塑料产品结构设计注意事项.
- 格式:doc
- 大小:468.50 KB
- 文档页数:16
塑料件筋位避免缩水设计在塑料制品的生产过程中,可能会出现塑料件缩水的问题。
塑料件缩水是指在射出成型过程中,塑料件的尺寸发生缩小。
这种现象会导致产品尺寸不准确,甚至无法满足设计要求,给后续加工和使用带来困扰。
因此,在设计塑料件时,需要采取一些策略来避免或减少塑料件的缩水现象。
首先,为了避免塑料件缩水,我们需要了解造成塑料件缩水的原因。
塑料件缩水主要是由于塑料在冷却过程中发生收缩。
塑料在加热过程中会膨胀,达到熔融状态后进入模具,但在冷却过程中会发生收缩,导致尺寸变小。
这种收缩现象受多个因素的影响,如塑料的种类、成型工艺、模具结构等。
一种常用的减少塑料件缩水的方法是通过调整塑料件的设计。
首先,在设计时应尽量选择收缩率较低的塑料材料,如聚丙烯、聚乙烯等。
这些材料的收缩率相对较低,可以减少塑料件的缩水现象。
其次,在设计时应尽量避免选择容易发生收缩的形状,如壁厚不均匀、尺寸过大或过小等。
其次,在塑料件的具体结构设计中,可以采用一些措施来减少收缩。
首先,可以在设计中考虑合理的圆角设计。
圆角的设置可以减少应力集中,从而减少塑料件收缩的可能性。
其次,尽量避免在塑料件中设置内部孔洞或是壁厚突变。
这些特殊结构容易引起塑料件的收缩现象,应尽量避免使用。
此外,在塑料件中设置流道或温度控制系统,可以改变塑料的流动状态和冷却速度,从而减少收缩现象。
除了在设计时采取一些策略来减少塑料件缩水,我们还可以在加工过程中进行一些控制来避免缩水现象。
首先,可以通过合理的注塑参数来控制塑料件的冷却速度。
冷却速度的控制对减少塑料件的缩水非常重要。
在注塑过程中,可以通过调整冷却时间、冷却介质和冷却方式等参数来控制塑料件的冷却速度。
其次,可以通过添加一些填充剂来改变塑料件的物理性质,从而减少塑料件的收缩。
填充剂能够改变塑料的热膨胀系数和收缩率,从而减少塑料件收缩的可能性。
综上所述,塑料件缩水是塑料制品生产中常见的问题,但通过合理的设计和加工控制,可以减少或避免塑料件缩水现象的发生。
塑料产品的设计技巧塑料产品在日常生活中占据着相当大的比重,几乎无处不在。
塑料产品的设计既需要满足功能要求,又要考虑美观与实用性。
下面将介绍一些塑料产品设计的技巧,希望对设计师们有所帮助。
1.了解材料特性首先,设计师应该对所使用的塑料材料有充分的了解。
不同种类的塑料具有不同的特性,如强度、硬度、耐磨性、耐化学腐蚀性等。
在设计过程中,根据产品的应用场景和功能要求选择合适的塑料材料是至关重要的。
2.考虑成型工艺塑料制品主要通过注塑、吹塑、挤塑等工艺进行成型。
在设计过程中,要充分考虑到所选用的成型工艺,不同工艺对产品形状和结构的限制是不同的。
合理的设计能够提高产品的生产效率,并且减少废品率。
3.注重产品的功能性塑料制品主要用于容器、工具、零件等领域,因此产品的功能性是至关重要的。
设计师应该仔细分析产品的使用环境和需求,确保产品能够满足用户的实际需求。
比如容器类产品应具有良好的密封性和耐用性,工具类产品应具有舒适的手感和易使用性。
4.注意产品的结构设计结构设计是塑料产品设计中的关键环节。
设计师应考虑产品的整体结构和细节处理。
产品结构设计要合理,能够实现产品功能,同时保证结构的坚固性和稳定性。
细节处理要注意产品的舒适性和易操作性,尽量减少折角、棱角,增加圆滑和曲线设计。
5.注重产品的外观设计塑料制品的外观设计直接影响产品的市场竞争力。
设计师要注重产品的美观性和与用户的情感连接。
产品的外观设计要与品牌形象相符合,通过颜色、形状和纹理等元素进行设计,提高产品的辨识度和吸引力。
