二自由度机械臂驱动控制系统设计
- 格式:docx
- 大小:117.97 KB
- 文档页数:10
⼆⾃由度机械臂实验报告⼆⾃由度机械臂实验报告实验报告课程名称: 机电系统建模与控制实验项⽬名称: ⼆⾃由度机械臂实验任课教师: 马越组别:第6组成员:刘仕杰.胡据林.王昊阳.于骁实验⽇期:2019年12⽉9⽇⼀、实验简介⼆⾃由度(DOF)串联柔性(2DSFJ)机械臂包括两个⽤于驱动谐波齿轮箱(零回转间隙)的直流电机及⼀个双杆串联机构()。
两个连接都是刚性的。
主连接通过⼀个柔性关节耦合到第⼀个驱动器上,在其端部载有第⼆个谐波驱动器,该驱动器通过另⼀个柔性关节与第⼆个刚性连接耦合。
两个电机及两个柔性关节都装有正交光学编码器。
每⼀个柔性关节配有两个可更换的弹簧。
使⽤⼀个翼形螺钉零件,就可沿着⽀撑杆,将每根弹簧端移到所希望的不同定位点。
该系统可视为多种⼿臂式机器⼈机构的⾼度近似,是典型的多输⼊多输⼊(MIMO)系统。
⼆、实验内容1. 系统开环时域动态特性和频域特性分析;2. 应⽤极点配置⽅法设计控制器,进⾏时域动态响应特性和频域特性分析(超调量、上升时间、震荡次数等,根据极点分布决定),改变极点分布位置,完成⾄少 2 组不同闭环参数性能对⽐;3. 应⽤ LQR ⽅法设计反馈控制律,进⾏时域动态响应特性和频域特性分析(超调量、上升时间、震荡次数等,根据极点分布决定),改变 Q 和 R 的值,完成⾄少 2 组不同闭环参数性能对⽐;4. 设计全阶状态观测器,完成物理 PSF 与状态观测(⾄少两组观测器极点位置)综合作⽤下的系统性能控制。
三、实验设备1.设备构造与线路图(1)直流电机#1第⼀台直流电机为⼀台可在最⾼27V 下⼯作的Maxon273759 精密刷电机(90 ⽡)。
该电机可提供 3A 的峰值电流,最⼤连续电流为 1.2A。
注意:施⽤在电机上的⾼频信号会对电机刷造成最终损坏。
产⽣⾼频噪⾳的最可能来源是微分反馈。
如果微分增益过⾼,噪⾳电压会被输⼊到电机⾥。
为保护您的电机,请将您的信号频带限制控制在 50Hz以内。
机械臂的控制系统设计目录前言3第一章绪论41.1课题背景41.2机械臂国内外发展现状41.3课题的主要研究内容51.4课题的意义6第二章机械臂的功能分析与方案确定72.1机械臂的功能分析72.2机械臂的总体方案的确定72.2.1机械系统方案的确定72.2.2电气控制系统的设计72.3本章小结7第三章机械臂机械系统设计93.1机械系统分析及器件选择93.1.1步进电机的选择93.1.2步进驱动器的选择93.2机械臂的机械运动设计103.2.1确认4自由度机械臂的机械运动方式103.2.2运用三维软件Solidwork绘制机械臂的零件图103.2.3运用Solidwork进行零件装配113.2.4运用Solidwork进行仿真12第四章可编程控制器与触摸屏134.1可编程控制器134.1.1概述134.2工作原理134.2.1硬件组成134.2.2可编程控制器的工作原理134.3可编程控制器的特点144.4可编程控制器的应用及发展前景144.5触摸屏的概述144.6触摸屏的发展及发展趋势154.6.1触摸屏的发展史154.6.2触摸屏的发展趋势15第五章机械臂控制系统研究165.1控制系统分析及器件的选择165.1.1控制系统分析165.1.2可编程控制器的选择165.1.3触摸屏的选择175.2机械臂控制方案的设计185.2.1确认控制方案并绘制控制系统的结构框图185.2.2机械臂控制原理与I/O端口的分配195.2.3控制系统流程图的设计21第六章软件控制266.1F某3U系列的PLC指令系统266.2编写PLC程序及其说明276.3G 某-Developer编程软件的使用方法356.4KincoHMIware触摸屏软件的使用方法386.5触摸屏界面设计39第七章总结44致谢45参考文献46附录1PLC程序47附录2触摸屏界面63前言在工业生产过程中,机械臂通常也被叫做工业机器人,是能够帮助很多工厂实现现代化道路的重要设备之一。
机械臂控制系统设计工业机械臂是近代自动控制领域中一项新的技术,发展由于积极的作用被人们重视,机械臂是机器人的重要组成部分,机械臂主标签:机械臂;控制;系统;设计一、设计选型分析1.关节结构的设计分析机械臂按照运动形式可以分为直角坐标型、圆柱坐标型、关节型、极坐标型,直角坐标型的臂部由三个相互正交的移动副组成,带动腕部分别沿着X、Y、Z 三个坐标轴的方向作直线移动,而且结构十分的简单,运动位置精确度很高,但是占得空间很大,工作范围很小,圆柱坐标型的臂部由一个转动副和两个移动副组成,占的空间很小,工作范围大,可以在狭窄空间内绕过各种障碍物,二极坐标型的臂部是由两个转动副和一个移动副组成,产生沿手臂轴X的直线移动,绕基座轴Y的转动和绕关节轴Z的摆动,手臂可作绕Z轴的俯仰运动,并且抓住地面的物体,采用关节型的基础上,局部结合三种进行设计。
