内,所以2z x y =-的最大值小于426+=,则z 的取值范围是[)5,6-,故答案为A . 2.【答案】B【解析】依题意画出可行域如图中阴影部分所示,答案与解析一、选择题令m y x =-,则m 为直线:l y x m =+在y 轴上的截距,由图知在点()2,6A 处m 取最大值4,在()2,0C 处取最小值2-,所以[]2,4m ∈-,所以z 的最大值是4.故选B .3.【答案】A【解析】作出对应的三角形区域,则区域在直线10x -=的右侧,满足1x ≥,在10x y -+=的上方,满足10x y -+≤,在50x y +-=的下方,满足50x y +-≤,故对应的不等式组为10501x y x y x -+≤+-≤≥⎧⎪⎨⎪⎩,故选A .4.【答案】C【解析】画出不等式组22021020x y x y x y -+≥-+≤+-≤⎧⎪⎨⎪⎩表示的可行域,如图阴影部分所示.由题意得,目标函数()()2211z x y =-++,可看作可行域内的点(),x y 与()1,1P -的距离的平方.结合图形可得,点()1,1P -到直线210x y -+=的距离的平方,就是可行域内的点与()1,1P -的距离的平方的最小值,且为2165=, 点()1,1P -到()0,2C 距离的平方,就是可行域内的点与()1,1P -的距离的平方的最大值,为21310+=,所以()()2211z x y =-++的取值范围为16,105⎡⎤⎢⎥⎣⎦.故选C .5.【答案】A【解析】作出不等式组对应的平面区域如图,z 的几何意义是区域内的点到定点()1,1P -的斜率,由图象知当直线过()1,3B 时,直线斜率最大,此时直线斜率为1,则11y z x -=+的最大值为1,故选A . 6.【答案】B【解析】画出约束条件1010240x y x y x y +-≥-⎧+≥+-≤⎪⎨⎪⎩表示的可行域,如图,由1010x y x y -+=+-=⎧⎨⎩,可得01x y ==⎧⎨⎩,即()0,1P ,将23x y z x -+=-变形为513y z x -=--,53y x --表示可行域内的点与()3,5A 连线的斜率, 由图知PA k 最小,z 最大,最大值为0121033z -+==--,故答案为13-.故选B . 7.【答案】D【解析】由103101x y x y x -+≥--≤≤⎧⎪⎨⎪⎩作出可行域如图:联立110x x y =-+=⎧⎨⎩,解得()1,2A ,联立31010x y x y --=-+=⎧⎨⎩,解得()2,1B --,化z kx y =-为y kx z =-,由图可知,当0k <时,直线过A 时在y 轴上的截距最大,z 有最小值为25k -=-,即3k =-,当0k >时,直线过B 时在y 轴上的截距最大,z 有最小值为215k -+=-,即3k =, 综上所述,实数k 的值为3±,故选D . 8.【答案】B【解析】满足条件的点(),x y 的可行域如图,平移直线2z x y =+,由图可知,目标函数2z x y =+在点()2,k k -处取到最小值9-, 即49k k -+=-,解得3k =,平移直线2z x y =+,目标函数在(),k k ,即()3,3,处取到最大值2339⨯+=,故选B . 9.【答案】B【解析】先根据约束条件21000x y x m y m -+>+<->⎧⎪⎨⎪⎩,画出可行域,要使可行域存在,必有21m m <-+,平面区域内存在点()00,P x y ,满足0022x y -=,等价于可行域包含直线112y x =-上的点,只要边界点(),12m m --在直线112y x =-的上方,且(),m m -在直线112y x =-下方,故得不等式组2111212112m m m m m m <-+->--<-⎧⎪⎪⎪⎨-⎪⎪⎪⎩,解之得23m <-,m 取值范围是2,3⎛⎫-∞- ⎪⎝⎭,故选B .10.【答案】A【解析】由()0z ax by a b =+≥>,得1a z a y x b b b ⎛⎫=-+-≤- ⎪⎝⎭,画出可行域,如图所示,由数形结合可知,在点()6,2B 处取得最大值,622a b +=,即:31a b +=,直线10ax by +-=过定点()3,1.故选A . 11.【答案】B【解析】作平面区域,如图所示,()1,0A ,()5,2B ,()10,3C -,()4,2AB =,()9,3AC =-,25AB =,310AC=,所以3662cos 225310AB AC BAC AB AC-∠===⋅⨯⋅,所以π4BAC ∠=. 可行域的面积为112sin 2531015222AB AC BAC ⋅⋅∠=⨯⨯⨯=, π4BAC ∠=,所以落在圆内的阴影部分面积为π8,易知ππ815120P ==,故选B . 12.【答案】B【解析】作出02323x x y x y ≥⎧+≥+≤⎪⎨⎪⎩表示的平面区域(如图所示),显然z xy =的最小值为0,当点(),x y 在线段()2301x y x +=≤≤上时,231312222x z xy x x x ⎛⎫==-=-+≤ ⎪⎝⎭;当点(),x y 在线段()2301x y x +=≤≤上时,()2932238z xy x x x x ==-=-+≤; 即0a =,98b =;当0x =时,不等式2110x kx -+=≥恒成立,若210x kx -+≥对90,8x ⎛⎤∈ ⎥⎝⎦上恒成立,则1k x x ≤+在90,8⎛⎤ ⎥⎝⎦上恒成立,又1x x +在(]0,1单调递减,在91,8⎛⎤ ⎥⎝⎦上单调递增,即min 12x x ⎛⎫+= ⎪⎝⎭,即2k ≤.二、填空题13.【答案】(),1-∞-【解析】作出不等式组2040 250x y x y x y -+≥+⎧⎪⎨-≥-≤⎪⎩-表示的可行域,如图所示,令z ax y =+,则可得y ax z =-+,当z 最大时,直线的纵截距最大,画出直线y ax z =-+将a 变化, 结合图象得到当1a ->时,直线经过()1,3时纵截距最大,1a ∴<-,故答案为(),1-∞-.14.【答案】5000【解析】依题得,实数x ,y 满足线性约束条件()101283032030000x y x y x y x y ++--≤--≥⎪≥≥⎧⎪⎨⎩,,目标函数为()16018012030z x y x y =++--,化简得2403000x y x y x y +≤⎧+≤≥≥⎪⎨⎪⎩,,40603600z x y =++,作出不等式组2403000x y x y x y +≤⎧+≤≥≥⎪⎨⎪⎩,,表示的可行域(如图所示):作直线02:603l y x =--,将直线0l 向右上方平移过点P 时,直线在y 轴上的截距最大,由24030x y x y +=+=⎧⎨⎩,得2010x y ==⎧⎨⎩,所以()20,10P ,此时max 4020601036005000z =⨯+⨯+=(元),故答案为5000. 15.【答案】5【解析】因为3OA OP x y =⋅+,所以设3z x y =+,则z 的几何意义为动直线3y x z =-+在y 轴上的截距,作出约束条件202340 0x y x y y ⎧⎪⎨-≤+≥≥⎪⎩-所表示的平面区域,如图中阴影部分所示.当动直线3y x z =-+经过点C 时,z 取得最大值.由202340x y x y -=-+=⎧⎨⎩,解得()1,2A ,则3125max z =⨯+=,即OA OP ⋅的最大值为5. 16.【答案】712【解析】(),a b所在区域是边长为3的正方形,正方形面积为239=,()2420f a b=-++>,满足()2420f a b=-++>的区域是梯形,()2,0A,()3,0B,()3,3C,1,32D⎛⎫⎪⎝⎭,152113224ABCDS⎛⎫=+⨯=⎪⎝⎭梯形,由几何概型概率公式可得不等式()20f>成立的概率是2174912=,故答案为712.2019高考数学选择填空狂练之 六 等差、等比数列(理)1.[2018·阜阳三中]{}n a 为等差数列,且7421a a -=-,30a =,则公差d =( ) A .2-B .12-C .12D .22.[2018·阜阳三中]在等比数列{}n a 中,若37a =,前3项和321S =,则公比q 的值为( ) A .1B .12-C .1或12-D .1-或12-3.[2018·阜阳调研]已知等比数列{}n a 中有31174a a a =,数列{}n b 是等差数列,且77a b =,则59b b +=( )A .2B .4C .8D .164.[2018·南海中学]已知等比数列{}n a 的前n 项和为n S ,且满足122n n S λ+=+,则λ的值为( ) A .4B .2C .2-D .4-5.[2018·长春实验]已知{}n a 为正项等比数列,n S 是它的前n 项和,若116a =,且4a 与7a 的等差中项为98,则5S 的值是( )A .29B .30C .31D .326.