2018年高三最新 高三数学第二轮专题复习第17讲导数应用的题型与方法 精品
- 格式:doc
- 大小:742.06 KB
- 文档页数:7
专题7:导数及其应用问题归类篇类型一:切线方程一、前测回顾1.曲线y =x 3上在点(-1,-1)的切线方程为 . 答案:y =3x +2.解析:y ′=3x 2,则切线的斜率是3×(-1)2,再利用点斜式. 2.曲线y =x 3-3x 2+2x 过点(0,0)的切线方程为 . 答案:y =2x 或y =-14x .解析:y ′=3x 2-6x +2,设切点为(x 0,x 03-3x 02+2x 0),则切线的斜率为3x 02-6x 0+2.切线方程为y -(x 03-3x 02+2x 0)=(3x 02-6x 0+2)(x -x 0),(0,0)代入,得x 0的值,从而得到切线方程.二、方法联想涉及函数图象的切线问题,如果已知切点利用切点求切线;如果不知切点,则先设切点坐标求出切线方程的一般形式再来利用已知条件.注意:(1)“在”与“过”的区别:“在”表示该点为切点,“过”表示该点不一定为切点.(2)切点的三个作用:①求切线斜率;②切点在切线上;③切点在曲线上.三、归类巩固*1.若曲线y =12x +b 是曲线y =ln x (x >0)的一条切线,则实数b 的值为 .(已知切线方程求参数值) 答案:ln2-1,**2.曲线y =-1x(x <0)与曲线y =ln x 公切线(切线相同)的条数为 .(求两曲线的公切线条数) 答案:1***3.在平面直角坐标系xOy 中,直线l 与曲线y =x 2(x >0)和y =x 3(x >0)均相切,切点分别为A (x 1,y 1)和B (x 2,y 2),则x 1x 2的值是(已知两曲线的公共切线,求切点) 答案 43.解析:由题设函数y =x 2在A (x 1,y 1)处的切线方程为:y =2x 1 x -x 12,函数y =x 3在B (x 2,y 2)处的切线方程为y =3 x 22 x -2x 23.所以⎩⎨⎧2x 1=3x 22x 12=2x 23,解之得:x 1=3227,x 2=89. 所以x 1x 2=43.**4.若存在过点(1,0)的直线与曲线y =x 3和y =ax 2+154x -9都相切,求a 的值.(已知公切线,求参数的值) 答案:-2564或-1.解析:设曲线y =x 3的切点(x 0,x 30),则切线方程为y -x 30=3x 20 (x -x 0), 切线过点(1,0),所以-x 30=3x 20 (1-x 0),所以x 0=0或x 0=32,则切线为y =0或y =274x -274,由y =0与y =ax 2+154x -9相切,则ax 2+154x -9=0,所以a ≠0且△=0;由或y =274x -274与y =ax 2+154x -9相切,则ax 2+154x -9=274x -274,所以a ≠0且△=0。
高三文科数学第二轮复习专题导数教案文科数学第二轮专题导数及其应用(一)教学目标1、知识与技能:1、利用导数求函数的单调区间、极值和最值2、解决基本的含参问题2、过程与方法:利用导数研究函数,作出图形,再通过图形反馈函数的性质,进一步体会数形结合及分类讨论的思3、情感态度与价值观:这是一堂复习课,教学难度有所增加。
培养学生思考问题的习惯,以及克服困难的信心。
强化讨论意识,不断提高解题的灵活性和变通性(二)重点、难点教学重点:利用导数求多项式函数的单调性极值和最值教学难点:含参的讨论教具准备:与教材内容相关的资料教学设想:通过学习,培养学生思考问题的习惯,以及克服困难的信心。
强化讨论意识,不断提高解题的灵活性和变通性(三)教学过程一、学生自学自探1、某物体的运动方程为s(t) 5t2(位移单位:m,时间单位:s)则它在t=2s时的速度是2、曲线y 4x x3在点(-1,-3)处的切线方程是3、求f(x) lnx 4x的单调增区间4、121f(x) x4 x3 x2 1的极值点是4325、函数y x4 4x 3在区间[-2,3]上的最小值为二、合作交流分小组讨论:回顾以前做过的题目思考、讨论以下问题1、利用导数求瞬时变化率常见的问题及解决方法?2、利用导数研究函数的切线方程的方法和步骤?高三文科数学第二轮复习专题导数教案3、利用导数研究函数的单调性的方法和步骤?4、利用导数研究函数极值的方法和步骤?5、利用导数研究函数的最值的方法和步骤?三、展示评价以小组为单位:展示讨论的结论,其他小组可以补充。
四、规律总结1、利用导数求瞬时速度、加速度问题:规律如下:路程对时间求导得到的是瞬时速度;瞬时速度对时间求导得到的是加速度。
s (t) v(t),v (t) a(t)步骤如下:先求导,再把对应的时刻,带进导数式子,就是所求的某时刻的瞬时速度,加速度。