对于臂部的设计应该满足承载能力足、刚度高、导向性能好、定位精度高、重量轻、转动惯量小、与腕部和机身的连接部位设计合理。
由于手臂是支承手腕的部件,设计时应该考虑抓取物体的重量或者是携带工具的重量,还有就是考虑运动时的动载荷及转动惯性,为了可以有效的防止臂部在运动的时候产生变形,手臂的截面形状应进行合理的选择,对于工字型截面的弯曲刚度会比圆截面大,空心管的弯曲刚度和扭转刚度比实心轴大,为了可以有效的防止手臂直线运动的时候,沿着运动轴线发生相对转动,应该设置导向装置,还可以采用一些缓冲措施,为了提高其运动的速度,可以减少臂部运动部分的重量,减少手臂对回转轴的转动惯量,还有就是臂部安装的形式和位置关系到其强度、刚度和承载能力,直接影响其外观。
2.驱动控制系统的设计分析对于驱动控制系统可以分为开环控制和闭环控制,为了可以实现实时控制和精确定位等要求,使用带有反馈的闭环控制系统,也叫做伺服系统,伺服系统可以分为液压伺服系统和电动伺服系统,所以应该考虑到机械臂的重量、体积、使用方便,应该使用精度高、信号处理灵活、结构紧凑、质量小的电动伺服系统,实现同步型交流伺服电机。
二自由度机械臂控制系统的设计与实现一、引言机械臂是一种能模拟人类手臂运动的机电系统,广泛应用于工业生产、医疗辅助、科学研究等领域。
二自由度机械臂是指具有两个关节的机械臂,可以实现在平面内的运动。
本文将介绍二自由度机械臂控制系统的设计与实现。
二、系统架构设计1.机械结构设计机械臂的结构设计非常重要,要能够满足运动需求,并具有足够的稳定性和精度。
对于二自由度机械臂来说,通常采用两个旋转关节来实现运动。
关节的设计应考虑到负载能力、速度、精度等因素。
2.控制器设计机械臂的控制器是实现运动控制的核心部分。
控制器的设计应考虑到对关节运动的控制、轨迹规划、传感器数据采集等功能的支持。
常见的控制器包括伺服控制器、PLC控制器等。
3.传感器选择传感器用于获取机械臂关节位置、速度、负载等参数,是控制系统的重要组成部分。
根据需求可以选择编码器、力传感器等不同类型的传感器。
三、系统实现1.关节控制算法设计关节控制算法用于实现对机械臂关节运动的控制。
常见的控制算法包括PID控制算法、模糊控制算法等。
在设计控制算法时,需要考虑机械臂的动力学模型、非线性特性等因素。
2.轨迹规划算法设计轨迹规划算法用于生成机械臂运动的轨迹。
常见的轨迹规划算法包括直线插值、圆弧插值等。
在设计轨迹规划算法时,需要考虑机械臂的限制条件,如关节角度范围、运动速度等。
3.硬件连接与调试将控制器和传感器与机械臂相连,进行硬件连接。
通过调试软件和硬件的配合,实现对机械臂运动的控制。
在调试过程中需要对控制算法和轨迹规划算法进行调优,确保机械臂能够准确完成指定的运动。
四、系统测试与验证在实现机械臂控制系统后,需要进行系统测试与验证。
通过测试可以评估系统的性能,如运动的准确度和稳定性等。
验证测试是对系统的功能进行验证,确认系统是否满足设计要求。
同时,还可以针对系统进行性能优化,提升机械臂的运动速度和精度。
五、结论本文介绍了二自由度机械臂控制系统的设计与实现。
通过设计合理的机械结构、控制器、传感器和算法,可以实现对机械臂的精确控制。
二自由度机械臂matlab二自由度机械臂是一种常见的工业机器人,它由两个旋转关节组成,可以在水平和垂直方向上进行运动。
在工业自动化领域,二自由度机械臂被广泛应用于装配线上的零部件处理、焊接、涂装等工作。
在本文中,我们将探讨如何利用Matlab对二自由度机械臂进行建模和控制。
我们需要建立二自由度机械臂的数学模型。
通过分析机械臂的结构,可以得到其运动学和动力学方程。
运动学方程描述了机械臂末端的位置和姿态与关节角度之间的关系,而动力学方程则描述了机械臂关节的运动和扭矩之间的关系。
利用Matlab可以方便地求解这些方程,从而实现对机械臂运动的仿真和控制。
接下来,我们可以利用Matlab进行机械臂的控制设计。
控制设计的目标是使机械臂能够按照预先设定的轨迹进行运动,并实现精准的定位和操作。
常见的控制方法包括PID控制、模糊控制和神经网络控制等。
在Matlab中,可以通过编写控制算法来实现对机械臂的闭环控制,从而提高其运动的精度和稳定性。
除了控制设计,Matlab还可以用于机械臂的路径规划和优化。
路径规划是指在给定约束条件下,寻找机械臂末端的最佳运动轨迹,以实现高效的操作。
而优化算法可以帮助机械臂在复杂环境中选择最优的路径,避免碰撞和提高效率。
通过Matlab的强大计算能力,可以快速地求解路径规划和优化问题,为机械臂的运动提供有效的支持。
二自由度机械臂的建模和控制是一个复杂而又具有挑战性的问题。