[2018·琼海模拟]朱世杰是历史上最伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问中有如下问题:“今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人,每人日支米三升”.其大意为“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天派出的人数比前一天多7人,修筑堤坝的每人每天分发大米3升”,在该问题中第3天共分发大米( ) A .192升B .213升C .234升D .255升一、选择题7.[2018·长寿中学]在等差数列{}n a 中,满足4737a a =,且10a >,n S 是{}n a 前n 项的和,若n S 取得最大值,则n =( )A .7B .8C .9D .108.[2018·潮南冲刺]已知各项均为正数的等比数列{}n a 的前n 项和为n S ,且满足6a ,43a ,5a -成等差数列,则42S S =( ) A .3 B .9 C .10 D .139.[2018·诸暨适应]等差数列{}n a 的前n 项和是n S ,公差d 不等于零,若2a ,3a ,6a 成等比,则( )A .10a d >,30dS >B .10a d >,30dS <C .10a d <,30dS >D .10a d <,30dS <10.[2018·湖北模拟]设等差数列{}n a 的前n 项和n S ,44a =,515S =,若数列11n n a a +⎧⎫⎨⎬⎩⎭的前m 项和为1011,则m =( ) A .8B .9C .10D .1111.[2018·郑州质测]已知n S 是等差数列{}n a 的前n 项和,则“n n S na <对2n ≥恒成立”是“数列{}n a 为递增数列”的( )A .充分必要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必条件12.[2018·衡水中学]已知数列{}n a 是各项为正数的等比数列,点()222,log M a 、()255,log N a 都在直线1y x =-上,则数列{}n a 的前n 项和为( ) A .22n - B .122n +-C .21n -D .121n +-。
高考数学小题狂做冲刺训练〔详细解析〕、选择题〔本大题共10小题,每题5分,共50分。
在每题给出的四个选项中,只有一个选项是符合题目要求的〕 1.点P 在曲线323+-=x x y 上移动,设点P 处切线的倾斜角为α,那么角α的取值范围是( )A.[0,2π]B.[0,2π〕∪[43π,π) C.[43π,π) D.(2π,43π]解析:∵y′=3x 2-1,故导函数的值域为[-1,+∞). ∴切线的斜率的取值范围为[-1,+∞〕. 设倾斜角为α,那么tanα≥-1. ∵α∈[0,π),∴α∈[0,2π)∪[43π,π).答案:B2.假设方程x 2+ax+b =0有不小于2的实根,那么a 2+b 2的最小值为( )A.3B.516 C.517 D.518 解析:将方程x 2+ax+b =0看作以(a,b)为动点的直线l:xa+b+x 2=0的方程,那么a 2+b 2的几何意义为l 上的点(a,b)到原点O(0,0)的距离的平方,由点到直线的距离d 的最小性知a 2+b 2≥d 2=211)1(1)100(2224222-+++=+=+++x x x x x x (x ≥2), 令u =x 2+1,易知21)(-+=u u u f (u ≥5)在[5,+∞)上单调递增,那么f(u)≥f(5)=516, ∴a 2+b 2的最小值为516.应选B. 答案:B3.国际上通常用恩格尔系数来衡量一个国家或地区人民生活水平的状况,它的计算公式为yxn =(x:人均食品支出总额,y:人均个人消费支出总额),且y =2x+475.各种类型家庭情相同的情况下人均少支出75元,那么该家庭属于( )解析:设1998年人均食品消费x 元,那么人均食品支出:x(1-7.5%)=92.5%x,人均消费支出:2×92.5%x+475,由题意,有2×92.5%x+475+75=2x+475,∴x=500. 此时,14005.462475%5.922%5.92=+⨯=x x x ≈0.3304=33.04%,应选D.答案:D4.(海南、宁夏高考,文4)设f(x)=xlnx,假设f′(x 0)=2,那么x 0等于( )2B.eC.22ln 解析:f′(x)=lnx+1,令f′(x 0)=2, ∴lnx 0+1=2.∴lnx 0=1.∴x 0=e. 答案:B5.n =log n+1 (n+2)(n∈N *).定义使a 1·a 2·a 3·…·a k 为整数的实数k 为奥运桔祥数,那么在区间[1,2 008]内的所有奥运桔祥数之和为( )A.1 004B.2 026C.4 072D.2 044解析:a n =log n+1 (n+2)=)1lg()2lg(++n n ,a 1·a 2·a 3·…·a k =2lg )2lg()1lg()2lg(4lg 5lg 3lg 4lg 2lg 3lg +=++••k k k . 由题意知k+2=22,23,…,210,∴k=22-2,23-2,…,210-2.∴S=(22+23+…+210)-2×9=20261821)21(49=---. 答案:B6.从2 004名学生中选取50名组成参观团,假设采用下面的方法选取,先用简单随机抽样法从2 004人中剔除4人,剩下的 2 000人再按系统抽样的方法进行,那么每人入选的概率〔 〕A .不全相等B .均不相等C .都相等且为002125D .都相等且为401解析:抽样的原那么是每个个体被抽到的概率都相等,所以每人入选的概率为002125. 答案:C7.将数字1,2,3,4,5,6拼成一列,记第i 个数为a i 〔i =1,2,…,6〕,假设a 1≠1,a 3≠3,5≠5,a 1<a 3<a 5,那么不同的排列方法种数为〔 〕A .18B .30C .36D .48 解析:∵a 1≠1且a 1<a 3<a 5,∴〔1〕当a 1=2时,a 3为4或5,a 5为6,此时有12种; 〔2〕当a 1=3时,a 3仍为4或5,a 5为6,此时有12种; 〔3〕当a 1=4时,a 3为5,a 5为6,此时有6种. ∴共30种. 答案:B8.在某地的奥运火炬传递活动中,有编号为1,2,3,…,18的18名火炬手.假设从中任选3人,那么选出的火炬手的编号能组成以3为公差的等差数列的概率为〔 〕A .511 B .681 C .3061 D .4081 解析:属于古典概型问题,根本领件总数为318C =17×16×3,选出火炬手编号为a n =a 1+3〔n -1〕〔1≤n ≤6〕,a 1=1时,由1,4,7,10,13,16可得4种选法; a 1=2时,由2,5,8,11,14,17可得4种选法; a 1=3时,由3,6,9,12,15,18可得4种选法. 故所求概率68131617444444318=⨯⨯++=++=C P . 答案:B9.复数i 3(1+i)2等于( )A.2B.-2 C解析:i 3(1+i)2=-i(2i)=-2i 2=2. 答案:A 10.(全国高考卷Ⅱ,4)函数x xx f -=1)(的图象关于( ) A.y 轴对称 B.直线y =-x 对称 C.坐标原点对称 D.直线y =x 对称 解析: x xx f -=1)(是奇函数,所以图象关于原点对称. 答案:C、填空题〔本大题共5小题,每题5分,共25分〕11.垂直于直线2x-6y+1=0且与曲线y=x 3+3x 2-5相切的直线方程为___________________.解析:与直线2x-6y+1=0垂直的直线的斜率为k=-3,曲线y=x 3+3x 2-5的切线斜率为y ′=3x 2+6x.依题意,有y ′=-3,即3x 2+6x=-3,得x=-1.当x=-1时,y=(-1)3+3·(-1)2-5=-3.故所求直线过点(-1,-3),且斜率为-3,即直线方程为y+3=-3(x+1), 即3x+y+6=0. 答案:3x+y+6=0 12.函数13)(--=a axx f (a≠1).假设f(x)在区间(0,1]上是减函数,那么实数a 的取值范围是______________. 解析:由03)1(2)('<--=axa a x f ,⎪⎩⎪⎨⎧<->-②,0)1(2①,03a aax由①,得a <x3≤3. 由②,得a <0或a >1,∴当a =3时,f(x)在x∈(0,1)上恒大于0,且f(1)=0,有f(x)>f(1). ∴a 的取值范围是(-∞,0)∪(1,3]. 答案:(-∞,0)∪(1,3] 13.平面上三点A 、B 、C满足3||=AB ,5||=CA ,4||=BC ,那么AB CA CA BC BC AB •+•+•的值等于________________.解析:由于0=++CA BC AB ,∴)(2||||||)(2222AB CA CA BC BC AB CA BC AB CA BC AB •+•+•+++=++0)(225169=•+•+•+++=AB CA CA BC BC AB ,即可求值.答案:-2514.设一次试验成功的概率为p,进行100次独立重复试验,当p=_________________时,成功次数的标准差的值最大,其最大值为___________________________________.解析:4)2(2n q p n npq D =+≤=ξ,等号在21==q p 时成立,此时Dξ=25,σξ=5. 答案:215 15.设z 1是复数,112z i z z -=(其中1z 表示z 1的共轭复数),z 2的实部是-1,那么z 2的虚部为___________________.解析:设z 1=x+yi(x,y ∈R),那么yi x z -=1. ∴z 2=x+yi-i(x-yi)=x-y+(y-x)i. ∵x-y=-1, ∴y-x=1. 答案:1。
