几种常用的计数方法例析
- 格式:doc
- 大小:54.50 KB
- 文档页数:4
升级目标基础通关1.计数亦称数数。
算术的基本概念之一。
指数事物个数的过程。
计数时,通常是手指着每一个事物,一个一个地数,口里念着正整数列里的数1,2,3,4,5等,和所指的事物进行一一对应,这种过程称为计数。
上述逐个地计算事物的方法,称为逐一计数。
若按几个一群的方法计数,则称为分群计数。
例如,当计数金钱或变化时,或当“加二计数”(2,4,6,8,10,12,...)或“加五计数”(5,10,15,20,15,...)时。
中国人在计数时,常常用笔画“正”字,一个“正”字有五画,代表5,两个“正”字就是10,以此类推。
2.计数单位像:一(个)、十、百、千、万、十万……等,叫做数的计数单位。
这些计数单位按照一定的顺序排列起来,他们所占的位置叫做数位。
计数单位应包含整数部分和小数部分两大块,并按以下顺序排列:……千亿、百亿、十亿、亿、千万、百万、十万、万、千、百、十、个(一)、十分之一、百分之一、千分之一、……整数部分没有最大的计数单位,小数部分没有最小的计数单位。
写数时如果有小数部分要用小数点(.)把整数和小数分开。
3.十进制人类天生双手十指。
“扳着手指头”计数,是每个人幼时必经之路。
这就是我们常用的十进制计数法。
十进制计数法有两大内涵:一是有十个不同的数符:0,1,2,3,4,5,6,7,8,9;二是“逢十进一”。
所谓“十进制”就是每相邻的两个计数单位之间的关系是:一个大单位等于十个小单位,也就是说它们之间的进率是“十”。
十进制的计数单位分别是:()321010,10,10,101,各个数位上的数字表示有几个这样的单位:例如:01231031011001022013⨯+⨯+⨯+⨯=。
4.二进制大家知道,数是计算物体的个数而引进的,0代表什么都没有,有一个计为“1”;再多一个计为“10”(在十进制下计为2);比“10”再多一个,计为“11”(二进制下计为3)。
因此,二进制中只用两个数符0和1。
二进制的计数单位分别是 32102,2,2),2(1,二进制数也可以写做展开式的形式,例如100110(为了不引起混淆,我们把二进制数右下角标一个2)在二进制中表示为:543210210(100110)120202121202(38)=⨯+⨯+⨯+⨯+⨯+⨯=同样,每个数位(和十进制一样从左往右数)上的数字代表有几个对应的单位。
正负数的科学计数法科学计数法是一种表示大或小数值的方法,它常用于科学领域中的计算和表示。
正负数的科学计数法能够简化数字的表达,便于进行精确计算和有效传递信息。
本文将介绍正负数的科学计数法的基本概念、表达方式以及应用。
一、正数的科学计数法科学计数法可以将较大或较小的整数以浮点数形式表示,并使用乘以10的次方来展示数值的大小。
以表示1,000为例,科学计数法可以写作1.0 × 10^3,其中1.0为尾数,10为底数,3为指数。
当数值较大时,指数为正数。
以表达0.001为例,科学计数法可以写作1.0 × 10^-3,其中1.0为尾数,10为底数,-3为指数。
当数值较小时,指数为负数。
在科学计数法中,尾数通常取1至10之间的实数,以保持数值的精确度。
同时,指数表示尾数相对于十进制点的移动位数。
例如,表示12,345,000的科学计数法为1.2345 × 10^7,表示0.00000056的科学计数法为5.6 × 10^-7。
二、负数的科学计数法与正数不同,负数的科学计数法需要额外的表示方法来表明数值的负性。
以表示-5,000为例,科学计数法可以写作-5.0 × 10^3,其中-5.0为尾数,10为底数,3为指数。
以表达-0.00009为例,科学计数法可以写作-9.0 × 10^-5,其中-9.0为尾数,10为底数,-5为指数。
在负数的科学计数法中,尾数仍然取1至10之间的实数,指数表示尾数相对于十进制点的移动位数。
同时,负号表示数值的负性。
三、科学计数法的应用科学计数法广泛应用于科学研究、工程技术、天文学等领域。
其优势在于可以简化数字的表达和处理。
1. 精确表示大范围的数值:科学计数法可以简化表示非常大或非常小的数值。
例如,宇宙中的距离、原子的质量、地震的震级等,都可以用科学计数法表示。
2. 方便进行计算:使用科学计数法可以避免过长或过短的数字影响计算结果的准确性。
7 计数综合7-6 计数方法与技巧综合 7-6-1归纳法7-6-2整体法7-6-3对应法7-6-3-1图形中的对应关系 7-6-3-2数字问题中的对应关系 7-6-3-3对应与阶梯型标数法 7-6-3-4不完全对应关系7-6-4递推法前面在讲加法原理、乘法原理、排列组合时已经穿插讲解了计数中的一些常用的方法,比如枚举法、树形图法、标数法、捆绑法、排除法、插板法等等,这里再集中学习一下计数中其他常见的方法,主要有归纳法、整体法、对应法、递推法.对这些计数方法与技巧要做到灵活运用.模块一、归纳法从条件值较小的数开始,找出其中规律,或找出其中的递推数量关系,归纳出一般情况下的数量关系. 【例 1】 (难度等级※※)一条直线分一个平面为两部分.两条直线最多分这个平面为四部分.问5条直线最多分这个平面为多少部分?【解析】 方法一:我们可以在纸上试着画出1条直线,2条直线,3条直线,……时的情形,于是得到下表:由上表已知5条直线最多可将这个平面分成16个部分,并且不难知晓,当有n 条直线时,最多可将平面分成2+2+3+4+…+n=()12n n ++1个部分. 方法二:如果已有k 条直线,再增加一条直线,这条直线与前k 条直线的交点至多k 个,因而至多被分成k+1段,每一段将原有的部分分成两个部分,所以至多增加k+1个部分.于是3条直线至多将平面分为4+3=7个部分,4条直线至多将平面分为7+4=11个部分,5条直线至多将平面分为11+5=16个部分.一般的有k 条直线最多将平面分成:1+1+2+…+k=()12k k ++1个部分,所以五条直线可以分平面为16个部分.