利用Matlab作为工具,可以方便地对机械臂进行仿真、控制设计、路径规划和优化,从而提高机械臂的运动性能和工作效率。
未来随着人工智能和机器学习的发展,二自由度机械臂的应用将会更加广泛,Matlab将继续发挥重要的作用,推动机械臂技术的发展和应用。
二自由度机械臂控制系统的设计与实现的开题报告一、题目二自由度机械臂控制系统的设计与实现。
二、研究背景随着现代工业的发展,机械臂在制造业和物流领域得到广泛应用。
因此,机械臂控制系统的研究和开发具有重要的现实意义。
目前,机械臂的控制方式主要有基于传统PID控制和基于机器学习的控制方式。
而在二自由度机械臂控制系统的设计和实现中,通常会采用传统PID控制方式。
三、研究目的与意义本文旨在设计和实现一套二自由度机械臂控制系统,以便更好地理解和掌握机械臂控制方面的知识,也为制造业和物流领域提供更好的机械臂控制系统方案。
四、研究内容1、二自由度机械臂的建模和仿真。
2、采用传统PID控制方式设计机械臂控制器。
3、采用ROS框架搭建机械臂控制系统。
4、控制系统测试与实验。
五、研究方法1、使用Matlab software建模和仿真二自由度机械臂。
2、采用传统PID控制方式,使用Matlab software设计控制器。
3、使用ROS框架,编写控制程序,搭建机械臂控制系统。
4、进行实验测试,对系统进行调试和优化。
六、研究进度安排1、建模和仿真二自由度机械臂及PID控制器的设计:1个月。
2、ROS框架搭建机械臂控制系统和编写控制程序:2个月。
3、实验测试、调试和优化系统:1个月。
4、论文撰写和答辩:1个月。
七、参考文献[1] 蒋永忠, 梁发才, 李广真. ROS系统在机械臂控制中的应用研究[J]. 物理学报, 2019, 68(8): 080508.[2] 叶海涛, 郭东生, 李修涛. 基于PID控制的多自由度机械臂运动控制研究[J]. 现代电子技术, 2016, 39(12): 92-95.[3] 刘娜. 机械臂运动控制与仿真[D].东华大学, 2016.[4] W. Yu, L. J. Young, W. J. Zhang et al. Sliding mode control for the 2-DOF direct-drive robot arm with uncertainties and disturbances [J]. Robotics and Autonomous Systems, 2016, 82: 139-147.。
二自由度机械臂的动力学模型通常涉及到两个主要的方面:几何构型和运动方程。
在建立动力学模型之前,首先需要确定机械臂的几何参数,包括每个关节的转动惯量以及各连杆的长度。
动力学模型可以分为两部分:静力学模型和动力学模型。
静力学模型关注的是力的平衡问题,即在机械臂的任意位置上,作用在机械臂上的所有外力之和等于零,所有外力矩之和也等于零。
动力学模型则进一步考虑了机械臂的运动情况,即在给定的力和力矩作用下,机械臂的运动如何变化。
为了建立动力学模型,我们通常采用牛顿-欧拉方法或者拉格朗日方法。
牛顿-欧拉方法从关节坐标出发,逐步推导出各关节的力和力矩,再结合连杆的长度,得到整个机械臂的动力学方程。
拉格朗日方法则是从能量的角度出发,利用动能和势能的关系来建立动力学方程。
具体来说,对于二自由度机械臂,其动力学方程可以表示为:
M(q)q'' + C(q, q', t)q' + G(q, t) = T(q, q', t)
其中:
- M(q) 是机械臂的质量矩阵,q是关节变量;
- q' 是关节变量的速度;
- q'' 是关节变量的加速度;
- C(q, q', t) 是由关节速度引起的科氏力和离心力等构成的矩阵;
- G(q, t) 是重力矩阵;
- T(q, q', t) 是外部施加的力和力矩。
在实际应用中,还需要对上述方程进行求解,这通常需要借助计算机模拟或数值积分方法。
通过求解动力学方程,可以预测机械臂在特定输入下的动态响应,这对于机械臂的控制系统的设计至关重要。
二自由度机械臂matlab二自由度机械臂是一种常见的工业机器人,它通常由两个旋转关节组成,可以在水平平面内进行运动。
在工业自动化领域,二自由度机械臂被广泛应用于装配、焊接、搬运等任务中,其简单结构和灵活性使其成为生产线上的重要角色。
在工程设计中,使用Matlab对二自由度机械臂进行建模和控制是一种常见的方法。
Matlab是一种功能强大的数学建模软件,可以帮助工程师们快速准确地分析和设计机械系统。
通过Matlab,工程师可以轻松地对机械臂的运动学和动力学特性进行建模,并设计出高效稳定的控制算法。
建立二自由度机械臂的数学模型是Matlab中的关键步骤。