考点48 圆的方程1.若过点有两条直线与圆相切,则实数的取值范围是()A.B.C.D.【答案】D2.在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线的距离,当θ,m变化时,d的最大值为A.1 B.2C.3 D.4【答案】C【解析】分析:P为单位圆上一点,而直线过点A(2,0),则根据几何意义得d的最大值为OA+1.详解:P为单位圆上一点,而直线过点A(2,0),所以d的最大值为OA+1=2+1=3,选C.3.的圆心在()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B【解析】因为的圆心为(-1,1),所以圆心在第二象限,选B.4.过抛物线的焦点的直线交抛物线于两点,分别过作准线的垂线,垂足分别为两点,以为直径的圆过点,则圆的方程为( )A.B.C.D.【答案】C5.已知圆的方程圆心坐标为,则它的半径为()A.B.C.D.【答案】D【解析】由题得所以圆的半径为故答案为:D6.已知,,点在圆上运动,若△的面积的最小值为,则实数的值为A.或B.或C.或D.或【答案】D7.圆心为的圆与圆相外切,则的方程为()A.B.C.D.【答案】D【解析】圆,即.圆心为,半径为3设圆的半径为.由两圆外切知,圆心距为.所以.的方程为,展开得:.故选D.8.已知以圆的圆心为焦点的抛物线与圆在第一象限交于点,点是抛物线:上任意一点,与直线垂直,垂足为,则的最大值为()A.1 B.2 C.D.8【答案】A9.过抛物线的焦点的直线交抛物线于两点,分别过作准线的垂线,垂足分别为两点,以为直径的圆过点,则圆的方程为()A.B.C.D.【答案】C【解析】由抛物线的定义知以为直径的圆一定过焦点,因此可设圆心坐标为,则,解得,于是有,所以圆C的方程为.故选C.10.已知直线与圆相交于两点,则的最小值为__________.【答案】11.太极图是由黑白两个鱼形纹组成的图案,俗称阴阳鱼,太极图展现了一种相互转化,相对统一的和谐美,定义:能够将圆的周长和面积同时等分成两个部分的函数称为圆的一个“太极函数”,则下列有关说法中:①对于圆的所有非常数函数的太极函数中,都不能为偶函数;②函数是圆的一个太极函数;③直线所对应的函数一定是圆的太极函数;④若函数是圆的太极函数,则所有正确的是__________.【答案】(2)(3)(4)若时,函数图象与圆有六个交点,均不能把圆一分为二综上所述,故正确的是②③④12.若圆关于直线对称,则的最小值为__________.由点向圆所作两条切线,切点记为,当取最小值时,外接圆的半径为__________.【答案】13.在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为__________.【答案】【解析】设圆的方程为,圆经过三点(0,0),(1,1),(2,0),则:,解得:,则圆的方程为.14.为等腰直角三角形,是内的一点,且满足,则的最小值为__________.【答案】15.在平面直角坐标xOy中,已知A(1,0),B(4,0),直线x-y+m=0上存在唯一的点P满足,则实数m的取值集合是_____________.【答案】【解析】设P(x,y),则由得,根据题意得此圆与直线x-y+m=0相切,即即实数m的取值集合是.16.已知两个圆,与两坐标系都相切,且都过点,则__________.【答案】17.已知椭圆的离心率为,且椭圆过点(1,)(1)求椭圆的方程;(2)设是圆上任一点,由引椭圆两条切线,.当切线斜率在时,求证两条斜率的积为定值。
专题13 概率小题部分【训练目标】1、理解概率的定义,能正确区分概率与频率;2、理解互斥事件和相互独立事件的定义及运算公式;3、掌握古典概型的概念及计算;4、掌握几何概型的概念及计算;5、掌握两个计数原理及简单的排列组合,及列举法求概率。
6、理解随机变量的概念,掌握随机变量分布列的性质;7、掌握随机变量分布列的求法,及期望计算公式。
8、掌握条件概率的计算公式,掌握正态分布,二项分布的期望和方差公式。
【温馨小提示】概率在高考中有一道小题一道大题,17分左右,对于理科生来讲,只要掌握了基本的概念及公式,这是属于送分题,因此在练习时要注意总结方法。
【名校试题荟萃】1、袋中装有3个白球,4个黑球,从中任取3个球,则①恰有1个白球和全是白球;②至少有1个白球和全是黑球;③至少有1个白球和至少有2个白球;④至少有1个白球和至少有1个黑球.在上述事件中,是对立事件的为( )A.①B.②C.③D.④【答案】B【解析】至少有1个白球和全是黑球不同时发生,且一定有一个发生.∴②中两事件是对立事件.2、张卡片上分别写有数字,从这张卡片中随机抽取2张,则取出张卡片上数字之和为偶数的概率为( )A. B. C. D.【答案】B【解析】由题知基本事件总数为,如果2张卡片上数字之和为奇数,需1奇1偶,共有种,∴取出2张卡片上数字之和为奇数的概率为,因此取出2张卡片上数字之和为偶数的概率为.3、从5张100元,3张200元,2张300元的奥运会决赛门票中任取3张,则所取3张中于至少有2张价格相同的概率为()A. B. C. D.【答案】B【解析】先求三张价格均不相同的概率所求概率为。
4、国庆期间,甲去某地的概率为,乙和丙二人去此地的概率为、,假定他们三人的行动相互不受影响,这段时间至少有人去此地旅游的概率为()A. B. C. D.【答案】B5、已知3件次品和2件正品混在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,则在第一次取出次品的条件下,第二次取出的也是次品的概率是()A. B. C. D.【答案】C【解析】记“第一次取出次品”为事件,“第二次取出次品”为事件,则,,所以.6、设随机变量服从正态分布,若,则函数没有极值点的概率是()A. B. C. D.【答案】C【解析】由无相异实根得,因此函数没有极值点的概率是,选C.7、将本不同的书全发给名同学,每名同学至少有一本书的概率是( )A. B. C. D.【答案】A8、已知是球面上的五个点,其中在同一圆周上,若不在所在的圆周上,则从这五个点的任意两点的连线中取出条,这两条直线是异面直线的概率是()A. B. C. D.【答案】D【解析】由题意,得是四棱锥的五个顶点,任取两点,共有条直线,从条直线中任取两条直线,共有对,其中异面直线对是一条侧棱与地面上三条相等(如侧棱与)共有对异面直线,由古典概型的概率公式,得这两条直线是异面直线的概率是.9、某车间共有6名工人,他们某日加工零件个数的茎叶图如图所示,其中茎为十位数,叶为个位数,日加工零件个数大于样本均值的工人为优秀工人.从该车间6名工人中,任取2人,则至少有1名优秀工人的概率为()A. B. C. D.【答案】C10、一个射箭运动员在练习时只记射中环和环的成绩,未击中环或环就以环记.该运动员在练习时击中环的概率为,击中环的概率为,既未击中环也未击中环的概率为(,,),如果已知该运动员一次射箭击中环数的期望为环,则当取最小值时,的值为()A. B. C. D.【答案】A【解析】由运动员一次射箭击中环数的期望为环,可知,即,则,当,即时取等号,此时,则.11、在区间内随机取两个实数,,则满足的概率是( )A. B. C. D.【答案】D【解析】由题意知表示的区域为边长为2的正方形,面积为4,满足的区域即为图中阴影部分,面积为,所以所求概率为,.12、若是从区间中任取的一个实数,是从区间中任取的一个实数,则的概率是( )A. B. C. D.【答案】A【解析】试验的全部结果构成的区域(如图)为边长分别为2和3的矩形,面积为.