例题精讲教学目标计数方法与技巧综合【巩固】(难度等级※※)平面上5条直线最多能把圆的内部分成几部分?平面上100条直线最多能把圆的内部分成几部分?【解析】 假设用a k 表示k 条直线最多能把圆的内部分成的部分数,这里k =0,1,2,……a 0=1a 1=a 0+1=2 a 2=a 1+2=4 a 3=a 2+3=7 a 4=a 3+4=11 ……故5条直线可以把圆分成16部分,100条直线可以把圆分成5051部分【例 2】 (难度等级 ※※)平面上10个两两相交的圆最多能将平面分割成多少个区域? 【解析】 先考虑最简单的情形.为了叙述方便,设平面上k 个圆最多能将平面分割成k a 个部分.141312111098765432187652134431221从图中可以看出,12a =,24221a ==+⨯,38422a ==+⨯,414823a ==+⨯,…… 可以发现k a 满足下列关系式:()121k k a a k -=+-.实际上,当平面上的(1k -)个圆把平面分成1k a -个区域时,如果再在平面上出现第k 个圆,为了保证划分平面的区域尽可能多,新添的第k 个圆不能通过平面上前()1k -个圆之间的交点.这样,第k 个圆与前面()1k -个圆共产生2(1)k ⨯-个交点,如下图:这2(1)k ⨯-个交点把第k 个圆分成了2(1)k ⨯-段圆弧,而这2(1)k ⨯-段圆弧中的每一段都将所在的区域一分为二,所以也就是整个平面的区域数增加了2(1)k ⨯-个部分.所以,()121k k a a k -=+-. 那么,10987292829272829a a a a =+⨯=+⨯+⨯=+⨯+⨯+⨯=12122...272829a =+⨯+⨯++⨯+⨯+⨯ ()2212...78992=+⨯+++++=.故10个圆最多能将平面分成92部分.【例 3】 10个三角形最多将平面分成几个部分?【解析】 设n 个三角形最多将平面分成n a 个部分.1n =时,12a =;2n =时,第二个三角形的每一条边与第一个三角形最多有2个交点,三条边与第一个三角形最多有236⨯=(个)交点.这6个交点将第二个三角形的周边分成了6段,这6段中的每一段都将原来的每一个部分分成2个部分,从而平面也增加了6个部分,即2223a =+⨯.3n =时,第三个三角形与前面两个三角形最多有4312⨯=(个)交点,从而平面也增加了12个部分,即:322343a =+⨯+⨯.…… 一般地,第n 个三角形与前面()1n -个三角形最多有()213n -⨯个交点,从而平面也增加()213n -⨯个部分,故()()222343213224213332n a n n n n =+⨯+⨯++-⨯=++++-⨯=-+⎡⎤⎣⎦;特别地,当10n =时,2103103102272a =⨯+⨯+=,即10个三角形最多把平面分成272个部分.【例 4】 (难度等级※※)一个长方形把平面分成两部分,那么3个长方形最多把平面分成多少部分?【解析】 一个长方形把平面分成两部分.第二个长方形的每一条边至多把第一个长方形的内部分成2部分,这样第一个长方形的内部至多被第二个长方形分成五部分.同理,第二个长方形的内部至少被第一个长方形分成五部分.这两个长方形有公共部分(如下图,标有数字9的部分).还有一个区域位于两个长方形外面,所以两个长方形至多把平面分成10部分.第三个长方形的每一条边至多与前两个长方形中的每一个的两条边相交,故第一条边被隔成五条小线段,其中间的三条小线段中的每一条线段都把前两个长方形内部的某一部分一分为二,所以至多增加3×4=12个部分.而第三个长方形的4个顶点都在前两个长方形的外面,至多能增加4个部分. 所以三个长方形最多能将平面分成10+12+4=26.【小结】n 个图形最多可把平面分成部分数:直线:()112n n ⨯++;圆:()21n n +⨯-;三角形:()231n n +⨯⨯- ; 长方形:()241n n +⨯⨯-.【例 5】 (难度等级※※)在平面上画5个圆和1条直线,最多可把平面分成多少部分? 【解析】 先考虑圆.1个圆将平面分成2个部分.这时增加1个圆,这个圆与原有的1个圆最多有两个交点,成为2条弧,每条弧将平面的一部分一分为二,增加了2个部分,所以2个圆最多将平面分成4个部分.当有3个圆时,第3个圆与原有的2个产生4个交点而增加4个部分,所以3个圆最多将平面分成8个部分.同样的道理,5个圆最多将平面分成22个部分.再考虑直线.直线与每个圆最多有2个交点,这样与5个圆最多有10个交点.它们将直线分成11条线段或射线,而每条线段又将平面的一部分一分为二,2条射线增加了一部分,因此5个圆和1条直线最多可将平面分成32个部分.【例 6】在一个西瓜上切6刀,最多能将瓜皮切成多少片?【解析】将西瓜看做一个球体,球体上任意一个切割面都是圆形,所以球面上的切割线是封闭的圆周,考虑每一次切割能增加多少瓜皮片.当切1刀时,瓜皮被切成两份,当切第2刀时,由于切割线相交,所以瓜皮被切成4分,……,切第n次时,新增加的切割线与原来的切割线最多有()n-个交点.这21些交点将第n条切割线分成()n-,所以2121n-段,也就是说新增加的切割线使瓜皮数量增加了()在西瓜上切6刀,最多能将瓜皮切成11212223242532++⨯+⨯+⨯+⨯+⨯=片.【例 7】在一大块面包上切6刀最多能将面包切成多少块.(注:面包是一个立体几何图形,切面可以是任何方向)【解析】题目相当于6个平面能将空间划分为多少个部分.通过找规律来寻找递推关系,显然的1个平面能将空间划分成2块,2个平面能将空间划分成4块,3个平面能将空间划分成8个平面,当增加到第四个平面时,第四个平面这能将原来空间中的8个部分中的其中几个划分.