首先,工程师需要确定机械臂的几何参数,包括关节长度、关节角度范围等。
然后,利用正运动学和逆运动学方程,工程师可以计算出机械臂末端的位置和姿态,从而建立起机械臂的运动学模型。
在建立好运动学模型之后,工程师需要进一步分析机械臂的动力学特性。
通过使用Matlab的仿真工具,工程师可以模拟机械臂在不同工况下的运动轨迹和力学特性,帮助他们优化机械臂的设计参数和控制算法。
控制算法是二自由度机械臂设计中的另一个关键点。
在Matlab中,工程师可以编写各种控制算法,如经典的PID控制、模糊控制、神经网络控制等,来实现对机械臂的精准控制。
通过不断调整和优化控制算法,工程师可以使机械臂在各种工况下实现高效稳定的运动。
总的来说,利用Matlab对二自由度机械臂进行建模和控制是一种高效可靠的方法。
Matlab提供了丰富的工具和函数,帮助工程师们快速准确地分析和设计机械系统。
通过不断优化和改进,工程师们可以设计出性能优越的二自由度机械臂,为工业生产带来更高的效率和质量。
机械臂控制系统的设计与实现机械臂是一种能够适应各种情况的机电装置,由于其优异的灵活性、高效性和精准性,被广泛应用于工业生产和物流行业中。
而机械臂的自主控制成为了实现自动化生产流程的重要手段之一。
本文将从机械臂控制系统的设计和实现两个方面展开探讨。
机械臂控制系统的设计机械臂控制系统是由硬件和软件两个部分组成。
硬件部分主要包括机械臂的驱动器、传感器和控制器。
机械臂的驱动器包括电机、减速器和传动装置,控制器则是负责控制机械臂运动的主控板。
传感器则用于获取机械臂的位置和运动状态信息,从而实现精准控制。
而软件部分则是由控制程序和驱动程序组成,控制程序通常采用C或C++等高级语言进行编写,而驱动程序则是将控制程序的指令翻译为机械臂能够识别的语言。
机械臂控制系统的设计需要先明确所需实现的功能。
不同的应用场景会有不同的需求,例如螺丝拧紧机械臂需要具备拧紧力度的控制能力,而用于物流搬运的机械臂需要具备精准的目标定位和位置控制能力。
因此在设计时需要对机械臂和其控制系统的功能需求进行明确和分析,从而确定所需硬件和软件组件。
其次,需要针对不同的需求选择合适的硬件和软件组件。
硬件部分需要根据机械臂的参数确定驱动器类型和传感器类型,并选择适合的控制器。
软件部分则需要根据机械臂参数和控制系统的功能需求,选择合适的编程语言和相应的编程工具。
例如,在编写控制程序时可以采用ROS(机器人操作系统)等现有的机器人操作平台,自主开发控制程序也是一种选择。
最后,机械臂控制系统的设计需要进行系统集成和优化。
在系统集成时需要考虑机械臂控制系统与其他相关设备的联动,例如与传送带、分拣机器人等设备的协调与交互。
在系统优化方面则需要针对具体应用场景不断调整和优化控制算法,以提升机械臂的精度和速度。
机械臂控制系统的实现实现机械臂控制系统需要进行软件编程和硬件调试两个过程。
在编写控制程序时需要先了解机械臂的控制方式和硬件结构,然后根据机械臂的运动学模型和控制算法进行控制程序的开发。
2020(Sum. No 207)2020年第03期(总第207期)信息通信INFORMATION & COMMUNICATIONS两自由度机械臂动力学模型的建模与控制王磊,陈辰生,张文文(同济大学中德学院,上海202001)摘要:机器人系统建模在布局评估、合理性研究、动画展示以及离线编程等方面有越来越广的应用。
文章对两个自由度 机械臂基于拉格朗日动力学方程,进行建模。
通过建立的模型,分析了重力对两自由度机械臂的影响以及在重力作用下不在稳定位置的机械臂的运动轨迹。
基于机械臂的数学模型,基于Simulink 仿真环境,建立机械臂的仿真模型。
采用逆 动力学方法对机械臂进行控制,观察其对机械臂的控制效果⑴。
通过仿真建模,可以了解机械臂动力学模型以及机械臂动态模型的控制问题。
关键词:动力学模型;数学模型推导;机器人建模;重力分析;逆动力学控制中图分类号:TP241 文献标识码:A 文章编号:1673-1131(2020 )03-0040-03The simulation and control of two ・degree-of freedom robot armWang Lei, Chen Chensheng, Zhang Wenwen(Sino German College of Tongji University, Shanghai 201804)Abstract: The simulation of robot systems is becoming very popular, it can be used for layout evaluation, feasibility studies, presentations with animation and