其中满足的结果构成的区域为图中阴影部分,其面积为.则所求概率为.13、如图,将半径为的圆分成相等的四段弧,再将四段弧围成星形放在圆内(阴影部分).现在往圆内任投一点,此点落在星形区域内的概率为( )A. B. C. D.【答案】A14、在如图所示的正方形中随机投掷个点,则落入阴影部分(曲线为正态分布的密度曲线)的点的个数的估计值为()附:若,则,A. B. C. D.【答案】C【解析】根据题意得,设落入阴影部分点的个数为,则,则.15、有一批产品,其中有件正品和件次品,有放回地任取件,若表示取到次品的件数,则_________.【答案】【解析】由题意知取到次品的概率为,∴,∴.16、已知随机变量,若,则_________.【答案】【解析】,所以,所以,解得,所以.17、设随机变量的分布列为,其中为常数,则_________.【答案】18、设随机变量的概率分布律如下表所示:其中成等差数列,若随机变量的的均值为,则的方差为________.【答案】【解析】由题意有,,,解得,则其方差为.19、有一种游戏规则如下:口袋里共装有个红球和个黄球,一次摸出个,若颜色都相同,则得分;若有个球颜色相同,另一个不同,则得分,其他情况不得分. 小张摸一次得分的期望是________.【答案】20、设随机变量,且,则实数的值为_________.【答案】3【解析】∵随机变量,∴正态曲线关于对称,∵,∴与关于对称,所以∴.21、某校高三一模理科参加数学考试学生共有1016人,分数服从,则估计分数高于105分的人数为________.【答案】508【解析】因为分数服从,所以由正态分布的性质可知,估计分数高于105分的人数为故,答案为508.22、如图,是以为圆心,1为半径的圆的内接正方形,将一颗豆子随机地掷到圆内,用表示事件“豆子落在正方形内”,表示事件“豆子落在扇形(阴影部分)内”,则______.【答案】【解析】故答案为.23、袋中有大小质地完全相同的2个红球和3个黑球,不放回地摸出黑球,设“第一次摸得红球”为事件,“摸得的两球同色”为事件,则概率_________.【答案】【解析】由, ,根据条件概率可知.24、设集合,,分别从集合和中随机取一个数和,确定平面上一个点,设“点落在直线上”为事件,若事件的概率最大,则的值为________.【答案】2【解析】由题意知,点的坐标的所有情况为,,,,,,,,,共种.当时,落在直线上的点的坐标为,共种;当时,落在直线上的点的坐标为和,共种;当时,落在直线上的点的坐标为,,,共种;当时,落在直线上的点的坐标为,,共种;当时,落在直线上的点的坐标为,共种.因此,当的概率最大时,.25、个男生,个女生排成一排,其中有且只有两个女生相邻排在一起的排法总数有________.【答案】288026、将名新的同学分配到、、三个班级中,每个班级至少安排名学生,其中甲同学不能分配到班,那么不同的分配方案数为_________.(请用数字作答)【答案】24【解析】将甲同学分配到班或班,有种;剩下的名同学分配方案为种,所以不同的分配方案为种.27、某班组织文艺晚会,准备从等个节目中选出个节目演出,要求:两个节目至少有一个选中,且同时选中时,它们的演出顺序不能相邻,那么不同演出顺序的种数为_________.【答案】1140【解析】分两类:第一类,只有一个选中,则不同演出顺序有种;第二类,同时选中,则不同演出顺序有种,共有.故答案应填:.28、甲、乙两位高一学生进行新高考“七选三”选科(即在物、化、生、政、史、地、技术等七门科中任选择三门学科),已知学生甲必选政治,学生乙必不选物理,则甲、乙两位学生恰好有两门选课相同的选法有________种.(用数字作答)【答案】110【解析】(1)甲选物理:;(2)甲不选物理:;共有种.29、为了调查观众对央视某节目的关注度,现从某社区随机抽取名青年人进行调查,再从中挑选名做进一步调查,则这名青年人中的小张、小李至少有人被选中,而小汤没有被选中做进一步调查的不同选法有________种. 【答案】149630、有个大学报送名额,计划分别到个班级,每班至少一个名额,则不同的分法种数为种.【答案】6【解析】一共有个保送名额,分到个班级,每个班级至少一个保送名额,即将名额分成份,每份至少个(定行数).将个名额排成一列产生个空,中间有个空(定空位).即只需在中间个空中插入个隔板,隔板不同的方法共有种.(插隔板)专题13 概率(小题部分)(文)【训练目标】1、理解概率的定义,能正确区分概率与频率;2、理解互斥事件和相互独立事件的定义及运算公式;3、掌握古典概型的概念及计算;4、掌握几何概型的概念及计算;5、掌握两个计数原理,及列举法求概率。
2021届新高考小题狂练(13)―、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}12M x x =-<<,{N x y ==,则M N =( ) A. {}1x x >- B. {}02x x ≤< C. {}02x x << D. {}12x x ≤< 2.函数()34f x x x =+-的零点所在的区间为( ) A. 1,0 B. 0,1 C. 1,2 D. ()2,3 3.已知命题p ,x ∀∈R ,12x x e e+≥,则p ⌝为( ) A. x ∃∈R ,12x x e e +≥ B. x ∃∈R ,12x xe e +< C. x ∃∈R ,12x x e e +≤ D. x ∀∈R ,12x x e e+≤ 4.如图,在圆柱12O O 内有一个球O ,该球与圆柱的上,下底面及母线均相切.若12=2O O ,则圆柱12O O 的表面积为( )A. 4πB. 5πC. 6πD. 7π5.“平均增长量”是指一段时间内某一数据指标增长量的平均值,其计算方法是将每一期增长量相加后,除以期数,即()121ni i i a a n -=--∑.国内生产总值(GDP )被公认为是衡量国家经济状况的最佳指标,下表是我国2015-2019年GDP 数据:根据表中数据,2015-2019年我国GDP 的平均增长量为( )A. 5.03万亿B. 6.04万亿C. 7.55万亿D. 10.07万亿 6.已知双曲线C的方程为221169x y -=,则下列说法错误的是() A. 双曲线C 的实轴长为8 B. 双曲线C 的渐近线方程为34yx C. 双曲线C 的焦点到渐近线的距离为3D. 双曲线C 上的点到焦点距离的最小值为94 7.已知水平直线上的某质点,每次等可能的向左或向右移动一个单位,则在第6次移动后,该质点恰好回到初始位置的概率是()A 14B. 516C. 38D. 12 8.在ABC 中,cos cos A B +=AB =当sin sin A B +取最大值时,ABC 内切圆的半径为( )A. 3B. 2C. 13D. 2二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分. 9. 设函数()f x 的定义域为R ,()000x x ≠是()f x 的极大值点,以下结论错误的是( )A. x R ∀∈,()()0f x f x ≤B. 0x -是()f x -的极小值点.C. 0x -是()f x -的极小值点D. 0x -是()f x --的极小值点10. α,β是两个平面,m ,n 是两条直线,有下列四个命题中其中正确的命题有( )A. 如果m n ⊥,m α⊥,//n β,那么αβ⊥.B. 如果m α⊥,//n α,那么m n ⊥.C. 如果//αβ,m α⊂,那么//m β.D. 如果//m n ,//αβ,那么m 与α所成的角和n 与β所成的角相等.11. 设1F ,2F 是双曲线C :()222210,0x y a b a b-=>>的左、右焦点,O 是坐标原点.过2F 作C 的一条渐近线的垂线,垂足为P .若1PF OP =,则下列说法正确的是( ) A. 2F P b =B.C.双曲线的渐近线方程为y =D. 点P在直线3x a =上 12. 已知函数()(sin cos )sin cos f x x x x x =+-,下列说法正确的是( )A. ()f x 是周期函数B. ()f x 在区间,22ππ⎡⎤⎢⎥⎣⎦-上是增函数 C 若12()+()2f x f x =,则12()2k x x k Z π+=∈ D. 函数()()1g x f x =+在区间[]0,2π上有且仅有1个零点三、填空题(本题共4小题,每小题5分,共20分)13. 山西省高考将实行3+3模式,即语文数学英语必选,物理,化学,生物,历史,政治,地理六选三,今年高一的小明与小芳进行选科,假设他们对六科没有偏好,则他们选科至少两科相同的概率为________. .14. 函数()02>=x x y 的图象在点()2,k k a a 处的切线与x 轴交点的横坐标为1k a +,其中*k N ∈,若116a =,则135a a a ++=_______.15. 已知圆锥的顶点为S ,母线SA ,SB 所成角的余弦值为78,SA 与圆锥底面所成角为45°,若SAB 的面积为__________, 16. 设函数()()()2,1{42, 1.x a x f x x a x a x -<=--≥ ,若1a =,则()f x 的最小值为 ;,若()f x 恰有2个零点,则实数a 的取值范围是.。