如图:注意到第四个平面与其他三个平面相交形成3条直线,这三条直线将第四个平面分割成7个部分,而每一部分将原来三个平面划分的8个空间中的7个划分成两份,所以4个平面能将空间划分成+=个部分.8715同样的第五个平面与前四个平面分别相交成4条直线,这四条直线能将第5个平面分割成++++=个部分,每一部分都划分原空间中的某一区域,所以第五个平面能使空间中的区1123411域增加到151126+==个部分.当增加到6个平面时,第六个平面共被划分成11234516+++++=个部分,所以第6个平面能将空间中的区块数增加到261642+=个部分.所以6刀能将面包切成42块.模块二、整体法解决计数问题时,有时要“化整为零”,使问题变得简单;有时反而要从整体上来考虑,从全局、从整体来研究问题,反而有利于发现其中的数量关系.【例8】(难度等级※※※)一个正方形的内部有1996个点,以正方形的4个顶点和内部的1996个点为顶点,将它剪成一些三角形.问:一共可以剪成多少个三角形?如果沿上述这些点中某两点之间所连的线段剪开算作一刀,那么共需剪多少刀?【解析】 方法一:归纳法如下图,采用归纳法,列出1个点、2个点、3个点…时可剪出的三角形个数,需剪的刀数.不难看出,当正方形内部有n 个点时,可以剪成2n +2个三角形,需剪3n+l 刀,现在内部有1996个点,所以可以剪成2×1996+2=3994个三角形,需剪3×1996+1=5989刀.方法二:整体法.我们知道内部一个点贡献360度角,原正方形的四个顶点共贡献了360度角,所以当内部有n 个点时,共有360n+360度角,而每个三角形的内角和为180度角,所以可剪成(360n+360)÷180=2n+2个三角形.2n+2个三角形共有3×(2n+2)=6n+6条边,但是其中有4条是原有的正方形的边,所以正方形内部的三角形边有6n+6—4=6n+2条边,又知道每条边被2个三角形共用,即每2条边是重合的,所以只用剪(6n+2)÷2=3n+1刀.本题中n=1996,所以可剪成3994个三角形,需剪5989刀.【巩固】在三角形ABC 内有100个点,以三角形的顶点和这100点为顶点,可把三角形剖分成多少个小三角形?【解析】 整体法.100个点每个点周围有360度,三角形本身内角和为180度,所以可以分成()360100180180201⨯+÷=个小三角形.【例 9】 在一个六边形纸片内有60个点,以这60个点和六变形的6个顶点为顶点的三角形,最多能剪出_______个.【解析】 设正六边形内有n 个点,当1n =时有6个三角形,每增加一个点,就增加2个三角形,n 个点最多能剪出()()62122n n ++=+个三角形.60n =时,可剪出124个三角形.注:设最多能剪出x 个小三角形,则这些小三角形的内角和为180x ︒.换一个角度看,汇聚到正六边形六个顶点处各角之和为4180⨯︒,故这些小三角形的内角总和为603604180⨯︒+⨯︒.于是180603604180x ︒=⨯︒+⨯︒,解得124x =.模块三、对应法将难以计数的数量与某种可计量的事物联系起来,只要能建立一一对应的关系,那么这两种事物在数量上是相同的.事实上插入法和插板法都是对应法的一种表现形式.一、图形中的对应关系【例 10】 (难度等级 ※※※)在8×8的方格棋盘中,取出一个由三个小方格组成的“L”形(如图),一共有多少种不同的方法?【解析】注意:数“不规则几何图形”的个数时,常用对应法.第1步:找对应图形每一种取法,有一个点与之对应,这就是图中的A点,它是棋盘上横线与竖线的交点,且不在棋盘边上.第2步:明确对应关系从下图可以看出,棋盘内的每一个点对应着4个不同的取法(“L”形的“角”在2×2正方形的不同“角”上).第3步:计算对应图形个数由于在8×8的棋盘上,内部有7×7=49(个)交叉点,第4步:按照对应关系,给出答案故不同的取法共有49×4=196(种).评注:通过上面两个范例我们知道,当直接去求一个集合元素的个数较为困难的时候,可考虑采用相等的原则,把问题转化成求另一个集合的元素个数.【例11】(难度等级※※※)在8×8的黑白相间染色的国际象棋棋盘中,以网格线为边的、恰包含两个白色小方格与一个黑色小方格的长方形共有多少个?【解析】首先可以知道题中所讲的13⨯长方形中间的那个小主格为黑色,这是因为两个白格不相邻,所以不能在中间.显然,位于棋盘角上的黑色方格不可能被包含在这样的长方形中.下面分两种情况来分析:第一种情况,一个位于棋盘内部的黑色方格对应着两个这样的13⨯长方形(一横一竖);第二种情况,位于边上的黑色方格只能对应一个13⨯长方形.由于在棋盘上的32个黑色方格中,位于棋盘内部的18个,位于边上的有12个,位于角上的有2个,所以共有1821248⨯+=个这样的长方形.本题也可以这样来考虑:事实上,每一行都有6个13⨯长方形⨯长方形,所以棋盘上横、竖共有13⨯⨯=个.由于棋盘上的染色具有对称性,因此包含两个白色小方格与一个黑色小方格的长方68296形正好与包含两个黑色小方格与一个白色小方格的长方形具有一一对应关系,这说明它们各占一半,因此所求的长方形个数为96248÷=个.【巩固】(难度等级※※)用一张如图所示的纸片盖住66⨯方格表中的四个小方格,共有多少种不同的放置方法?【解析】如图,将纸片中的一个特殊方格染为黑色,下面考虑此格在66⨯方格表中的位置.易见它不能位于四个角上;若黑格位于方格表中间如图浅色阴影所示的44⨯正方形内的某格时,纸片有4种不同的放法,共计44464⨯⨯=种;若黑格位于方格表边上如图深色阴影所示的方格中时,纸片的位置随之确定,即只有1种放法,此类放法有4416⨯=种.所以,纸片共有641680+=种不同的放置方法.【例12】(难度等级※※)图中可数出的三角形的个数为.【解析】这个图不像我们以前数三角形那样规则,粗看似乎看不出其中的规律,不妨我们取出其中的一个三角形,发现它的三条边必然落在这个图形中的三条大线段上,而每三条大线段也正好能构成一个三角形,因此三角形的个数和三条大线段的取法是一一对应的关系,图中一共有8条大线段,因此有3856C=个三角形.