2、利用导数求切线问题:步骤如下:先求导,把切点(x0,y0)的横坐标x0带入导数,得到切线的斜率k f (x0),然后用点斜式y y0 k(x x0)得出切线方程3、利用导数求函数的单调区间的方法和步骤:(1) 确定函数的定义域(2) 求函数的导数f (x)(3) ①若求单调区间(或证明单调性)只需要在函数f(x)的定义域内解(或证明)不等式f (x) 0(或f (x) 0)②若已知f(x)的单调性,则转化成不等式f (x) 0或f (x) 0在单调区间上恒成立问题求解4、利用导数求函数的极值的步骤(1)求函数的导数f (x)(2)求方程f (x)=0的根x0(3)检验f (x)在方程f (x)=0的根x0的左右的符号,高三文科数学第二轮复习专题导数教案若当x x0,若当x x0,f (x) 0,当x x0,f (x) 0,则x0是极小值点,f(x0)是函数的极小值 f (x) 0,当x x0,f (x) 0,则x0是极大值点,f(x0)是函数的极大值5、利用导数研究函数的最值的方法和步骤?(1)求函数的导数f (x)(2)求方程f (x)=0的根x0(3)①定义域是[a,b],若x0 [a,b],比较f(x0),f(a),f(b)之间的大小,最大的是最大值,最小的是最小值,若x0 [a,b],比较f(a),f(b)的大小,最大的是最大值,最小的是最小值。
高考数学题型归纳之导数题型解题方法高考数学题型归纳之导数题型解题方法导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
在高中阶段对于导数的学习,主要是以下几个方面:1.导数的常规问题:(1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于次多项式的导数问题属于较难类型。
2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。
3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。
知识整合1.导数概念的理解。
2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值。
这个工作可让学生分组负责收集整理,登在小黑板上,每周一换。
要求学生抽空抄录并且阅读成诵。
其目的在于扩大学生的知识面,引导学生关注社会,热爱生活,所以内容要尽量广泛一些,可以分为人生、价值、理想、学习、成长、责任、友谊、爱心、探索、环保等多方面。
如此下去,除假期外,一年便可以积累40多则材料。
如果学生的脑海里有了众多的鲜活生动的材料,写起文章来还用乱翻参考书吗?复合函数的求导法则是微积分中的重点与难点内容。
课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。
要练说,先练胆。
说话胆小是幼儿语言发展的障碍。
不少幼儿当众说话时显得胆怯:有的结巴重复,面红耳赤;有的声音极低,自讲自听;有的低头不语,扯衣服,扭身子。
总之,说话时外部表现不自然。
我抓住练胆这个关键,面向全体,偏向差生。
一是和幼儿建立和谐的语言交流关系。
每当和幼儿讲话时,我总是笑脸相迎,声音亲切,动作亲昵,消除幼儿畏惧心理,让他能主动的、无拘无束地和我交谈。
二是注重培养幼儿敢于当众说话的习惯。
或在课堂教学中,改变过去老师讲学生听的传统的教学模式,取消了先举手后发言的约束,多采取自由讨论和谈话的形式,给每个幼儿较多的当众说话的机会,培养幼儿爱说话敢说话的兴趣,对一些说话有困难的幼儿,我总是认真地耐心地听,热情地帮助和鼓励他把话说完、说好,增强其说话的勇气和把话说好的信心。
2018届高三理科数学函数与导数解题方法规律技巧详细总结版【3年高考试题比较】对于导数的解答题,考纲的要求是:1.了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次);2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次);3.会用导数解决实际问题.通过比较近三年的高考卷总结如下:一般有两问,(16年3卷出现了三问),第一问往往是以讨论函数单调性和切线问题为主,也有根据不等式恒成立或零点问题求参数范围的问题,但一般难度不大,第二问主要涉及不等式的恒成立问题,零点问题,函数最值问题,一元的不等式证明和二元的不等式证明,方法灵活,难度较大.【必备基础知识融合】1.基本初等函数的导数公式2.