2019年高考数学(理科)模拟试卷(一) 2019年高考数学(理科)模拟试卷(一)第Ⅰ卷(选择题满分60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合A={x|y=lg(3-2x)},B={x|x²≤4},则A∪B=()A。
{x|-2≤x<2}B。
{x|x<2}C。
{x|-2<x<2}D。
{x|x≤2}2.若复数(1-i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A。
(-∞,1)B。
(-∞,-1)C。
(1,+∞)D。
(-1,+∞)3.我国古代数学著作《九章算术》有如下问题:“今有金箠,长五尺,斩本一尺,重四斤,斩末一尺,重二斤,问次一尺各重几何?”根据已知条件,若金箠由粗到细是均匀变化的,问第二尺与第四尺的重量之和为()A。
6斤B。
9斤C。
9.5斤D。
12斤4.某三棱锥的三视图如图M1-1,则该三棱锥的体积为()A。
60B。
30C。
20D。
105.设x∈R,[x]表示不超过x的最大整数。
若存在实数t,使得[t]=1,[t²]=2,…,[tn]=n同时成立,则正整数n的最大值是()A。
3B。
4C。
5D。
66.执行两次如图M1-2所示的程序框图,若第一次输入的x值为7,第二次输入的x值为9,则第一次、第二次输出的a 值分别为()A。
0,0B。
1,1C。
0,1D。
1,07.某市重点中学奥数培训班共有14人,分为两个小组,在一次阶段考试中两个小组成绩的茎叶图如图M1-3,其中甲组学生成绩的平均数是88,乙组学生成绩的中位数是89,则m+n的值是()A。
10B。
11C。
12D。
138.若x,y满足约束条件x+y-3≥0,x-2y≤0,则x≥()A。
[0,6]B。
[0,4]C。
[6,+∞)D。
[4,+∞)13.首先求出向量a和b的夹角,由向量点乘公式可得cosθ = (a·b)/(|a||b|) = 9/√20,其中θ为夹角。
2021年高考理科数学小题狂练13(非新高考地区)学校:___________姓名:___________班级:___________考号:___________注:满分80份,选择题12小题,填空题4小题,每小题5分。
限时:40分钟一、单选题(每小题5分,共12小题,满分60分)1.若复数z=|4+3i|3−4i,则z的虚部为()A. −4B. −45C. 45D. 4【答案】C【解析】【分析】本题考查复数的基本运算,考查复数的模,属于基础题.化简复数z即可求得结果.【解答】解:z=√42+323−4i =53−4i=5(3+4i)(3−4i)(3+4i)=35+45i.故z的虚部为45.故答案为C.2.设集合A={x|log2x<1},B={x|x2−x−2<0},则∁B A=()A. (−∞,2)B. (−1,0]C. (−1,2)D. (−1,0)【答案】B【解析】【分析】本题主要考查了补集及其运算,考查了对数不等式及一元二次不等式的解法,分别求解对数不等式及一元二次不等式化简A,B,再由补集运算得答案.【解答】解:∵A={x|log2x<1}={x|0<x<2},B={x|x2−x−2<0}={x|−1<x<2},∴∁B A=(−1,0].故选B.3.如图是2020年2月15日至3月2日武汉市新冠肺炎新增确诊病例的折线统计图.则下列说法不正确的是()A. 2020年2月19日武汉市新增新冠肺炎确诊病例大幅下降至三位数B. 武汉市新冠肺炎疫情防控取得了阶段性的成果,但防控要求不能降低C. 2020年2月19日至3月2日武汉市新增新冠肺炎确诊病例低于400人的有8天D. 2020年2月15日到3月2日武汉市新冠肺炎新增确诊病例最多的一天比最少的一天多1549人【答案】D【解析】解:对于A,由图可知18日病例1660人,19日615人,大幅下降至三位数,故A正确;对于B,很明显,病例人数呈大幅下降趋势,故防控取得了阶段性的成果,但防控要求不能降低,故B正确;对于C,由图得到,病例低于400人的有2月20日、21日、23日、25日、26日、27日、3月1日、2日,共8天,故C正确;对于D,由图病例最多一天人数1690人比最少一天人数111人多了1579人,故D错误.故选:D.直接利用折线图以及统计的相关知识逐一分析即可本题考查了合情推理能力,考查的折线图的提取信息能力,数形结合,属于中档题4.等差数列{a n}的前n项和为S n,若a1=2,S3=12,则a6等于()A. 8B. 10C. 12D. 14【答案】C【解析】解:由题意可得S3=a1+a2+a3=3a2=12,解得a2=4,∴公差d=a2−a1=4−2=2,∴a 6=a 1+5d =2+5×2=12, 故选:C .由已知可得a 2,进而可得公差d ,可得a 6.本题考查等差数列的通项公式和求和公式,属于基础题.5. 已知函数f (x )是定义在R 上的偶函数,且当x >0时,f (x )=x 2−x ,则函数f (x )的图象在点(−1,f (−1))处的切线方程是( )A. x +y −2=0B. x +y =0C. x +y +1=0D. x +y +2=0【答案】C 【解析】 【分析】本题主要考查了利用导数研究曲线上某点切线方程,偶函数性质的利用,以及函数解析式等问题,属于中档题.首先利用偶函数的性质,求出f (−1)的值,求出切点坐标,再求出在(1,f(1))处的导数,因为函数f(x)的图象在点(1,f(1))处的切线方程与函数f(x)的图象在点(−1,f(−1))处的切线方程关于y 轴对称,由此求出在点(−1,f(−1))处的切线的斜率,利用点斜式表示出直线方程即可. 【解答】解:已知函数f(x)是定义在R 上的偶函数, 所以f (x )=f (−x ), 所以f (1)=f (−1)=0.所以f′(x )=2x −1,f′(1)=1,因为函数f(x)的图象在点(1,f(1))处的切线方程与函数f(x)的图象在点(−1,f(−1))处的切线方程关于y 轴对称,所以k =−1,切点为(−1,0),可根据点斜式求得函数的切线方程为:x +y +1=0. 故选C .6. 如图,正方形ABCD 中,M 是BC 的中点,若AC ⃗⃗⃗⃗⃗ =λAM ⃗⃗⃗⃗⃗⃗ +μBD⃗⃗⃗⃗⃗⃗ ,则λ+μ=( )A. 43B. 53C. 158D. 2【答案】B【解析】解:AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ ,AM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +BM ⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ; ∴AC⃗⃗⃗⃗⃗ =λAM ⃗⃗⃗⃗⃗⃗ +μBD ⃗⃗⃗⃗⃗⃗ =λ(AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗⃗ )+μ(AD ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ )=(λ−μ)AB ⃗⃗⃗⃗⃗ +(λ2+μ)AD⃗⃗⃗⃗⃗⃗ ; ∴由平面向量基本定理得:{λ−μ=1λ2+μ=1;解得λ=43,μ=13; ∴λ+μ=53. 故选:B .根据向量加法、减法及数乘的几何意义便可得出AM ⃗⃗⃗⃗⃗⃗=AB ⃗⃗⃗⃗⃗ +12AD ⃗⃗⃗⃗⃗⃗ ,BD ⃗⃗⃗⃗⃗⃗ =AD ⃗⃗⃗⃗⃗⃗ −AB ⃗⃗⃗⃗⃗ ,代入AC ⃗⃗⃗⃗⃗ =λAM ⃗⃗⃗⃗⃗⃗ +μBD ⃗⃗⃗⃗⃗⃗ 并进行向量的数乘运算便可得出AC ⃗⃗⃗⃗⃗ =(λ−μ)AB ⃗⃗⃗⃗⃗ +(λ2+μ)AD ⃗⃗⃗⃗⃗⃗ ,而AC ⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ +AD ⃗⃗⃗⃗⃗⃗ ,这样根据平面向量基本定理即可得出关于λ,μ的方程组,解出λ,μ便可得出λ+μ的值.考查向量加法、减法,及数乘的几何意义,以及向量的数乘运算,相等向量的概念,平面向量基本定理.7. 一竖立在水平地面上的圆锥形物体的母线长为2m ,一只蚂蚁从圆锥的底面圆周上的点P 出发,绕圆锥表面爬行一周后回到P 点,蚂蚁爬行的最短路径为2√3m ,则圆锥的底面圆半径为( )A. 23mB. 1mC. 43mD. 32m【答案】A 【解析】 【分析】本题考查了旋转体上的最短距离和余弦定理,作出该圆柱的侧面展开图,如图所示,该小虫爬行的最短路程为PP′,运用余弦定理,从而得出结果,属基础题. 