【例 13】如图所示,在直线AB上有7个点,直线CD上有9个点.以AB上的点为一个端点、CD上的点为另一个端点的所有线段中,任意3条线段都不相交于同一个点,求所有这些线段在AB与CD之间的交点数.C D【解析】常规的思路是这样的:直线AB上的7个点,每个点可以与直线CD上的9个点连9根线段,然后再分析这些线段相交的情况.如右图所示,如果注意到下面这个事实:对于直线AB上的任意两点M、N与直线CD上的任意两点P、Q都可以构成一个四边形MNQP,而这个四边形的两条对角线MQ、NP的交点恰好是我们要计数的点,同时,对于任意四点(AB与CD上任意两点)都可以产生一个这样的交点,所以图中两条线段的交点与四边形有一一对应的关系.这说明,为了计数出有多少个交点,我们只需要求出在直线AB与CD中有多少个满足条件的四边形MNQP就可以了!从而把问题转化为:在直线AB上有7个点,直线CD上有9个点.四边形MNQP有多少个?其中点M、N位于直线AB 上,点P、Q位于直线CD上.这是一个常规的组合计数问题,可以用乘法原理进行计算:由于线段MN有2721C=种选择方式,线段PQ有2936C=种选择方式,根据乘法原理,共可产生2136756⨯=个四边形.因此在直线AB与CD 之间共有756个交点.二、数字问题中的对应关系【例 14】 有多少个四位数,满足个位上的数字比千位数字大,千位数字比百位大,百位数字比十位数字大? 【解析】 由于四位数的四个数位上的数的大小关系已经非常明确,而对于从0~9中任意选取的4个数字,它们的大小关系也是明确的,那么由这4个数字只能组成1个符合条件的四位数(题目中要求千位比百位大,所以千位不能为0,本身已符合四位数的首位不能为0的要求,所以进行选择时可以把0包含在内),也就是说满足条件的四位数的个数与从0~9中选取4个数字的选法是一一对应的关系,那么满足条件的四位数有410109872104321C ⨯⨯⨯==⨯⨯⨯个.【巩固】 (难度等级 ※※※)三位数中,百位数比十位数大,十位数比个位数大的数有多少个? 【解析】 相当于在10个数字中选出3个数字,然后按从大到小排列.共有10×9×8÷(3×2×1)=120种.实际上,前铺中每一种划法都对应着一个数.【例 15】 数3可以用4种方法表示为一个或几个正整数的和,如3,12+,21+,111++.问:1999表示为一个或几个正整数的和的方法有多少种?【解析】 我们将1999个1写成一行,它们之间留有1998个空隙,在这些空隙处,或者什么都不填,或者填上“+”号.例如对于数3,上述4种和的表达方法对应:1 1 1,1+1 1,1 1+1,1+1+1. 可见,将1999表示成和的形式与填写1998个空隙处的方式之间是一一对应的关系,而每一个空隙处都有填“+”号和不填“+”号2种可能,因此1999可以表示为正整数之和的不同方法有1998199822222⨯⨯⨯=个相乘种.【例 16】 (2019年国际小学数学竞赛)请问至少出现一个数码3,并且是3的倍数的五位数共有多少个? 【解析】 五位数共有90000个,其中3的倍数有30000个.可以采用排除法,首先考虑有多少个五位数是3的倍数但不含有数码3.首位数码有8种选择,第二、三、四位数码都有9种选择.当前四位的数码确定后,如果它们的和除以余数为0,则第五位数码可以为0、6、9;如果余数为1,则第五位数码可以为2、5、8;如果余数为2,则第五位数码可以为1、4、7.可见只要前四位数码确定了,第五位数码都有3种选择,所以五位数中是3的倍数但不含有数码3的数共有8999317496⨯⨯⨯⨯=个. 所以满足条件的五位数共有300001749612504-=个.三、对应与阶梯型标数法【例 17】 游乐园的门票1元1张,每人限购1张.现在有10个小朋友排队购票,其中5个小朋友只有1元的钞票,另外5个小朋友只有2元的钞票,售票员没有准备零钱.问有多少种排队方法,使售票员总能找得开零钱?【解析】 与类似题目找对应关系.要保证售票员总能找得开零钱,必须保证每一位拿2元钱的小朋友前面的若干小朋友中,拿1元的要比拿2元的人数多,先将拿1元钱的小朋友看成是相同的,将拿2元钱的小朋友看成是相同的,可以利用斜直角三角模型.在下图中,每条小横线段代表1元钱的小朋友,每条小竖线段代表2元钱的小朋友,因为从A 点沿格线走到B 点,每次只能向右或向上走,无论到途中哪一点,只要不超过斜线,那么经过的小横线段都不少于小竖线段,所以本题相当于求下图中从A 到B 有多少种不同走法.使用标数法,可求出从A 到B 有42种走法.AB424228145141494553221111111但是由于10个小朋友互不相同,必须将他们排队,可以分成两步,第一步排拿2元的小朋友,5个人共有5120=!种排法;第二步排拿到1元的小朋友,也有120种排法,所以共有5514400⨯=!!种排队方法.这样,使售票员能找得开零钱的排队方法共有4214400604800⨯=(种).【例 18】 (2008年第一届“学而思杯”五年级试题)学学和思思一起洗5个互不相同的碗,思思洗好的碗一个一个往上摞,学学再从最上面一个一个地拿走放入碗柜摞成一摞,思思一边洗,学学一边拿,那么学学摞好的碗一共有 种不同的摞法.【解析】 我们把学学洗的5个碗过程看成从起点向右走5步(即洗几个碗就代表向右走几步),思思拿5个碗的过程看成是向上走5步(即拿几个碗就代表向上走几步),摞好碗的摞法,就代表向右、向上走5步到达终点最短路线的方法.由于洗的碗要多余拿的碗,所以向右走的路线要多余向上走的路线,所以我们用下面的斜三角形进行标数,共有42种走法,即代表42种摞法.421A【例 19】 (第七届走美试题)一个正在行进的8人队列,每人身高各不相同,按从低到高的次序排列,现在他们要变成并列的2列纵队,每列仍然是按从低到高的次序排列,同时要求并排的每两人中左边的人比右边的人要矮,那么,2列纵队有种不同排法.