off-line programming 121. In this paper, two degrees of freedom manipulators are modeled based on Lagrange^ dynamic equation. Through the established model, the influence of g ravity on the two-degree-of-freedom manip ulator and the trajectory of the manipulator that is not in a stable position under the action of gravity are analyzed. Based on the mathematical model of the robotic arm and the Simulink simulation environment, a simulation model of the robotic arm is es tablished. The inverse dynamics method was used to control the manipulator, and the control effect on the manipulator was observed. Through simulation modeling, you can understand the dynamics model of the robotic arm and the control problems of the dynamic model of t he robotic arm.Key words: dynamic model; mathematical model derivation; robot modeling; gravity analysis; inverse dynamic control0引言机器人学是一门特殊的工程科学,其中包括机器人设计、建模、控制以及使用。
挖掘机机械臂多自由度运动控制系统设计目录一、内容概览 (2)1.1 研究背景与意义 (2)1.2 国内外研究现状 (3)1.3 论文结构安排 (4)二、挖掘机机械臂运动学基础 (5)三、多自由度运动控制系统设计原理 (7)3.1 控制系统基本构成 (8)3.2 控制策略选择 (9)3.3 传感器与执行器设计 (11)四、挖掘机机械臂控制系统硬件设计 (12)4.1 控制器选择 (14)4.2 伺服电机与驱动器 (15)4.3 传感器设计与选型 (16)4.4 通信接口设计 (17)五、挖掘机机械臂控制系统软件设计 (18)5.1 软件架构设计 (20)5.2 控制算法实现 (21)5.3 人机交互界面设计 (22)六、系统集成与调试 (23)6.1 系统集成方案 (25)6.2 调试过程与方法 (26)6.3 系统性能测试与评估 (27)七、结论与展望 (28)7.1 研究成果总结 (29)7.2 存在问题与不足 (30)7.3 后续研究方向展望 (31)一、内容概览本文主要探讨了挖掘机机械臂多自由度运动控制系统的设计与实现。
介绍了挖掘机机械臂的工作原理和作业任务;其次,分析了多自由度运动控制系统的基本理论和技术;接着,详细阐述了系统硬件和软件的设计方案;通过实验验证了系统的正确性和有效性。
1.1 研究背景与意义随着科技的不断发展,挖掘机在建筑、矿山、道路等工程领域的应用越来越广泛。
挖掘机机械臂作为挖掘机的重要组成部分,其性能和功能对于提高工程效率和质量具有重要意义。
传统的挖掘机机械臂运动控制系统往往存在一定的局限性,如响应速度慢、精度不高、稳定性差等问题。
研究一种高效、稳定、精确的挖掘机机械臂多自由度运动控制系统具有重要的理论和实际意义。
多自由度运动控制系统是指能够实现挖掘机机械臂多个自由度(如旋转、平移、伸缩等)的运动控制。
这种控制系统可以使挖掘机机械臂在各种工况下实现高效、精确的运动,从而提高挖掘机的作业效率和质量。
自由度机械臂设计说明简介自由度机械臂是一种多关节的机械装置,具有灵活性和精准性,并广泛应用于工业生产线、医疗手术和科研实验等领域。
本文将介绍自由度机械臂的设计原理、结构以及应用场景。
设计原理自由度机械臂的设计原理基于刚体运动学和力学原理。
其关节可由电机或液压缸驱动,通过控制系统对其运动进行精确控制。
主要设计原理如下:1.机械结构设计:自由度机械臂的结构可分为一臂、二臂和多臂式,根据不同的应用需求选用合适的结构形式。
每个关节可通过旋转、平移或伸缩来实现机械臂的运动。
2.动力学分析:对机械臂的动力学进行分析,包括关节的力矩和角速度计算。