【解答】解:作出该圆柱的侧面展开图,如图所示,该小虫爬行的最短路程为PP′,由余弦定理可得cos∠POP′=OP 2+OP′2−PP′22OP·OP′=−12,所以∠POP′=2π3,设底面半径为r ,则,解得r =23, 故选A .8. 设抛物线C :y 2=4x 的焦点为F ,过点(2,0)且斜率为k 的直线交抛物线C 于A ,B两点,若线段AB 的中点在直线x =4上,则FA ⃗⃗⃗⃗⃗ ⋅FB ⃗⃗⃗⃗⃗ =( )A. −11B. 11C. −7D. 0【答案】A【解析】 【分析】本题主要考查直线与抛物线的位置关系和向量的数量积运算,属于中档题. 设出直线方程联立方程组,可得x 1+x 2=8,再根据向量的数量积运算进行求解. 【解答】解:根据题意,过点(2,0)且斜率为k 的直线方程为y =k(x −2), 与抛物线方程联立{y =k(x −2),y 2=4x,消元整理得:k 2x 2−4(k 2+1)x +4k 2=0,Δ>0恒成立, 设A(x 1,y 1),B(x 2,y 2),则x 1+x 2=4(k 2+1)k 2,x 1·x 2=4,由线段AB 的中点在直线x =4上, 得x 1+x 22=2(k 2+1)k 2=4,∴k 2=1,∴x 1+x 2=8.又FA ⃗⃗⃗⃗⃗ =(x 1−1,y 1),FB ⃗⃗⃗⃗⃗ =(x 2−1,y 2),∴FA ⃗⃗⃗⃗⃗ ⋅FB ⃗⃗⃗⃗⃗ =(x 1−1)(x 2−1)+y 1y 2 =x 1x 2−(x 1+x 2)+1+k 2(x 1−2)(x 2−2)=2x 1x 2−3(x 1+x 2)+5=8−24+5=−11. 故选A .9. 若函数f(x)={e2x−2x +a,x >0,ax +3a −2,x ⩽0在(−∞,+∞)上是单调函数,且f (x )存在负的零点,则a 的取值范围是( )A. (23,1]B. (23,32]C. (0,32]D. (23,+∞)【答案】B 【解析】 【分析】本题主要考查函数图像的应用与函数的零点与方程根的关系,属于中档题.当x >0时,求出f′(x )=2e 2x −2>0,根据增函数的性质得出0<a ≤32;当x <0时,令f (x )=0,解得a >23,再根据已知条件即可求得. 【解答】解:当x >0时,f′(x )=2e 2x −2>0, 则f (x )在(0,+∞)上是增函数,从而{a >0,e 0+a ≥3a −2,解得0<a ≤32. 当x <0时,由f (x )=0,得x =2a −3<0,解得a >23. ∵0<a ≤32, ∴23<a ≤32. 故选B .10. 在抛物线y =x 2与直线y =2围成的封闭图形内任取一点A ,O 为坐标原点,则直线OA 被该封闭图形解得的线段长小于√2的概率是( )A. √315B. √316C. √216D. √214【答案】C 【解析】 【分析】本题考查了利用定积分求面积以及几何摡型知识,考查运算求解能力,考查数形结合思想、化归与转化思想,属于较难题.要求直线OA 被该封闭图形解得的线段长小于√2的概率,利用几何概型解决,只须利用定积分求出阴影图的面积,最后利用面积比求得即可概率. 【解答】解:抛物线y =x 2与直线y =2所围成的面积为S 总=∫(√2−√22−x 2)dx =(2x −13x 3)| −√2√2=8√23, 以O 为原点,√2为半径的圆与抛物线y =x 2分别交于B ,C 两点,则OB =OC =√2,圆O 的方程为x 2+y 2=2,故A 点只有在图中阴影部分内时,直线OA 被直线OA 被该封闭图形解得的线段长小于√2,由{x 2+y 2=2y =x 2,解得{x =1y =1或{x =−1y =1, ∴B(−1,1),C(1,1),∴直线OB ,OC 的解析式分别为y =−x 和y =x , ∴阴影区域面积S 阴影=∫(0−1−x −x 2)dx +∫(10x −x 2)dx=(−12x 2−13x 3)| −10+(12x 2−13x 3)| 01 =16+16=13,∴直线OA被该封闭图形解得的线段长小于√2的概率,故选:C.11.已知双曲线C:x2m −y24=1的渐近线方程为y=±2x,不与x轴垂直的直线l与y=±2x分别交于M,N两点,且l与C相切,切点在第一象限,则|OM|·|ON|=()A. 5B. 4C. 10D. 8【答案】A【解析】【分析】本题考查双曲线的性质及几何意义,直线与双曲线的位置关系,涉及两条直线的交点坐标与两点间的距离公式,考查运算化简的能力,属于综合题.先由题意求出m=1,设直线l为y=kx+t,与双曲线C的方程联立消去y得(4−k2)x2−2ktx−t2−4=0,由Δ=0得t2=k2−4,再由直线l为y=kx+t与渐近线方程为y=±2x联立解得M,N的坐标计算可得.【解答】解:由题意,可得m>0,且√m=2,得m=1,∴双曲线C的方程为x2−y24=1,设直线l为y=kx+t,与双曲线C的方程联立消去y得(4−k2)x2−2ktx−t2−4=0,由Δ=0,即(−2kt)2−4(4−k2)(−t2−4)=0,得t2=k2−4>0,由直线l为y=kx+t与渐近线方程为y=±2x联立解得M(−tk+2,2tk+2),N(t2−k,2t2−k),∴|OM|·|ON|=√t2(k+2)2+4t2(k+2)2·√t2(2−k)2+4t2(2−k)2=5t2|k2−4|=5.故选A.12.正四棱台ABCD−A1B1C1D1中,侧棱AA1与底面ABCD所成角为α,侧面AA1D1D与底面ABCD所成二面角为β,侧棱AA1与底面ABCD的对角线BD所成角为γ,平面CC1D1D与平面AA1D1D所成二面角为θ,则α,β,γ,θ之间的大小关系是().A. α<β<θ<γB. α<γ<β<θC. α<β<γ<θD. β<α<γ<θ【答案】C【解析】【分析】本题考查了正四棱台的性质,空间角的定义及度量.三角函数的单调性.考查了空间想象能力、转化、计算能力,属于中档题.将正四棱台ABCD−A1B1C1D1的侧棱延长交于点V,在正四棱锥V−ABCD,找出空间角的平面角,考虑通过三角函数的值大小关系得出角的大小关系.【解答】解:如图,将正四棱台ABCD−A1B1C1D1的侧棱延长交于点V,在正四棱锥V−ABCD,设AB=2,高VO=ℎ.H为AB中点.∴在Rt△VOA中,tanα=tan∠VAO=VOAO =√2,在Rt△VOH中,tanβ=tan∠VHO=VOHO=ℎ,∴0<tanα<tanβ,∴α<β<π2,侧棱AA1与底面ABCD的对角线BD所成角为γ,∵BD⊥AC,VO⊥底面ABCD,BD⊂底面ABCD,∴VO⊥BD,AC∩VO=O,AC、VO⊂平面VAC,∴BD⊥平面VAC,VA⊂平面VAC,∴BD⊥VA,∴γ=π2,∴α<β<γ=π2.过点C作CE⊥VD于E,连接EA,由于△VDA≌△VDC,∴EA⊥VD,∠AEC为平面CC1D1D与平面AA1D1D所成二面角θ.S△VDA=12VD×AE=12×AB×VH,即12√ℎ2+2×AE=12×2×√ℎ2+1,∴AE2=4(ℎ2+1)ℎ2+2,则AE2+CE2=2AE2<AC2,∴∠AEC为钝角,∴α<β<γ<θ.故选C.二、填空题(本大题共3小题,共15.0分)13.已知各项均为实数的数列{a n},{b n}满足b2n−1=a n,b2n=√a2n+1,a1+b2=12.若{b n}为等比数列,则{a n}的前n项和为______.【答案】4(4n−1) 3【解析】【分析】本题考查等比数列的通项公式及求和公式的应用,属基础题.依题意,可判断{a n}为等比数列,根据等比数列的通项公式及求和公式计算即可.【解答】解:设{b n}的公比为q,由a n+1a n =b2n+1b2n−1=q2,所以{a n}为等比数列,公比为q2.由b2n−1=a n,所以b1=a1,b3=a2.由b2n=√a2n+1,所以b2=√a3.因为{b n}为等比数列,所以b22=b1⋅b3.则a3=a1a2,所以a1=q2,则b n=b1⋅q n−1=q n+1.由a1+b2=12,得q2+q3=12,即q3+q2−12=0,所以q3−8+q2−4=0,则(q−2)(q2+3q+6)=0,由q∈R,所以q=2.则S n=a1(1−q2n)1−q2=4(4n−1)3.故答案为4(4n−1)3.14.数学多选题有A,B,C,D四个选项,在给出的选项中,有多项符合题目要求,全部选对4分,部分选对得3分,有选错的不得分,已知某道数学多选题正确答案未A,D,小明同学不会做这道题,他随机涂了至少一个选项,则他能得分的概率为___________【答案】15【解析】【分析】本题主要考查了分类计数原理,组合以及组合数公式,古典概型,属于基础题.