【解析】 首先,将8人的身高从低到高依次编号为12345678、、、、、、、,现在就相当于要将这8个数填到一个42 的方格中,要求每一行的数依次增大,每一列上面的要比下面的大.下面我们将12345678、、、、、、、依次往方格中填,按照题目规则,很容易就发现:第二行填的的数字的个数永远都小于或等于第一行数字填的个数.也就是说,不能出现下图这样的情况.而这个正好是“阶梯型标数”题型的基本原则.于是,我们可以把原题转化成:在这个阶梯型方格中,横格代表在第一行的四列,纵格代表第二行的四列,那么此题所有标数的方法就相当于从A 走到B 的最短路线有多少条.例如,我们选择一条路线:它对应的填法就是:.最后,用“标数法”得出从A 到B 的最短路径有14种,如下图:【巩固】将1~12这12个数填入到2行6列的方格表中,使得每行右边比左边的大,每一列上面比下面的大,共有多少种填法?【解析】 根据对应关系,再运用阶梯型标数法画图如下:13242141455211111111329048422820149654321共有132种填法.四、不完全对应关系【例 20】 圆周上有12个点,其中一个点涂红,还有一个点涂了蓝色,其余10个点没有涂色,以这些点为顶点的凸多边形中,其顶点包含了红点及蓝点的多边形称为双色多边形;只包含红点(蓝点)的多边形称为红色(蓝色)多边形.不包含红点及蓝点的称无色多边形.试问,以这12个点为顶点的所有凸多边形(边数可以从三角形到12边形)中,双色多边形的个数与无色多边形的个数,哪一种较多?多多少个?【解析】 从任意一个双色的N 边形出发(5N ≥时),在去掉这个双色多边形中的红色顶点与蓝色顶点后,将得到一个无色的2N -边形;另一方面,对于一个任意的无色的M 边形,如果加上红色顶点和蓝色顶点,就得到一个双色的2M +边形,所以无色多边形与双色多边形中的五边形以上的图形是一一对应的关系,所以双色多边形的个数比较多,多的是双色三角形和双色四边形的个数.而双色三角形有10个,双色四边形有21045C =个,所以双色多边形比无色多边形多104555+=个.【例 21】 有一类各位数字各不相同的五位数M ,它的千位数字比左右两个数字大,十位数字也比左右两位数字大.另有一类各位数字各不相同的五位数W ,它的千位数字比左右两个数字小,十位数字也比左右两位数字小.请问符合要求的数M 与W ,哪一类的个数多?多多少?【解析】 M 与W 都是五位数,都有千位和十位与其它数位的大小关系,所以两类数有一定的对应关系.比如有一个符合要求的五位数M ABCDE =(A 不为0),那么就有一个与之相反并对应的五位数(9)(9)(9)(9)(9)A B C D E -----必属于W 类,比如13254为M 类,则与之对应的86754为W 类. 所以对于M 类的每一个数,W 类都有一个数与之对应.但是两类数的个数不是一样多,因为M 类中0不能做首位,而W 类中9可以做首位.所以W 类的数比M 类的数要多,多的就是就是首位为9的符合要求的数.计算首位为9的W 类的数的个数,首先要确定另外四个数,因为要求各不相同,从除9外的其它9个数字中选出4个,有49126C =种选法.对于每一种选法选出来的4个数,假设其大小关系为4321A A A A >>>,由于其中最小的数只能在千位和十位上,最大的数只能在百位和个位上,所以符合要求的数有2类:①千位、十位排1A 、2A ,有两种方法,百位、十位排3A 、4A ,也有两种方法,故此时共有4种;②千位、十位排1A 、3A ,只能是千位3A ,百位4A ,十位1A ,个位2A ,只有1种方法.根据乘法原理,首位为9的W 类的数有()12641630⨯+=个.故W 类的数比M 类的数多630个.【例 22】 用1元,2元,5元,10元四种面值的纸币若干张(不一定要求每种都有),组成99元有P 种方法,组成101元有Q 种方法,则Q P -= .【解析】 由于101992-=,所以对于组成99元的每一种方法,只要再加上一张2元的,即可组成101元;而对于组成101元的方法,如果其中包含有一张2元的,那么去掉这张2元的,即可得到一种组成99元的方法.可见组成99元的方法与组成101元的某些方法之间存在一一对应的关系,组成101元的所有方法中,除去这些与组成99元的方法对应的方法,剩下的都是不包含有2元纸币的组成方法.所以Q 比P 多的就是用1元,5元,10元这三种面值的纸币组成101元的方法的总数. 假设用x 张1元的,y 张5元的,z 张10元的可以组成101元,则510101x y z ++=. 由于10101z ≤,所以10z ≤.即10元的可以有0~10张. 如果10元的张数确定了,那么有()()5101101010152021x y z z z +=-=-+=-+,那么y 的值可以为0到()202z -,也就是对每一个z 的值,y 都可以有2021212z z -+=-种可能,相应地5元纸币的张数也有212z -种取法.而当10元和5元的张数都确定了以后,1元纸币的张数也就确定了,这样也就确定了组成101元的方法.所以只需要看取10元和5元的共有多少种取法.如果10元的取0张,即0z =,则21221z -=,即5元的有21种取法; 如果10元的取1张,即1z =,则21219z -=,即5元的有19种取法; 如果10元的取2张,即2z =,则21217z -=,即5元的有17种取法; ……如果10元的取10张,即10z =,则2121z -=,即5元的有1种取法; 所以总数为2211917111121++++==. 那么121Q P -=.。