通过合理的设计和控制算法,使机械臂能够稳定地完成所需的动作。
3.传感器与控制系统:为了实现准确的控制,机械臂通常配备传感器,如编码器和力传感器,用于实时获取机械臂的位置和力信息。
控制系统则根据传感器反馈的数据进行动作规划和控制算法的调整。
结构设计自由度机械臂的结构设计主要涉及材料选择、关节设计和运动范围的确定。
1.材料选择:根据机械臂的使用环境和承载要求,选择合适的材料以保证机械臂的强度和稳定性。
常见的材料有铝合金、碳纤维复合材料等。
2.关节设计:关节是机械臂的运动部分,其设计应考虑关节的转动自由度、驱动方式以及承载能力。
关节的材料和结构应具备足够的刚度和耐磨性,以保证机械臂的运动精度和寿命。
3.运动范围的确定:根据应用需求确定机械臂的运动范围,包括关节的旋转范围和机械臂的工作空间。
在设计过程中,需要考虑机械臂的尺寸、关节的限位和避免碰撞等因素。
应用场景自由度机械臂在许多领域都有广泛的应用,以下是几个常见的应用场景:1.工业生产线:自由度机械臂可用于物料搬运、装配和焊接等工业生产任务,提高生产效率和产品质量。
2.医疗手术:自由度机械臂可用于精确的手术操作,减少手术风险和提高手术成功率。
3.科研实验:自由度机械臂可用于科研实验中的精密操作,如材料测试和样品处理等。
4.无人驾驶:自由度机械臂可用于无人驾驶车辆中的感知和控制,实现自主驾驶和智能交互。
二自由度机械臂设计
设计二自由度机械臂是一项重要的工程任务,旨在实现机器人在特定工
作空间内灵活运动,并完成特定的操作任务。
该机械臂具有两个独立的自由度,允许其在平面内进行旋转和伸缩。
设计二自由度机械臂需要确定适合特定工作环境的结构和尺寸。
考虑到
工作空间的大小、作业要求和材料限制,选择合适的臂长和关节角度范围。
这可以通过详细分析所需工作任务的运动范围来实现。
选择合适的驱动系统和传感器是设计过程中的关键步骤。
根据工作任务
的性质,可以采用直流电机、步进电机或伺服电机作为驱动装置。
同时,安
装传感器来实时监测机械臂的位置和力量,并通过反馈机制来控制臂的运动。
设计控制系统是确保机械臂正常运行的关键因素。
通过集成控制器和计
算机编程,确保机械臂能够准确执行特定的运动轨迹并处理各种输入信号。
这要求开发适当的算法和编写有效的控制代码,以实现机械臂的精确控制。
设计时还需考虑机械臂的结构强度和稳定性。
使用合适的材料和结构设计,确保机械臂在工作过程中能够承受惯性力和外部冲击,并保持稳定的操
作状态。
机械臂的安全性也是设计过程中的重要考虑因素。
采取必要的安全措施,如限位开关和防护罩等,以确保机械臂在运行过程中不会损坏设备或造成人
身伤害。
设计二自由度机械臂需要综合考虑工作环境、运动需求、驱动系统、控
制系统、结构强度和安全性等因素。
通过合理的设计和完善的控制,机械臂
能够在工业生产、装配线和仓储等领域发挥重要作用,提高生产效率和安全性。
二自由度机器人的结构设计与仿真首先,我们来看二自由度机器人的结构设计。
二自由度机器人由两个关节和两个链节组成。
每个关节都有一个电机驱动,用于控制关节的运动。
两个链节通过关节连接起来,形成机械臂的结构。
两个链节可以分别旋转,以实现机械臂的运动。
在机械臂末端,可以安装夹具或工具,用于执行具体的任务。
在设计二自由度机器人的结构时,需要考虑以下几个方面。
首先是材料的选择。
机械臂需要具备足够的刚性和强度,以承受负载和运动所带来的力。
常用的材料有铝合金和钢材。
其次是驱动系统的选择。
关节的运动由电机驱动,需要选择适合的电机类型和规格,以实现机械臂的精确控制。
另外,在设计机械臂的关节连接处,可以采用球形关节或万向节等,以实现更大范围的运动。
最后是工具的选择。
根据具体的任务需求,可以选择不同的工具或夹具,以适应不同的操作场景。
在完成结构设计后,可以进行二自由度机器人的仿真。
仿真是在计算机中模拟机械臂的工作过程。
通过仿真,可以验证机械臂的设计是否符合要求,并进行性能分析。
在进行仿真时,需要建立机械臂的运动模型。
运动模型可以通过机械臂的运动学和动力学方程来描述。
运动学方程描述机械臂的位置和速度之间的关系,动力学方程描述机械臂的受力和加速度之间的关系。
通过求解这些方程,可以获得机械臂的运动轨迹和受力情况。
在进行仿真时,可以使用一些仿真软件,例如MATLAB、SolidWorks 等。
这些软件提供了建模、求解和可视化的功能,可以方便地进行机械臂的仿真。
在进行仿真前,需要准备好机械臂的运动模型和输入参数。
然后,可以通过调整参数和输入,观察机械臂的运动和性能。
根据仿真结果,可以对机械臂的设计进行优化,以提高机械臂的运动精度和工作效率。
综上所述,二自由度机器人的结构设计和仿真是机械臂设计与优化的重要环节。