6.考虑可持续发展随着全球环境意识的提高,设计师在设计过程中要考虑可持续发展的原则。
选择可回收、可降解的塑料材料,减少塑料废弃物对环境的影响。
同时,设计师可以考虑产品的可维修性和模块化设计,延长产品的使用寿命。
7.进行模型验证在设计完成后,进行模型验证是非常重要的。
通过制作3D打印模型或真实尺寸样品,可以检验设计的可行性和完整性,及时发现和解决问题,确保最终设计符合要求。
注塑模具设计的⼗七个注意事项 注塑模设计的注意事项有很多,那么都有哪些呢?下⾯,店铺为⼤家分享注塑模具设计的⼗七个注意事项,快来看看吧! 开模⽅向和分型线 每个注塑产品在开始设计时⾸先要确定其开模⽅向和分型线,以保证尽可能减少抽芯滑块机构和消除分型线对外观的影响。
1.开模⽅向确定后,产品的加强筋.卡扣.凸起等结构尽可能设计成与开模⽅向⼀致,以避免抽芯减少拼缝线,延长模具寿命。
2.开模⽅向确定后,可选择适当的分型线,避免开模⽅向存在倒扣,以改善外观及性能。
脱模斜度 1.适当的脱模斜度可避免产品拉⽑(拉花)。
光滑表⾯的脱模斜度应≥0.5度,细⽪纹(砂⾯)表⾯⼤于1度,粗⽪纹表⾯⼤于1.5度。
2.适当的脱模斜度可避免产品顶伤,如顶⽩.顶变形.顶破。
3.深腔结构产品设计时外表⾯斜度尽量要求⼤于内表⾯斜度,以保证注塑时模具型芯不偏位,得到均匀的产品壁厚,并保证产品开⼝部位的材料强度。
产品壁厚 1.各种塑料均有⼀定的壁厚范围,⼀般0.5~4mm,当壁厚超过4mm时,将引起冷却时间过长,产⽣缩印等问题,应考虑改变产品结构。
2.壁厚不均会引起表⾯缩⽔。
3.壁厚不均会引起⽓孔和熔接痕。
加强筋 1.加强筋的合理应⽤,可增加产品刚性,减少变形。
2.加强筋的厚度必须≤(0.5~0.7)T产品壁厚,否则引起表⾯缩⽔。
3.加强筋的单⾯斜度应⼤于1.5°,以避免顶伤。
圆⾓ 1.圆⾓太⼩可能引起产品应⼒集中,导致产品开裂。
2.圆⾓太⼩可能引起模具型腔应⼒集中,导致型腔开裂。
3.设置合理的圆⾓,还可以改善模具的加⼯⼯艺,如型腔可直接⽤R⼑铣加⼯,⽽避免低效率的电加⼯。
4.不同的圆⾓可能会引起分型线的`移动,应结合实际情况选择不同的圆⾓或清⾓。
孔 1.孔的形状应尽量简单,⼀般取圆形。
2.孔的轴向和开模⽅向⼀致,可以避免抽芯。
3.当孔的长径⽐⼤于2时,应设置脱模斜度。
此时孔的直径应按⼩径尺⼨(最⼤实体尺⼨)计算。
塑料水杯注塑模具设计注塑模具是生产塑料制品的重要工具之一,其设计质量直接影响到产品的成型质量与生产效率。
下面我们将介绍塑料水杯注塑模具的设计流程及注意事项。
一、注塑模具设计流程1.确定产品需求:首先要明确生产的水杯类型、规格和注塑机的型号等要求,确保模具设计符合产品的生产准则。
2.模具结构设计:根据产品的形状和尺寸等要求,选择合适的模具结构形式,包括单腔、多腔、分模等。
同时,还要考虑模具的易拆装性、冷却方式和导向方式等。
3.冷却系统设计:合理的冷却系统设计可以降低冷却时间,提高生产效率。
通过加入冷却水孔,将冷却水循环通过模具来降低塑料的温度,达到快速成型的目的。
4.注塑系统设计:包括模具的射嘴、喷嘴、合模机构和排胚系统的设计等,确保塑料能够顺利进入模腔并充分填充,同时也要避免出现短流、气孔等缺陷。
5.模具材料选择:根据注塑产品的要求和模具寿命的要求,选择合适的模具材料,如优质钢材、合金材料等。
6.模具加工制作:根据设计图纸进行模具的加工制作,包括数控加工、电火花加工等。
7.模具调试与试模:完成模具加工后,进行模具的调试与试模,确保模具的设计符合要求,以及检查模具的加工质量和装配情况。
8.模具使用与维护:模具使用后要进行定期的清洁和保养,确保模具的正常运行和寿命。