导数的运算法则若f ′(x ),g ′(x )存在,则有: (1)[f (x )±g (x )]′=f ′(x )±g ′(x ); (2)[f (x )·g (x )]′=f ′(x )g (x )+f (x )g ′(x );(3)⎣⎢⎡⎦⎥⎤f (x )g (x )′=f ′(x )g (x )-f (x )g ′(x )[g (x )]2(g (x )≠0).3.复合函数的导数复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为y x ′=y u ′·u x ′,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 4.函数的单调性与导数(1)在区间D 上,若f ′(x )≥0,且f ′(x )=0不连续成立⇔函数f (x )在区间D 上递增;(2)在区间D 上,若f ′(x )≤0,且f ′(x )=0不连续成立⇔函数f (x )在区间D 上递减; (3)在区间D 上,若f ′(x )=0恒成立⇔函数f (x )在区间D 上是常函数. 5.函数的极值与导数6.函数的最值与导数(1)在闭区间[a ,b ]上连续的函数f (x )在[a ,b ]上必有最大值与最小值.(2)若函数f (x )在[a ,b ]上单调递增,则f (a )为函数的最小值,f (b )为函数的最大值;若函数f (x )在[a ,b ]上单调递减,则f (a )为函数的最大值,f (b )为函数的最小值.【解题方法规律技巧】典例1:已知曲线y =13x 3+43.(1)求曲线在点P (2,4)处的切线方程; (2)求曲线过点P (2,4)的切线方程.【规律方法】(1)求切线方程的方法:①求曲线在点P处的切线,则表明P点是切点,只需求出函数在点P处的导数,然后利用点斜式写出切线方程;②求曲线过点P的切线,则P点不一定是切点,应先设出切点坐标,然后列出切点坐标的方程解出切点坐标,进而写出切线方程.(2)处理与切线有关的参数问题,通常根据曲线、切线、切点的三个关系列出参数的方程并解出参数:①切点处的导数是切线的斜率;②切点在切线上;③切点在曲线上.典例2:设函数f(x)=a ln x+x-1x+1,其中a为常数.(1)若a=0,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)讨论函数f(x)的单调性.③当-12<a <0时,Δ>0.设x 1,x 2(x 1<x 2)是函数g (x )的两个零点,则x 1=-(a +1)+2a +1a ,x 2=-(a +1)-2a +1a .由x 1=a +1-2a +1-a =a 2+2a +1-2a +1-a >0,所以x ∈(0,x 1)时,g (x )<0,f ′(x )<0,函数f (x )单调递减; x ∈(x 1,x 2)时,g (x )>0,f ′(x )>0,函数f (x )单调递增; x ∈(x 2,+∞)时,g (x )<0,f ′(x )<0,函数f (x )单调递减. 综上可得:当a ≥0时,函数f (x )在(0,+∞)上单调递增; 当a ≤-12时,函数f (x )在(0,+∞)上单调递减;当-12<a <0时,f (x )在⎝ ⎛⎭⎪⎫0,-(a +1)+2a +1a ,⎝ ⎛⎭⎪⎫-(a +1)-2a +1a ,+∞上单调递减, 在⎝⎛⎭⎪⎫-(a +1)+2a +1a ,-(a +1)-2a +1a 上单调递增.【规律方法】 (1)确定函数单调区间的步骤: ①确定函数f (x )的定义域; ②求f ′(x );③解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间; ④解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间.(2)个别导数为0的点不影响所在区间的单调性,如函数f (x )=x 3,f ′(x )=3x 2≥0(x =0时,f ′(x )=0),但f (x )=x 3在R 上是增函数.(3)利用导数研究函数的单调性的关键在于准确判定导数的符号,当f (x )含参数时,需依据参数取值对不等式解集的影响进行分类讨论.分类讨论时,要做到不重不漏.典例3: 已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求实数a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求实数a 的取值范围.(2)由h (x )在[1,4]上单调递减得,当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,③即a ≥1x 2-2x 恒成立.