通过合理的结构设计和精确的仿真分析,可以提高机械臂的性能和工作效率,并满足特定任务需求。
二自由度机器人的应用前景广阔,将在未来的工业生产和服务领域发挥重要作用。
机械臂的控制系统设计机械臂是一种用于定点或多点运动的装置,通常由多个关节组成,具有一定的自由度。
控制机械臂的系统需要对每个关节进行定位和运动控制,以实现特定的任务。
本文将探讨机械臂控制系统的设计,包括硬件和软件方面的内容。
一、硬件设计1. 传感器系统:传感器是机械臂控制系统的关键部分,用于感知机械臂的位置、速度和姿态。
常用的传感器包括编码器、惯性测量单元(IMU)、视觉传感器等。
编码器用于测量关节的角度,IMU用于感知机械臂的姿态和加速度,视觉传感器则可以实现对目标物体的识别和定位。
2. 电机驱动系统:机械臂的运动需要由电机来驱动,因此需要设计合适的电机驱动系统。
常用的电机包括步进电机和伺服电机,它们都需要配备相应的驱动器和控制器,以实现精确的位置和速度控制。
3. 控制器:控制器是机械臂控制系统的核心部件,用于接收传感器数据,计算控制指令,并输出给电机驱动系统。
常用的控制器包括单片机、工业控制器和PLC等,根据不同的需求可以选择合适的控制器。
4. 机械结构:机械结构包括机械臂的关节和连接件等部件,需要设计成稳定、坚固的结构,以承受机械臂的运动和负载。
同时还需要考虑机械臂的自由度和工作范围,以满足不同的应用需求。
5. 供电系统:机械臂需要稳定的电力供应,因此需要设计合适的供电系统。
根据机械臂的功率和电压等要求,选择合适的供电设备和线缆,确保机械臂的正常运行。
1. 位置和速度控制算法:机械臂的运动控制需要设计合适的控制算法,以实现精确的位置和速度控制。
常用的控制算法包括PID控制、模糊控制、神经网络控制等,根据机械臂的动态特性和控制要求选择合适的算法。
2. 运动规划算法:机械臂的运动需要遵循一定的路径和轨迹,因此需要设计运动规划算法,以实现机械臂的轨迹规划和插补。
常用的规划算法包括S曲线、三次样条曲线等,可以根据不同的需求选择合适的规划算法。
3. 通信协议和界面设计:机械臂的控制系统需要与外部设备进行通信,因此需要设计合适的通信协议和用户界面。
两自由度机械臂动力学模型的建模与控制
两自由度机械臂是指由两个旋转关节连接的机械臂,可以在二维平面内进行运动。
建立两自由度机械臂的动力学模型,可以用于控制器设计和路径规划。
1. 机械臂的动力学建模:
a. 首先,需要确定机械臂的连杆长度、质量以及旋转关节的惯性参数等。
这些参数可以通过实验或者手动测量获得。
b. 建立机械臂的正运动学方程,即通过旋转关节的角度计算连杆末端的位置和姿态。
c. 利用拉格朗日方程,可以得到机械臂的动力学方程。
动力学方程描述了系统的运动方程和力矩平衡关系。
2. 控制器设计:
a. 常用的控制方法有位置控制、速度控制和力控制等。
选择适合机械臂的控制方法,根据控制要求设计闭环控制系统。
b. 设计适当的控制算法,如PID控制器、模糊控制器或者神经网络控制器等,以实现期望的控制性能。
c. 在控制器设计过程中,需要对系统进行参数辨识和系统模型验证,以确保控制器的稳定性和鲁棒性。
3. 控制系统实现与调试:
a. 根据控制器的设计结果,实现完整的控制系统,包括硬件的搭建、传感器
的连接和信号处理等。
b. 进行控制系统的调试和参数调整,通过实验验证控制器的性能,并进一步优化控制算法和参数。
总结:建立两自由度机械臂的动力学模型是实现精确控制和路径规划的前提。
通过合适的控制器设计和系统实现,可以使机械臂实现所需的任务和运动轨迹。
目录
第一章绪论
1.1设计目的与意义 (1)
1.2工业机器人机械臂的概述 (1)
1.3系统描述 (1)
第二章步进电机驱动器设计
2.1 步进电机概述 (2)
2.2 步进电机的转动控制 (2)
2.2.1 基于控制电路的控制 (2)
2.2.2 基于单片机的控制 (6)
2.2.3 方案选择 (11)
第三章PLC控制系统设计
3.1 任务描述 (11)
3.2 控制任务和要求 (11)
3.3 PLC的选型 (12)
3.4 I/O地址编号和接线图 (12)
3.5 PLC控制系统程序设计 (12)
结论 (13)
附录一PLC源程序 (14)
附录二步进电机C语言源程序 (19)
附录三电镀生产线的自动工作状态流程 (21)
附录四I/O接线图 (22)
第一章绪论
1.1设计目的与意义
随着工业化生产的不断细分,新工艺新材料的不断涌现,在实际产品中得到应用的设计效果也日新月异,电镀是我们在设计中经常要涉及到的一种工艺,而电镀效果是我们使用时间较长,工艺也较为成熟的一种效果,对于这种工艺的应用在产品上已经非常多。
电镀能增强金属的抗腐蚀性(镀层金属多采用耐腐蚀的金属)、增加硬度、防止磨耗、提高导电性、润滑性、耐热性、和表面美观。