首先计算出随机地填涂了至少一个选项的所有涂法,再找出能得分的涂法,利用古典概型公式计算出所求事件的概率.【解答】解:随机地填涂了至少一个选项共有C41+C42+C43+C44=15种涂法,得分的涂法为3种,故他能得分的概率为15.故答案为15.15.下列结论正确的是___________(1)y=sinx在第一、第四象限是增函数(2)由sin(π6+2π3)=sinπ6知,2π3是正弦函数y=sinx(x∈R)的一个周期(3)正切函数y=tanx在定义域内是增函数(4)已知y=ksinx+1,x∈R,则y的最大值为1k(5)y=sin|x|是偶函数【答案】(5)【解析】【分析】本题考查了正弦函数、正切函数的性质,属于基础题.根据正弦函数、正切函数的单调性、周期性、奇偶性定义逐一判定即可.【解答】解:(1)第一、四象限的角是无数个不连续的区间构成,由函数单调性的定义,故(1)错误;(2)根据函数周期的定义可得正弦函数y=sinx的最小正周期为2π,故(2)错误;(3)正切函数y=tanx在定义域内的图象是不连续的,不是增函数,故(3)错误;(4)已知y=ksinx+1,x∈R,则当k≥0时,y的最大值为k+1,当k<0时,y的最大值为1−k,故(4)错误;(5)因为y=sin|x|的定义域为R,sin|−x|=sin|x|,故是y=sin|x|偶函数,故(5)正确.16.某校同时提供A、B两类线上选修课程,A类选修课每次观看线上直播40分钟,并完成课后作业20分钟,可获得积分5分;B类选修课每次观看线上直播30分钟,并完成课后作业30分钟,可获得积分4分.每周开设2次,共开设20周,每次均为独立内容,每次只能选择A类、B类课程中的一类学习.当选择A类课程20次,B类课程20次时,可获得总积分共________分.如果规定学生观看直播总时间不得少于1200分钟,课后作业总时间不得少于900分钟,则通过线上选修课的学习,最多可以获得总积分共________分.【答案】180;190【解析】【分析】本题主要考查线性规划的应用,是中档题.根据题意,设选择A、B两类课程分别为x,y次,学分z=5x+4y.(1)当x=20,y=20时,直接代入求得z=5×20+4×20=180.(2)由题意可建立不等式组,则{x+y⩽4040x+30y⩾120020x+30y⩾900x,y∈N,作出可行域,根据目标函数的几何意义即可得解.【解答】解:设选择A、B两类课程分别为x,y次,学分z=5x+4y.(1)当x=20,y=20时,z=5×20+4×20=180.(2)由题意可得则{x+y⩽4040x+30y⩾120020x+30y⩾900x,y∈N,作出可行域,如图,由方程组解得A(0,40),B(15,20),C(30,10).由目标函数z=5x+4y得y=−54x+z5,作直线:ly=−54x,平移直线l,显然,当直线l经过点C(30,10)时,z取得最大值.故zmax=5×30+4×10=190.故答案为180;190.。
绝密★启用前 【4月优质错题重组卷】高三数学理科新课标版第三套 一、选择题 1.设集合2,xAyyxR, 2{|10}Bxx,则AB A. 1,1 B. (0,1) C. (1,+) D. (0,+) 2.若 ,则 ( ) A. B. C. D. 3.设条件p:函数23log2fxxx在,a上单调递增,条件q:存在xR使得不等式2121xxa成立,则p是q的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件 4. 执行如图所示的程序框图,如果输入的 ,则输出的 ( ) A. 5 B. 6 C. 7 D. 8 5. 已知55021xax 4145axaxa,则015aaa( ) A. 1 B. 243 C. 32 D. 211 6. 某四棱锥的三视图如图所示,则该四棱锥的体积等于( ) A. 34 B. 23 C. 12 D. 13 7. 小李从网上购买了一件商品,快递员计划在下午5:00-6:00之间送货上门,已知小李下班到家的时间为下午5:30-6:00.快递员到小李家时,如果小李未到家,则快递员会电话联系小李.若小李能在10分钟之内到家,则快递员等小李回来;否则,就将商品存放在快递柜中.则小李需要去快递柜收取商品的概率为( ) A. 19 B. 89 C. 512 D. 712
8. 已知函数πsin6fxx, π9fxf对任意xR恒成立,则可以是 A. 1 B. 3 C. 152 D. 12 9. 在平面直角坐标系xOy中,已知点3,0A, 1,2B,动点P满足OP OAOB,其中,0,1,1,2,则所有点P构成的图形面积为( )
A. 1 B. 2 C. 3 D. 23 10. 已知抛物线C: 2yx,过点,0Pa的直线与C相交于A, B两点, O为坐标原点,若0OAOB,则a的取值范围是( ) A. ,0 B. 0,1 C. 1, D. 1 11. 现有两个半径为2的小球和两个半径为3的小球两两相切,若第五个小球和它们都相切,则这个小球的半径是 ( ) A. 611 B. 311 C. 411 D. 511 12. 已知定义在R上的奇函数fx满足: 2fxefx(其中2.71828e),且在区间,2ee上是减函数,令ln22a, ln33b, ln55c,
高考数学小题狂做冲刺训练(详细解析)高中数学姓名:__________班级:__________考号:__________、选择题(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.已知两个等差数列{a n }和{b n }的前n 项和分别为A n 和B n ,且3457++=n n B A n n ,则使得n n b a 为整数的正整数n 的个数是( )A.2B.3C.4D.5 解析:nn n n n n n n b a b a b b n a a n B A ==+•-+•-=----222)()12(2)()12(1211211212, ∴31245)12(71212+-+-==--n n B A b a n n n n =11271197++=++n n n . 当n =1,2,3,5,11时,n n b a 是正整数. 答案:D2.已知数列{a n }的前n 项和21++=n n S n (n∈N *),则a 4等于( ) A.301 B.341 C.201 D.321 解析:由已知,得a 4=S 4-S 3=3015465=-. 答案:A3.若△ABC 的内角A 满足322sin =A ,则sinA+cosA 等于( ) A.315 B.315- C.35 D.35-解析:在△ABC 中,032cos sin 2>=A A , ∴sinA>0,cosA >0. ∴2)cos (sin cos sin A A A A +=+A A A A cos sin 2cos sin 22++=31535321==+=. 答案:A4.若a <0,则( )A.2a >(21)a >(0.2)a B.(0.2)a >(21)a >2a C.(21)a >(0.2)a >2a D.2a >(0.2)a >(21)a 解析:∵a<0,∴2a<0,(21)a >1,0.2a >1. 而a a)2.0()21(=(25)a ∈(0,1), ∴(21)a <0.2a . 答案:B5.下列各组向量中不平行的是( )A.a =(1,2,-2),b =(-2,-4,4)B.c =(1,0,0),d =(-3,0,0)C.e =(2,3,0),f =(0,0,0)D.g =(-2,3,5),h =(16,24,40)解析:向量平行的充要条件是:存在实数λ,使a =λb.g,h 不满足要求,故D 中的两个向量不平行.答案:D6.由等式x 3+a 1x 2+a 2x+a 3=(x+1)3+b 1(x+1)2+b 2(x+1)+b 3,定义一个映射:f(a 1,a 2,a 3)=(b 1,b 2,b 3),则f(2,1,-1)等于( )A.(-1,0,-1)B.(-1,-1,0)C.(-1,0,1)D.(-1,1,0)解析:由题意知x 3+2x 2+x-1=(x+1)3+b 1(x+1)2+b 2(x+1)+b 3,令x =-1,得-1=b 3,即b 3=-1;再令x =0与x =1,得⎩⎨⎧+++=+++=-,2483,11321321b b b b b b 解得b 1=-1,b 2=0,故选A.答案:A7.下列两个变量之间是相关关系的是( )A.圆的面积与半径B.球的体积与半径C.角度与它的正弦值D.一个考生的数学成绩与物理成绩 解析:相关关系不是确定的函数关系,这里A 、B 、C 都是确定的函数关系.答案:D8.已知集合A ={x|x 2-x-2>0},B ={x||x-a|≤1},若A∩B=∅,则实数a 的取值范围是( )A.