设G (x )=1x 2-2x ,所以a ≥G (x )max ,而G (x )=⎝⎛⎭⎫1x -12-1, 因为x ∈[1,4],所以1x ∈⎣⎡⎦⎤14,1, 所以G (x )max =-716(此时x =4),所以a ≥-716.【规律方法】利用单调性求参数的两类热点问题的处理方法: (1)函数f (x )在区间D 上存在递增(减)区间. 方法一:转化为“f ′(x )>0(<0)在区间D 上有解”;方法二:转化为“存在区间D 的一个子区间使f ′(x )>0(<0)成立”. (2)函数f (x )在区间D 上递增(减).方法一:转化为“f ′(x )≥0(≤0)在区间D 上恒成立”问题; 方法二:转化为“区间D 是函数f (x )的单调递增(减)区间的子集”. 易错警示 对于①:处理函数单调性问题时,应先求函数的定义域;对于②:h (x )在(0,+∞)上存在递减区间,应等价于h ′(x )<0在(0,+∞)上有解,易误认为“等价于h ′(x )≤0在(0,+∞)上有解”,多带一个“=”之所以不正确,是因为“h ′(x )≤0在(0,+∞)上有解即为h ′(x )<0在(0,+∞)上有解,或h ′(x )=0在(0,+∞)上有解”,后者显然不正确;对于③:h (x )在[1,4]上单调递减,应等价于h ′(x )≤0在[1,4]上恒成立,易误认为“等价于h ′(x )<0在[1,4]上恒成立”.典例4:已知函数()()2ln R 2a f x x x x a =-∈ .(1)若2a = ,求曲线()y f x = 在点()()1,1f 处的切线方程;(2)若()()()1g x f x a x =+- 在1x = 处取得极小值,求实数a 的取值范围. 【答案】(1)y x =-(2)1a <()1'01,g x x a ⎛⎫<∈ ⎪⎝⎭,时, ()'0g x > ,所以()g x 在1x =处取得极小值,满足题意.③当1a =时,当()0,1x ∈ 时, ()'0h x >, ()'g x 在()0,1内单调递增, ()1,x ∈+∞时, ()()'0,'h x g x < 在()1,+∞内单调递减,所以当()0,x ∈+∞时, ()()'0,g x g x ≤单调递减,不合题意. ④当1a >时,即101a <<,当1,1x a ⎛⎫∈ ⎪⎝⎭时, ()()'0,'h x g x < 单调递减, ()'0g x > ,当()1,x ∈+∞时, ()()'0,'h x g x <单调递减, ()'0g x < ,所以()g x 在1x =处取得极大值,不合题意. 综上可知,实数a 的取值范围为1a < .【规律方法】函数极值的两类热点问题(1)求函数f (x )极值这类问题的一般解题步骤为:①确定函数的定义域;②求导数f ′(x );③解方程f ′(x )=0,求出函数定义域内的所有根;④列表检验f ′(x )在f ′(x )=0的根x 0左右两侧值的符号,如果左正右负,那么f (x )在x 0处取极大值,如果左负右正,那么f (x )在x 0处取极小值.(2)由函数极值求参数的值或范围.讨论极值点有无(个数)问题,转化为讨论f ′(x )=0根的有无(个数).然后由已知条件列出方程或不等式求出参数的值或范围,特别注意:极值点处的导数为0,而导数为0的点不一定是极值点,要检验极值点两侧导数是否异号.典例5:已知函数f (x )=(4x 2+4ax +a 2)x ,其中a <0. (1)当a =-4时,求f (x )的单调递增区间; (2)若f (x )在区间[1,4]上的最小值为8,求a 的值.①当-a2≤1时,即-2≤a <0时,f (x )在[1,4]上的最小值为f (1),由f (1)=4+4a +a 2=8,得a =±22-2,均不符合题意. ②当1<-a2≤4时,即-8≤a <-2时,f (x )在[1,4]上的最小值为f ⎝⎛⎭⎫-a2=0,不符合题意. ③当-a2>4时,即a <-8时,f (x )在[1,4]上的最小值可能在x =1或x =4处取得,而f (1)≠8, 由f (4)=2(64+16a +a 2)=8得a =-10或a =-6(舍去),当a =-10时,f (x )在(1,4)上单调递减,f (x )在[1,4]上的最小值为f (4)=8,符合题意. 综上有,a =-10.【规律方法】(1)求函数f (x )在[a ,b ]上的最大值和最小值的步骤:①求函数在(a ,b )内的极值;②求函数在区间端点的函数值f (a ),f (b );③将函数f (x )的极值与 f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.(2)含参数的函数的最值一般不通过比值求解,而是先讨论函数的单调性,再根据单调性求出最值.