递推计数与对应计数一.对应计数法:要计算一个有限集A 的元素个数,若直接计算比较困难时,我们可设法寻找一个便于计算其元素个数的集合B ,并且建立一个A 到B 上的一一对应f ,于是由A B =得到A 的元素个数,这种计数方法就是对应计数方法.运用这种方法的关键是寻找一个便于计算其元素个数的集合B 及如何在A 与B 建立一一对应.例1 圆周上有()4m m ≥个点,每两点连一条弦,如果没有三条弦交于一点(端点除外),问,这些弦在圆内一共有多少个交点?解:圆周上任四点之间所连的弦中在圆内恰有一个交点,反之,圆内的任何一个交点,是由两条弦相交而得,这两条弦对应于圆周上四个点.这样交点与圆周上的四点组之间构成了一个一一对应关系,所以共有4m C 个交点.例2 正方体的12条棱,12条面对角线及4条体对角线,这28条线中,异面直线有几对?解:从正方体的8个顶点中取四个不共面的顶点组成一个四面体,在该四面体的棱所在直线中有3对异面直线;反之,每一对异面线段的四个顶点对应于正方体的4个不共面的顶点.从正方体的8个顶点中取四个不共面的顶点有486658C --=种方法,所以异面直线的对数为358174⨯=.例3 从m n ⨯的棋盘中,取出一个由三个方格组成的L 形,有多少种不同的取法? 解:棋盘中的每一个内部点A 都对应于四个L 形,反之每一个L 形都对应于一个内部点A .m n ⨯的棋盘共有()()11m n --个内部点,所以不同的取法有()()411m n --种.例4 从19,,3,2,1 中,按从小到大的顺序选取4321,,,a a a a 四个数,使得21322,3a a a a -≥-≥,434≥-a a .问符合上述要求的不同取法有多少种?解:等价于去掉六个数,从1,2,3,,13中,按从小到大的顺序选取1234,,,b b b b 四个数共有多少种取法,有413715C =种方法.在此基础上取11223344,1,3,6a b a b a b a b ==+=+=+即可.例5 从集合{}1,2,3,,49中取出6个不同的数,使得其中至少有两个相邻,不同的取法有几种?解:从集合{}1,2,3,,49中取出6个不同的数123456,,,,,a a a a a a 有649C 种不同取法. 若这些数互不相邻,则12345611234544a a a a a a ≤<-<-<-<-<-≤,即等价于从A44个数中选6个不同的数,它们从小到大依次为123456,,,,,b b b b b b ,然后令()11,2,,6i i a b i i =+-=,这样得到的6个数123456,,,,,a a a a a a 即满足条件,反之亦然.所以不同的取法有664944C C -种.例6 圆周上有n 个点(6)n ≥,每两个点连一线段,假设任三条线段在圆内不共点,于是三条两两相交的线段构成一个三角形,试求这些三角形的个数?解:设三角形的顶点有i 个在圆内,3i -个在圆周上,这类三角形的全体为(0,1,2,3)i I i =. 则30nI C =. 对1I ∆∈,有一内点O 为∆的顶点,内点O 为二条线段的交点,对应圆上四点1234,,,A A A A ,13A A 与24A A 交于点O .即内点全体与圆周上四点组全体之间构成一个一一对应,而每个内点O ,又有四个1I 中的∆与之对应,故414n I C =.对2I ∆∈,圆周上任取n 点中的5点,对应2I 中5个∆;反之对每一个2I ∆∈,延长∆的边与圆周交于5个点,使此∆为5点对应的5个∆之一,故525n I C =.对3I ∆∈,则∆三内点确定三条线段交圆周6个点,反之也对,故63n I C =.综上,所以三角形总数为:345645n n n nC C C C +++. 评析:一一映射与倍数映射是转化抽象的,复杂的计数问题的常用方法,但恰当的构造映射是解决问题的关键.二.递推计数法:通过引入数列,建立递推关系来计数的方法称为递推计数法.运用递推方法计数的一般步骤是:(1)求初始值;(2)建立递推关系;(3)利用递推关系求解.例7 由0,1,2,3组成的长度为n 的数字串中,求没有两个0相邻的数字串的个数. 解:设所求数字串的个数为n a ,则长度为n 的数字串可以分为两类:(1)数字串中第一位不为0,则第一位为1,2,3之一,而剩下的长度为1n -的数字串中无两个0相邻的个数为1n a -,由分步计数原理,共有13n a -个;(2) 数字串中第一位为0,则第二位为1,2,3之一,而剩下的长度为2n -的数字串中无两个0相邻的个数为2n a -,由分步计数原理,共有23n a -个;因此我们得到递推关系式()12333n n n a a a n --=+≥,它的特征方程为233x x =+,特征根为32x ±=, 结合初始值124,15a a ==,易得213213422422nnn a ++--=+⎝⎭⎝⎭.例8 4个人互相传球,接球后即传给别人,首先由甲发球,并把它当作第一次传球.求经过n 次传球后,球又回到甲手中的传球方法数.解:设传球方法数为n a ,则120,3a a ==.由甲开始传球1n -次,总传球数为13n -,若经过n 次传球后,球又回到甲手中,则倒数第二次球在另外三个人手中,共有113n n a ---种传法,由此我们得到递推关系式()1132n n n a a n ---=≥,变形为1111134334n n nn a a --⎛⎫-=-- ⎪⎝⎭, 所以()133111134434nn n n n n a a -+⋅-⎛⎫-=--⇒=⎪⎝⎭.例9 有人要上楼,此人每步能向上走1阶或2阶,如果一层楼有18阶,他上一层楼有多少种不同的走法?解(一):此人上楼最多走18步,最少走9步.这里用1817169,,,,a a a a 分别表示此人上楼走18步,17步,16步,…,9步时走法(对于任意前后两者的步数,因后者少走2步1阶,而多走1步2阶,计后者少走1步)的计数结果.考虑步子中的每步2阶情形,易得0118181717C ,C a a ==, 29161699C ,,C a a ==.综上,他上一层楼共有01291817169C C C C 11712014181++++=++++=种不同的走法.解(二):设n F 表示上n 阶的走法的计数结果.显然,121,2F F ==.