(0,1)B.(-∞,1)C.(0,+∞)D.[0,1] 解析:A ={x|x >2或x <-1},B ={x|a-1≤x≤a+1}.又A∩B=∅,∴⎩⎨⎧-≥-≤+.11,21a a ∴0≤a≤1.答案:D9.已知(ax +1)n 的展开式中,二项式系数和为32,各项系数和为243,则a 等于( )A .-2B .2C .-3D .3解析:由二项式系数和为2n =32,得n =5,又令x =1,得各项系数和为(a +1)5=243,所以a +1=3,故a =2.答案:B10.如果一个三位数的十位数字既大于百位数字也大于个位数字,则这样的三位数共有( )A.240个B.285个C.231个D.243个解析:当十位数字是9时,百位数字有8种取法,个位数字有9种取法,此时取法种数为8×9;当十位数字是8时,百位数字有7种取法,个位数字有8种取法,此时取法种数为7×8,依此类推,直到当十位数字是2时,百位数字有1种取法,个位数字有2种取法,此时取法种数为1×2,所以总的个数为1×2+2×3+3×4+…+8×9=240.答案:A、填空题(本大题共5小题,每小题5分,共25分)11.已知函数f(x)=2+log 3x,x∈[1,9],则函数y =[f(x)]2+f(x 2)的值域为___________.解析:∵f(x)=2+log 3x,x∈[1,9],∴y=[f(x)]2+f(x 2)的定义域为⎩⎨⎧≤≤≤≤.91,912x x解得1≤x ≤3,即定义域为[1,3].∴0≤log 3x ≤1.又y =[f(x)]2+f(x 2)=(2+log 3x)2+2+log 3x 2=(log 3x)2+6log 3x+6=(log 3x+3)2-3,∵0≤log 3x ≤1,∴6≤y ≤13.故函数的值域为[6,13].答案:[6,13]12.过抛物线x 2=2py(p>0)的焦点F 作倾斜角为30°的直线,与抛物线分别交于A 、B 两点(点A 在y 轴左侧),则=||||FB AF ______________. 解析:由已知,得直线方程为y=233p x +与x 2=2py 联立消x,得12y 2-20py+3p 2=0, ∵A 在y 轴左侧,∴p y P y B A 23,6==.如图所示,过A 、B 分别作准线的垂线AM 、BN,由抛物线定义知|AF|=|AM|,|BF|=|BN|, 故3123222||||||||==++==p p p y p y BN AM FB AF B A . 答案:31 13.下列四个命题中的真命题是____________.①经过定点P 0(x 0,y 0)的直线都可以用方程y-y 0=k(x-x 0)表示②经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y-y 1)·(x 2-x 1)=(x-x 1)(y 2-y 1)表示③不经过原点的直线都可以用方程1=+by a x 表示 ④经过定点A (0,b)的直线都可以用方程y =kx+b 表示答案:②14.给出下列5个命题:①函数f(x)=-sin(k π+x)(k ∈Z)是奇函数;②函数f(x)=tanx 的图象关于点( ,0)(k ∈Z)对称;③函数f(x)=sin|x|是最小正周期为π的周期函数;④设θ是第二象限角,则 > ,且 > ;⑤函数y=cos2x+sinx 的最小值是-1.其中正确的命题是___________.解析:∵y=-sin(k π+x)(n∈Z),故f(x)是奇函数,∴①正确;对f(x)=tanx,(kπ,0)、( ,0)都是对称中心(前者在曲线上,后者不在),∴②正确;f(x)=sin|x|不是周期函数,∴③不正确;对④, 必满足> ,但是第三象限角时, < ,∴④不正确;∵y=cos2x+sinx=1-sin2x+sinx,当sinx=-1时,ymin=-1,∴⑤正确.答案:①②⑤15.函数y=f(x)的图象与直线x=a、x=b及x轴所围成图形的面积称为函数f(x)在[a,b]上的面积.已知函数y=sinnx在[0, ]上的面积为 (n∈N*),则(1)函数y=sin3x在[0, ]上的面积为____________;(2)函数y=sin(3x-π)+1在[ , ]上的面积为________.解析:(1)令n=3,则y=sin3x在[0, ]上的面积为 .又∵y=sin3x在[0, ]和[ , ]上的面积相等,∴y=sin3x在[0, ]上的面积为 .(2)由y=sin(3x-π)+1,设3φ=3x-π,∴y=sin3φ+1.又∵x∈[ , ],∴3φ∈[0,3π].∴φ∈[0,π].由(1)y=sin3φ在[0, ]上的面积为 ,y=sin3φ在[0,π]上的面积为S1+S2+S3-S4 ,∵ ,∴y=sin(3x-π)+1在[ , ]上的面积为 .答案:(1) (2)。
4
2019年备战咼考之咼三数学 (理科)小题狂练(13)
一、选择题(本大题共 有一项是符合题目要求的. 12小题,每小题5分, )
满分60分•在每小题给出的四个选项中,只
1、设全集U R ,集合 x log 2 x 2 , x 1 0,则 ej
A.
,1 U 0,3
0,3
0,3
2、正项等比数列
a n 中, 存在两项a m 、a n ,使得
a m a n
4a 1,且 a
a 5
2a 4,则1 m
的最小值是( A. 3 2 3、设向量 a 与b 满足a
7 3
2, b 在a 方向上的投影为1,若存在实数
25
• 6 ,使得a 与a
直,则
A. 1 2 4、已知函数 sin x m 的最大值为4,最小值为0.两个对称轴间最短距离为 A. y 4sin 2x B . y 2sin 2x — 2 6 6 C. y 2s in x — D . y 2sin 2x — 2 3 3
5、在 C 中, 三个内角 ,,C 所对的边为a , b , c ,若 S C 2 3 , a b 6, () 直线x §是其图象的一条对称轴,则符合条件的解析式为() a cos
bcos 2cos C ,则 c c A. 2 7 C
. 4
ULUU 3 UUUU
6、设 是 C 所在平面上的一点,且 3 2
UUUU
D -uutxu 的值为( ) r
o
罠 D 是 C 的中点,贝U
A. 3 7、已知锐角 C 的一个内角, 2 2 1 sin cos 一,则下列各式正确的是(
2
A. b c 2a B . b c 2a
.1
D
. 2
a ,
b ,
c 是三角形中各角的对应边,若
)
C . b c 2a
D . b c 2a 2 1
8、已知函数g x a x ( x e , e 为自然对数的底数)与 h x 2lnx 的图象上存 e 在关于x 轴对称的点,则实数 a 的取值范围是( ) A. 1, !
2 B
e
1,e 2 2 C
! 2,e 2 2 D . e 2
2,
e
9、 已知
S n 是数列a n 的前n 项和,a 1 1 , a 2
2 , a
3 3,数列a n
a n 1 a n 2是公差
为2的等差数列,贝U 氐 () A. 232 B . 233 10、函数 f x cos x 与 g x .2 a , b , A. 0 11、已知向量是单位向量 C
log 2 x
C
范围是( .234
D
. 235
的图象所有交点的横坐标之和为(
)
.6
c 2a 的取值
D
2b 45 ,则 A. 1,3 2 2,3 655
,2 2
12、定义在 0,
上的单调函数 0,,
log 2 x
3,则方程
2的解所在区间是( A. 0, 1 2 二、填空题 (本大题
共
• 2,1 4小题,每小题
5分,
20
分.)
13、若 tan tan 10 3
一,一,贝V sin 2
4 2
1,2 2,3
14、已知函数f x (x R )满足f 1 1,且 f x
15、已知 x 2
1
—_的解集为 __________ .
2 2 S n 是等差数列a n 的前n 项和,且S s S 7
S 5 , 2cos — 4 cos 2 的值为 的导数f x 给出下列五个命题:
①d 0 :②% 0 :③S 2 0;④数列S n 中的最大项为
其中正确命题的个数是 ___________ . a 6
16、已知函数 f x 为偶函数且 f x x 4,又 f x
x 2 2x 3 —x 2 2 x ,1 1 x
1 a ,若F x 2
1
,则不等式
2
|a 7 •
5,0 x 1
,函
x 2 x g x 恰好有4个零点,则a 的取值范围是 一、选择题 有一项是符合题目要求的. 二、填空题(本大题共 4小题,每小题5分,满分20分.)
2019年备战高考之高三数学(理科)小题狂练( 13)参考答案 (本大题共 12小题,每小题5分,满分60分•在每小题给出的四个选项中,只 13、0
14
,1 U 1,
15
16
2';9。