含参函数在区间上的最值通常有两类:一是动极值点定区间,二是定极值点动区间,这两类问题一般根据区间与极值点的位置关系来分类讨论.典例6:已知函数f(x)=ax+ln x,x∈[1,e].(1)若a=1,求f(x)的最大值;(2)若f(x)≤0恒成立,求实数a的取值范围.【规律方法】 由不等式恒(能)成立求参数的范围常有两种方法:(1)讨论最值:先构造函数,利用导数研究函数的单调性,求出含参函数的最值,进而得出相应的含参不等式求参数的取值范围;(2)分离参数:先分离参数变量,再构造函数,求出函数的最值,从而求出参数的取值范围. 典例7:设函数f(x)=ln x +mx,m ∈R .(1)当m =e(e 为自然对数的底数)时,求f (x )的极小值; (2)讨论函数g (x )=f ′(x )-x3零点的个数.解 (1)由题设,当m =e 时,f (x )=ln x +ex ,定义域为(0,+∞),则f ′(x )=x -ex 2,由f ′(x )=0,得x =e.∴当x ∈(0,e),f ′(x )<0,f (x )在(0,e)上单调递减, 当x ∈(e ,+∞),f ′(x )>0,f (x )在(e ,+∞)上单调递增, ∴当x =e 时,f (x )取得极小值f (e)=ln e +ee =2,∴f (x )的极小值为2.(2)由题设g (x )=f ′(x )-x 3=1x -m x 2-x3(x >0),令g (x )=0,得m =-13x 3+x (x >0).设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增; 当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减. ∴x =1是φ(x )的唯一极值点,且是极大值点, 因此x =1也是φ(x )的最大值点. ∴φ(x )的最大值为φ(1)=23.又φ(0)=0,结合y =φ(x )的图象(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;④当m ≤0时,函数g (x )有且只有一个零点. 综上所述,当m >23时,函数g (x )无零点;当m =23或m ≤0时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.【规律方法】利用导数研究函数的零点常用两种方法:(1)运用导数研究函数的单调性和极值,利用单调性和极值定位函数图象来解决零点问题;(2)将函数零点问题转化为方程根的问题,利用方程的同解变形转化为两个函数图象的交点问题,利用数形结合来解决.典例8:已知函数f (x )=ax +b x 2+1在点(-1,f (-1))处的切线方程为x +y +3=0. (1)求函数f (x )的解析式;(2)设g (x )=ln x ,求证:g (x )≥f (x )在[1,+∞)上恒成立;(3)若0<a <b ,求证:ln b -ln a b -a >2a a 2+b 2.【规律方法】 证明不等式通常需要构造函数,利用函数的最值、单调性证明.(1)证明不等式f (x )<g (x ),可构造函数F (x )=f (x )-g (x ),利用导数求F (x )的值域,得到F (x )<0即可;(2)对于证明含有两个变量a ,b 的不等式时,一种方法是通过变形构造成不等式f (a )>f (b ),然后利用函数f (x )的单调性证明,另一种方法是通过换元构造成单变量不等式,如本例令x =b a然后再利用已知关系证明即可.典例9:设k ∈R ,函数()ln f x x kx =-.(Ⅰ)若2k =,求曲线()y f x =在1x =处的切线方程;(Ⅱ)若()f x 无零点,求实数k 的取值范围;(Ⅲ)若()f x 有两个相异零点12x x ,,求证: 12ln ln 2x x +>.【答案】(Ⅰ) 10x y ++=;(Ⅱ) 1,e ∞⎛⎫+ ⎪⎝⎭;(Ⅲ)证明见解析.(Ⅱ)①若k 0<时,则()()'0f x f x >,是区间()0,∞+上的增函数,∵()()()10e e 1e 0k k k f k f k k k =->=-=-<,,∴()()1e 0k f f ⋅<,函数()f x 在区间()0,∞+有唯一零点; ②若()0ln k f x x ==,有唯一零点1x =;③若0k >,令()'0f x =,得1x k =, 在区间10,k ⎛⎫ ⎪⎝⎭上, ()'0f x >,函数()f x 是增函数;【规律方法】涉及到二元问题的证明问题,通常是将二元问题一元化,进而利用函数导数求最值即可得解. 