如何更好地实现电镀工艺的自动化,是目前很多研究者在研究的问题。
本次设计采用了自动控制与点动控制相结合的方式,满足了电镀过程的需求,对实现电镀过程的自动化做了一次意义的尝试。
同时,通过本次设计,进一步提升了自己在PLC 编程方面的能力,加深了对PLC的认识以及对步进电机的驱动和工作方式有了更深的体会。
1.2工业机器人机械臂的概述
工业机器人作为最典型的机电控制系统实例之一,几乎具有机电一体化系统的所有特点。
既具有操作机(机械本体)、控制器、伺服驱动系统和检测传感装置,又具有速度快、精度高、柔性好的特点。
工业机器人系统由三大部分六个子系统组成。
三大部分是:机械部分、传感部分、控制部分。
六个子系统是:驱动系统、机械结构系统、感受系统、机器人—环境交互系统、人机交互系统、控制系统。
机械臂作为工业机器人的一种形式,是工业自动控制领域中经常遇到的一种控制对象。
机械臂可以完成许多工作,如搬物、装配、切割、喷染等等,应用非常广泛。
近年来,为实现工业过程自动化,已有不少操作机械臂广泛应用于工厂的各个生产过程,尤其是那些人力所限和人所不及的外部环境或危险场所,将是机械臂进一步发展的应用领域。
1.3系统描述
自动化电镀生产线上的机械臂为二自由度机械臂,由两个步进电机控制。
其中一个步进电机控制吊钩的上下运动;另一个步进电机控制行车的左行与右行。
该机械臂的模型如下图1.1所示:
图1.1 电镀工艺机械臂模型
该机械臂由罗克韦尔公司的Micrologix 1000控制,控制的流程主要有电镀槽、镀液回收槽、清洗槽三大部分组成,并设置了原位指示灯、点动指示灯和自动指示灯,具体情况见第三章,此处指给出系统整体结构图:
图2.2 系统整体结构图
第二章步进电机驱动器设计
2.1 步进电机概述
步进电机是数字控制电机,它将脉冲信号转变成角位移,即给一个脉冲信号,步进电机就转动一个角度,因此非常适合于单片机控制。
步进电机区别于其他控制电机的最大特点是:它是通过输入脉冲信号来进行控制的,即电机的总转动角度由输入脉冲数决定,而电机的转速由脉冲信号频率决定。
该设计采用电机为四相步进电机,采用单极性直流电源供电。
只要对步进电机的各相绕组按合适的时序通电,就能使步进电机转动。
当某一相绕组通电时,对应的磁极产生磁场,
并与转子形成磁路,这时,如果定子和转子的小齿没有对齐,在磁场的作用下,由于磁通具有力图走磁阻小路径的特点,则转子将转动一定的角度,使转子与定子的齿相互对齐,由此可见,错齿是促使电机旋转的原因。
目前,对步进电机的控制主要有分散器件组成的环形脉冲分配器、软件环形脉冲分配器、专用集成芯片环形脉冲分配器等。
本设计利用单片机进行控制,主要是利用软件进行环形脉冲分配。
四相步进电机的工作方式为四相单四拍,双四拍和四相八拍工作的方式。
各种工作方式在电源通电时的时序与波形分别如图a、b、c所示。
本设计的电机工作方式为四相单四拍,根据步进电机的工作的时序和波形图,总结出其工作方式为四相单四拍时的脉冲分配规律,四相双四拍的脉冲分配规律,在每一种工作方式中,脉冲的频率越高,其转速就越快,但脉冲频率高到一定程度,步进电机跟不上频率的变化后电机会出现失步现象,所以脉冲频率一定要控制在步进电机允许的范围内。
图2.1 步进电机工作时序波形图
2.2步进电机的转动控制
目前,步进电机的转动控制主要有三大类:
一、基于控制电路的控制
这种控制方式的核心是555定时器芯片,它产生步进电机转动所需的脉冲,并通过分频器分配给步进电机的各相,最后通过一个功率放大电路就实现了对步进电机的转动控制。
这种控制方式的优点是简单、可靠,缺点是不适用与控制精度要求很高的场合。
二、基于微控制器的控制
这种控制方式的核心是各种类型的单片机以及各种各类的PLC。
它的优点在于设计者根据实际的需求灵活的设计控制电路,因而这种控制方式的灵活性很大,功能丰富。
三、基于专用控制芯片的控制
这种控制方式一般适用在控制精度要求高的场合,它是由专门的设计公司开发的,因而它的功能很强大。
主要由三部分组成:脉冲发生器、脉冲分配器、功率放大电路组成,其结构形式如下图2.2所示:
图2.2 步进电机的控制电路
①脉冲发生电路
脉冲发生电路就是产生方波的电路,可以考虑由晶体管或IC芯片构成的多谐振荡电路或专用定时器芯片电路等。
在需要产生特别精确脉冲的场合可以使用石英振荡电路。
如图
2.3电路采用了NE555定时器芯片。
图2.3 脉冲放生电路
②脉冲分配电路
脉冲分配电路的任务是从脉冲发生电路产生的方波中分解出对应的四相脉,74HC74为单输入端的双D触发器。
一个片子里封装着两个相同的D触发器,每个触发器只有一个D 端,它们都带有直接置0端RD和直接置1端SD,为低电平有效。
CP上升沿触发。
D型触。