对于34,,F F 起步只有两种不同走法:上1阶或上2阶.因此对于3F ,第1步上1阶的情形,还剩312-=阶,计2F 种不同的走法;对于第1步上2阶的情形,还剩321-=阶,计1F 种不同的走法.总计321213F F F =+=+=.一般地,对于n F ,第一步走1阶,剩下的1n -阶有1n F -种不同的走法;第一步走2阶,剩下的2n -步有2n F -种不同的走法.所以得到递推关系12n n n F F F --=+. 依次递推得到:432543181716325,538,,258415974181F F F F F F F F F =+=+==+=+==+=+=.例10 求n 位十进制数中出现偶数个6的数的个数.解:设n a 为n 位十进制数中出现偶数个6的数的个数,n b 为n 位十进制数中出现奇数个6的数的个数.则有111199n n n n n n a a b b b a ----=+⎧⎨=+⎩,且118,9a b ==. 从而12212991880n n n n n n a a b a a a -----=++=-,利用特征根法,∴117981022n n n a --=⋅+⋅.。
计量资料和计数资料的统计方法计量资料和计数资料是统计学中常见的两种数据类型,它们在统计分析中有着不同的处理方法和应用场景。
本文将分别介绍计量资料和计数资料的统计方法,并探讨其在实际问题中的应用。
一、计量资料的统计方法计量资料是指可以用数值表示的数据,例如身高、体重、温度等。
统计学中常用的计量资料分析方法有描述统计和推断统计。
1. 描述统计描述统计是对收集到的数据进行总结和描述的方法。
常用的描述统计量有平均值、中位数、众数、标准差、方差等。
平均值是计量资料最常用的描述统计量,它可以反映数据的集中趋势。
中位数和众数则可以反映数据的位置和分布情况。
标准差和方差则可以衡量数据的离散程度。
2. 推断统计推断统计是基于样本数据对总体进行推断的方法。
在推断统计中,常用的统计分析方法有假设检验和置信区间估计。
假设检验用于验证关于总体的某个参数的假设,例如总体均值是否等于某个特定值。
置信区间估计则可以给出总体参数的一个区间估计,例如总体均值的置信区间。
二、计数资料的统计方法计数资料是指不连续的、以计数形式出现的数据,例如人数、次数、事件发生次数等。
计数资料的统计方法主要包括频数分布、列联表分析和卡方检验。
1. 频数分布频数分布是计数资料最常用的分析方法之一,它将数据按照不同的取值进行分类,并统计每个类别的频数。
通过频数分布可以直观地了解数据的分布情况和特征。
2. 列联表分析列联表分析是用于分析两个或多个分类变量之间关系的方法。
通过构建列联表可以清晰地展示不同变量之间的交叉频数,并计算各个格子的期望频数和卡方值。
列联表分析可以帮助我们判断两个变量之间是否存在相关性。
3. 卡方检验卡方检验是用于检验两个或多个分类变量之间是否存在显著差异的统计方法。
卡方检验基于计数资料的频数分布和列联表,通过计算观察频数与期望频数的差异,并进行假设检验来判断变量之间是否独立。
三、计量资料和计数资料的应用计量资料和计数资料在实际问题中具有广泛的应用。
解排列组合问题常用方法(二十种)一、定位问题优先法(特殊元素和特殊位置优先法)例1、由01,2,3,4,5,可以组成多少个没有重复数字五位奇数? 分析:特殊元素和特殊位置有特殊要求,应优先考虑。
末位和首位有特殊要求。
先排末位,从1,3,5三个数中任选一个共有13C 种组合;然后排首位,从2,4和剩余的两个奇数中任选一个共有14C 种组合;最后排中间三个数,从剩余四个数中任选三个共有34A 种排列。
由分步计数原理得113344288C C A =。
变式1、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?分析:先种两种不同的葵花在不受限制的四个花盒中共有24A 种排列,再种其它葵花有55A 种排列。
由分步计数原理得25451440A A =。
二、相邻问题捆绑法例2、7人站成一排 ,其中甲乙相邻且丙丁相邻,共有多少种不同的排法?分析:分三步。
先将甲乙两元素捆绑成整体并看成一个复合元素,将丙丁两元素也捆绑成整体看成一个复合元素,再与其它元素进行排列,同时在两对相邻元素内部进行自排。
由分步计数原理得522522480A A A =。
变式2、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 。
分析:命中的三枪捆绑成一枪,与命中的另一枪插入未命中四枪形成的五个空位,共有25A 种排列。
三、相离问题插空法例3、一个晚会节目有4个舞蹈,2个相声,3个独唱,舞蹈不能连续出场,则节目出场顺序有多少种?分析:相离问题即不相邻问题。
分两步。
第一步排2个相声和3个独唱共有55A 种排列,第二步将4个舞蹈插入第一步排好后形成的6个空位中(包含首尾两个空位)共有46A 种排列,由分步计数原理得545643200A A =。
变式3、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目,如果将这两个新节目插入原节目单中且不相邻,那么不同插法的种数为 。
几种常用的计数方法例析
作者:华腾飞
来源:《求学·文科版》2013年第10期
现实生活中常涉及一些计数问题,此类问题背景新颖,具有较强的实际意义与时代气息. 这样的试题不拘泥于具体的知识点,而且在文科数学试卷中出现的频率比较高. 求解此类问题不仅需要排列、组合的知识做基础,更要具备一定的阅读理解能力,良好的数学应用意识。
将
此类实际问题抽象提纯为数学问题的建模意识,不仅能够考查分类讨论、等价转化、函数与方程等思想方法,而且对培养数学思维是不可多得的素材. 特别是对文科生,建立了这样的思想方法后,就可以较好地解答这类题目.下面举例分析,希望能够对同学们有所帮助.