二元问题一元化的一般思路有:(1)等量代换,将题中的等量关系代入即可;(2,12t x x =+,12t x x =-等手段将二元关系换成关于t 的一元函数即可; (3)利用“极值点偏移”的思想,将二元换为一元.典例10:设函数()()2(x f x x ax a e a R -=+-⋅∈). (1)当0a =时,求曲线()y f x =在点()()1,1f --处的切线方程;(2)设()21g x x x =--,若对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立,求a 的取值范围. 【答案】(1) 320ex y e ++=;(2) 1a ≤-或24a e ≥-.(2)“对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立”等价于“在区间[]0,2上, ()f x 的最大值大于或等于()g x 的最大值”.因为()2215124g x x x x ⎛⎫=--=-- ⎪⎝⎭,所以()g x 在[]0,2上的最大值为()21g =. ()()()2'2x x f x x a e x ax a e --=+⋅-+-⋅ ()222x e x a x a -⎡⎤=-+--⎣⎦ ()()2x e x x a -=--+,令()'0f x =,得2x =或x a =-.①当0a -≤,即0a ≥时, ()'0f x ≥在[]0,2上恒成立, ()f x 在[]0,2上为单调递增函数, ()f x 的最大值大为()()2124f a e =+⋅,由()2141a e+⋅≥,得24a e ≥-; ②当02a <-<,即20a -<<时,当()0,x a ∈-时, ()()'0,f x f x <为单调递减函数,当(),2x a ∈-时,()()'0,f x f x >为单调递增函数,所以()f x 的最大值大为()0f a =-或()()2124f a e=+⋅.由1a -≥,得1a ≤-;由()2141a e +⋅≥,得24a e ≥-,又因为20a -<<,所以21a -<≤-; ③当2a -≥,即2a ≤-时, ()'0f x ≤在[]0,2上恒成立, ()f x 在[]0,2上为单调递减函数,所以()f x 的最大值大为()0f a =-,由1a -≥,得1a ≤-,又因为2a ≤-,所以2a ≤-,综上所述,实数a 的取值范围是1a ≤-或24a e ≥-.【规律方法】利用导数研究函数单调性,利用导数研究函数极值,导数几何意义等内容是考查的重点.解题时,注意函数与方程思想、数形结合思想、分类讨论思想、等价转化思想的应用,另外,还要能够将问题进行合理的转化,尤其是“任意”和“存在”问题的等价转化,可以简化解题过程.本题“对任意的[]0,2t ∈,存在[]0,2s ∈使得()()f s g t ≥成立”等价于“在区间[]0,2上, ()f x 的最大值大于或等于()g x 的最大值”. 【归纳常用万能模板】设函数f (x )=e 2x -a ln x .(1)讨论f (x )的导函数f ′(x )零点的个数; (2)证明:当a >0时,f (x )≥2a +a ln 2a .满分解答 (1)解 f (x )的定义域为(0,+∞),f ′(x )=2e 2x -a x (x >0).当a ≤0时,f ′(x )>0,f ′(x )没有零点.2分当a >0时,设u (x )=e 2x ,v (x )=-a x ,因为u (x )=e 2x 在(0,+∞)上单调递增,v (x )=-a x 在(0,+∞)上单调递增,所以f ′(x )在(0,+∞)上单调递增.4分又f ′(a )>0,当b 满足0<b <a 4且b <14时,f ′(b )<0(讨论a ≥1或a <1来检验),故当a >0时,f ′(x )存在唯一零点.6分(2)证明 由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0,当x ∈(0,x 0)时,f ′(x )<0; 当x ∈(x 0,+∞)时,f ′(x )>0.故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增,所以当x =x 0时,f (x )取得最小值,最小值为f (x 0)9分由于2e2x 0-a x 0=0, 所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a . 故当a >0时,f (x )≥2a +a ln 2a .12分❶得步骤分:抓住得分点的步骤,“步步为赢”,求得满分.如第(1)问中,求导正确,分类讨论;第(2)问中利用单调性求f (x )的最小值和基本不等式的应用.❷得关键分:解题过程不可忽视关键点,有则给分,无则没分,如第(1)问中,求出f (x )的定义域,f ′(x )在(0,+∞)上单调性的判断;第(2)问,f (x )在x =x 0处最值的判定.❸得计算分:解题过程中计算准确是得满分的根本保证.如第(1)问中,求导f ′(x )准确,否则全盘皆输,求解使f ′(b )<0的b 满足的约束条件0<b <a 4,且b<14.如第(2)问中x 0满足条件的计算,若计算错误不得分,另外还应注意规范的文字、符号语言的表述.1.讨论零点个数的答题模板第一步:求函数的定义域;第二步:分类讨论函数的单调性、极值;第三步:根据零点存在性定理,结合函数图象确定各分类情况的零点个数.2.证明不等式的答题模板第一步:根据不等式合理构造函数;第二步:求函数的最值;第三步:根据最值证明不等式.。
第17讲 导数应用的题型与方法 一、专题综述 导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。在高中阶段对于导数的学习,主要是以下几个方面: 1.导数的常规问题: (1)刻画函数(比初等方法精确细微);(2)同几何中切线联系(导数方法可用于研究平面曲线的切线);(3)应用问题(初等方法往往技巧性要求较高,而导数方法显得简便)等关于n次多项式的导数问题属于较难类型。 2.关于函数特征,最值问题较多,所以有必要专项讨论,导数法求最值要比初等方法快捷简便。 3.导数与解析几何或函数图象的混合问题是一种重要类型,也是高考中考察综合能力的一个方向,应引起注意。 二、知识整合 1.导数概念的理解. 2.利用导数判别可导函数的极值的方法及求一些实际问题的最大值与最小值. 复合函数的求导法则是微积分中的重点与难点内容。课本中先通过实例,引出复合函数的求导法则,接下来对法则进行了证明。 3.要能正确求导,必须做到以下两点: (1)熟练掌握各基本初等函数的求导公式以及和、差、积、商的求导法则,复合函数的求导法则。 (2)对于一个复合函数,一定要理清中间的复合关系,弄清各分解函数中应对哪个变量求导。 4.求复合函数的导数,一般按以下三个步骤进行: (1)适当选定中间变量,正确分解复合关系;(2)分步求导(弄清每一步求导是哪个变量对哪个变量求导);(3)把中间变量代回原自变量(一般是x)的函数。 也就是说,首先,选定中间变量,分解复合关系,说明函数关系y=f(μ),μ=f(x);然后将
已知函数对中间变量求导)'(y,中间变量对自变量求导)'(x;最后求xy'',并将中间变量代回为自变量的函数。整个过程可简记为分解——求导——回代。熟练以后,可以省略中间过程。若遇多重复合,可以相应地多次用中间变量。
三、例题分析
例1.11)(2xbaxxxxfy 在1x处可导,则a b 思路:11)(2xbaxxxxfy 在1x处可导,必连续1)(lim1xfx baxfx)(lim1 1)1(f ∴ 1ba
2lim0xyx axyx0lim ∴ 2a 1b
例2.已知f(x)在x=a处可导,且f′(a)=b,求下列极限: (1)hhafhafh2)()3(lim0; (2)hafhafh)()(lim20 分析:在导数定义中,增量△x的形式是多种多样,但不论△x选择哪种形式,△y也必须选择相对应的形式。利用函数f(x)在ax处可导的条件,可以将已给定的极限式恒等变形转化为导数定义的结构形式。
解:(1)hhafafafhafhhafhafhh2)()()()3(lim2)()3(lim00
bafafhafhafhafhafhhafafhafhafhhhh2)('21)('23)()(lim213)()3(lim232)()(lim2)()3(lim0000
(2)hhafhafhafhafhh22020)()(lim)()(lim 00)('lim)()(lim0220afhh
afhaf
hh 说明:只有深刻理解概念的本质,才能灵活应用概念解题。解决这类问题的关键是等价变形,使极限式转化为导数定义的结构形式。
例3.观察1)(nnnxx,xxcos)(sin,xxsin)(cos,是否可判断,可导的奇函数的导函数是偶函数,可导的偶函数的导函数是奇函数。 解:若)(xf为偶函数 )()(xfxf 令)()()(lim0xfxxfxxfx
xxfxxfxxfxxfxfxx)()(lim)()(lim)(00 )()()(lim0xfxfxxfx ∴ 可导的偶函数的导函数是奇函数 另证:)()()(])([xfxxfxff ∴ 可导的偶函数的导函数是奇函数
例4.(1)求曲线122xxy在点(1,1)处的切线方程;