一、穷举计数
例1 某电脑用户计划使用不超过500元的资金购买单价分别为60元、70元的单片软件和盒装磁带,根据需要软件至少买3片,磁带至少买2盒。
则不同的选购方式共有()
A. 5种
B. 6种
C. 7种
D. 8种
故不同的选购方式共有7种,应选C.
例2 在一块并排10垄的田地中,选择2垄分别种植A,B两种作物,每种作物种植一垄。
为有利于作物生长,要求A,B两种作物的间隔不小于6垄,则不同的选垄方式共有种(用数字作答).
【解析】画图法——用×表示种上作物的地垄,O表示没有种上作物的地垄,则合乎题意的不同用地方式可画图穷举如下:
共6种,对于每种用地方式,地垄上所种的两种作物可以互换位置,即有两种不同的种植方式,故合乎题意的不同选垄方法共有12种.
〖点评〗上述两例可以认为是排列、组合问题,但却不能归结为排列、组合数学中的某项知识,与其说运用了组合计数的方法,倒不如说是运用了返璞归真,回归原始的列举法;与其说运用了加法原理与乘法原理,倒不如说是运用了分类讨论的思想.这样的试题,把它归结考查某种思维方法是自然的,而归结为考查某几个知识点就显得牵强附会,高考试题的这种导向应引起我们的注意.
二、对应计数
例3 在100名选手之间进行单循环淘汰赛(即一场的比赛结果,失败者退出比赛),最后产生一名冠军,则一共要举行比赛.
【解析】要产生一名冠军,需要淘汰掉冠军以外的所有其他选手,也就是要淘汰99名选手,每淘汰一名选手就要进行一场比赛;反之,每进行一场比赛就要淘汰一名选手,两者是一一对应的,故一共要进行99场比赛.
〖点评〗此题若采用常规思维方法,就会使求解过程变得复杂,而换一种思维方式,则使人豁然开朗,步入新境. 这种创新思维方式,能使人从“山穷水尽”到“柳暗花明”。
利用对应计数,其实质是用转化的思想去寻找解题途径,只要转化得当,求解过程常常是妙不可言.
三、集合计数
例4 对某城市1000户的居民生活水平进行调查,统计结果有空调819户,汽车682户,空调和汽车二者都有的535户,则空调和汽车至少有一种的有
户.
【解析】如图1所示,设有空调的集合为A,有汽车的集合为B,则n(A)=819,n (B)=682,n(A∩B)=535.故空调和汽车至少有一种的有n(A∪B)=n(A)+n(B)-n
(A∩B)=819+682-535=966.
故所求结果为966户.
〖点评〗借助集合运算的文氏图形式,可清晰地显示问题的实质,有利于不重不漏计数的进行.
四、分类计数
例5 甲、乙、丙、丁、戊5名学生进行某种劳动技术比赛,决出了第一到第五名的名次,甲、乙两名参赛者去询问成绩,回答者对甲说:“很遗憾,你与乙都未拿到冠军.”对乙说:“你当然不会是最差的.”从这个回答分析,5人的名词排列共可能有
(用数字作答)种不同情况.
【解析】转化为数学模型,问题等价于“甲、乙、丙、丁、戊5名学生排队,其中甲不排头,乙既不排头也不排尾,共有多少种排法?”按甲分两类探求:第一类,甲排尾共有3P33种;第二类,甲不排尾,共有P32P33种. 则由加法原理,共有3P33+P32P33=54种不同的情况.
〖点评〗考虑所有可能情况,分类研究,化整为零,各个击破,利用加法原理计数,有利于降低问题的难度,促使问题解决. 分类计数是处理这类问题最基本、最有效的方式之一.
五、分步计数
例6 乒乓球队的10名队员中有3名主力队员,派5名参加比赛. 3名主力队员要安排在一、三、五位置,其余7名队员选2名安排在第二、第四位置,那么不同的出场安排共有场.
【解析】分步探求:第一步,先安排第一、三、五位置,有P33种;第二步,安排二、四位置,有P72种. 根据乘法原理,不同的出场安排共有P33×P72=252种.
〖点评〗细致地观察命题层次,视其特点分步,依次向前推进,运用乘法原理计数,抓住了问题的切入点.
活学活用
1. 某初中学校新学期开学有10位学生因家庭搬迁转入此校八年级学习,把10位同学分入八年级的1,2,3三个班,使得分到班级的人数不小于班级编号数,那么这种各班所分人数的不同分法共有()
A. 9种
B. 12种
C. 15种
D. 18种
2. 欲将一张100元的人民币换成零钱,已知现有足够10元、20元、50元的人民币,问共有种不同的换法.
3. 从5门不同的文科学科和4门不同的理科学科中任选4门,组成一组综合高考科目组,若要求这组科目中文理科都有,则不同的选法的种数为(用数字作答).
4. 某城市中M、N两地之间有整齐的道路网,如图2所示。
若规定向东或向北两个方向沿图中矩形的边前进,则从M到N不同的走法共有()
A. 25种
B. 15种
C. 13种
D. 10种
参考答案:1. C 2. 10 3. 120 4. B。