(2)运动曲线方程为2221tttS,求t=3时的速度。 分析:根据导数的几何意义及导数的物理意义可知,函数y=f(x)在0x处的导数就是曲线y=f(x) 在点),(00yxp处的切线的斜率。瞬时速度是位移函数S(t)对时间的导数。 解:(1)222222)1(22)1(22)1(2'xxxxxxy, 0422|'1xy,即曲线在点(1,1)处的切线斜率k=0
因此曲线122xxy在(1,1)处的切线方程为y=1
(2))'2('1'22tttStttttttt4214)1(23242
2726111227291|'3tS。
例5. 求下列函数单调区间
(1)5221)(23xxxxfy (2)xxy12
(3)xxky2 )0(k (4)ln22xy 解:(1)232xxy )1)(23(xx )32,(x),1(时0y )1,32(x 0y ∴ )32,(,),1( )1,32(
(2)221xxy ∴ )0,(,),0( (3)221xky ∴ ),(kx),(k 0y ),0()0,(kkx 0y ∴ ),(k,),(k )0,(k,),0(k
(4)xxxxy14142 定义域为),0( )21,0(x 0y ),21(x 0y
例6.求证下列不等式 (1))1(2)1ln(222xxxxxx ),0(x (2)xx2sin )2,0(x (3)xxxxtansin )2,0(x
证:(1))2()1ln()(2xxxxf 0)0(f 011111)(2xxxxxf ∴ )(xfy为),0(上 ∴ ),0(x 0)(xf 恒成立 ∴ 2)1ln(2xxx )1ln()1(2)(2xxxxxg 0)0(g 0)1(4211)1(42441)(22222xxxxxxxxg ∴ )(xg在),0(上 ∴ ),0(x 0)1ln()1(22xxxx恒成立 (2)原式2sinxx 令 xxxf/sin)( )2,0(x 0cosx 0tanxx ∴ 2)tan(cos)(xxxxxf ∴ )2,0(x 0)(xf )2,0( 2)2(f ∴ xx2sin (3)令xxxxfsin2tan)( 0)0(f
xxxxxxxf222cos)sin)(coscos1(cos2sec)(
)2,0(x 0)(xf ∴ )2,0( ∴ xxxxsintan 例7.利用导数求和: (1);
(2)。 分析:这两个问题可分别通过错位相减法及利用二项式定理来解决。转换思维角度,由求导公式1)'(nnnxx,可联想到它们是另外一个和式的导数,利用导数运算可使问题的解决更加简捷。 解:(1)当x=1时, ; 当x≠1时,
∵, 两边都是关于x的函数,求导得
即 (2)∵, 两边都是关于x的函数,求导得。 令x=1得 , 即。
例8.设0a,求函数),0()(ln()(xaxxxf的单调区间. 分析:本小题主要考查导数的概念和计算,应用导数研究函数性质的方法及推理和运算能力. 解:)0(121)(xaxxxf.
当0,0xa时 0)42(0)(22axaxxf. 0)42(0)(22axaxxf (i)当1a时,对所有0x,有0)42(22aax. 即0)(xf,此时)(xf在),0(内单调递增. (ii)当1a时,对1x,有0)42(22axax, 即0)(xf,此时)(xf在(0,1)内单调递增,又知函数)(xf在x=1处连续,因此, 函数)(xf在(0,+)内单调递增 (iii)当10a时,令0)(xf,即0)42(22axax. 解得aaxaax122,122或. 因此,函数)(xf在区间)122,0(aa内单调递增,在区间),122(aa 内也单调递增. 令0)42(,0)(22axaxxf即,解得aaxaa122122.
因此,函数)(xf在区间)122,12-2aaaa(内单调递减. 例9.已知抛物线42xy与直线y=x+2相交于A、B两点,过A、B两点的切线分别为1l和2l。 (1)求A、B两点的坐标; (2)求直线1l与2l的夹角。 分析:理解导数的几何意义是解决本例的关键。 解 (1)由方程组
,2,42xyxy
解得 A(-2,0),B(3,5)
(2)由y′=2x,则4|'2xy,6|'3xy。设两直线的夹角为θ,根据两直线的夹角公式,
23106)4(164tan 所以2310arctan
说明:本例中直线与抛物线的交点处的切线,就是该点处抛物线的切线。注意两条直线的夹角公式有绝对值符号。
例10.(2001年天津卷)设0a,xxeaaexf)(是R上的偶函数。 (I)求a的值; (II)证明)(xf在),0(上是增函数。 解:(I)依题意,对一切Rx有)()(xfxf,即xxxxaeaeeaae1, ∴0)1)(1(xxeeaa对一切Rx成立, 由此得到01aa,12a, 又∵0a,∴1a。