二、注塑模具设计的注意事项1.模具结构合理性:注塑模具的结构设计需要考虑到产品的形状、尺寸和功能等方面,尽量使用简单结构,减少模具制作成本和生产时间。
2.冷却系统设计合理性:冷却系统设计合理性直接影响到产品的成型质量和生产效率,需要根据产品的形状和材质选择合适的冷却方式和位置,充分利用冷却系统降低塑料温度。
3.模具材料选择合理性:模具材料的选择需要根据产品的要求和模具寿命的要求来确定,考虑到耐磨性、硬度、热传导性等因素。
4.模具加工精度:注塑模具的加工精度直接影响到产品的尺寸精度和表面质量,需要保证模具的加工精度,避免出现尺寸偏差或者表面缺陷。
塑料件倒扣的结构设计塑料件倒扣的结构设计可以通过以下步骤进行:1. 确定倒扣部位:根据产品的设计要求和功能,确定需要设计倒扣结构的部位。
2. 设计倒扣形状:选择适合的倒扣形状,常见的有槽型、凸台型等。
考虑到塑料件的生产工艺和成本,确保设计的形状能够方便制造和装配。
3. 定义倒扣尺寸:根据产品的需求和装配要求,确定倒扣的尺寸。
包括深度、宽度、长度等。
确保倒扣尺寸与其他组件的尺寸匹配,并保证装配时的稳定性和密封性。
4. 设计倒扣的固定方式:倒扣结构通常需要与其他组件进行连接或固定。
根据实际情况选择适当的连接方式,如螺纹连接、卡榫连接等。
确保连接方式牢固可靠,满足产品使用的要求。
5. 考虑材料特性:根据塑料件的材料特性,如硬度、韧性、耐磨性等,选择适合的材料进行设计。
确保材料具有足够的强度和耐久性,能够承受预期的使用环境和力学负荷。
6. 细化设计:根据以上设计要求,进行详细的结构设计。
包括倒扣的形状、尺寸、连接方式等。
使用CAD软件进行模型设计和验证,确保设计的可行性和准确性。
7. 进行样品制作和测试:根据设计完成样品的制作,并进行装配和测试。
验证倒扣结构的稳定性、密封性以及与其他组件的兼容性。
根据测试结果进行必要的修正和改进。
8. 生产和验收:在完成样品测试后,进行大批量生产。
对生产出的塑料件进行质量验收,确保倒扣结构的质量和性能符合设计要求。
总之,通过认真的设计和测试,可以实现满足产品要求的塑料件倒扣结构设计。
同时,在设计过程中要考虑到生产工艺、材料特性和装配要求等因素,确保设计的可行性和实用性。
产品结构设计的注意事项产品结构设计是指在开发和制造产品的过程中,将各个组成部分有机地结合在一起,形成一个完整的整体。
好的产品结构设计可以提高产品的性能和质量,降低成本和生产周期。
以下是产品结构设计的一些注意事项。
一、充分了解产品需求在进行产品结构设计之前,必须充分了解产品的功能需求、性能指标、使用环境等。
只有全面了解产品需求,才能确定合适的结构设计方案。
二、确定模块化设计方案模块化设计是将产品拆分成若干个相对独立的模块,并在设计时考虑模块之间的接口和互联关系。
模块化设计可以提高产品的可维护性和可扩展性,减少设计和制造的复杂度。
三、合理选择材料和工艺在产品结构设计中,选择合适的材料和工艺非常重要。
材料的选择应考虑产品的功能需求、成本和可用性等因素。
工艺的选择应考虑产品的制造难度、工艺流程和设备条件等因素。
四、考虑产品的可靠性和安全性在产品结构设计中,必须考虑产品的可靠性和安全性。
可靠性设计包括选择可靠的零部件和组装方式,考虑产品的使用寿命和故障率等。
安全性设计包括避免尖锐边角、防止电器触电、加强结构强度等。
五、注重产品的外观设计产品的外观设计是产品结构设计中非常重要的一部分。
好的外观设计可以提高产品的竞争力和市场占有率。
外观设计应考虑产品的功能需求、人体工程学和审美要求等。
六、进行仿真和测试验证在进行产品结构设计之后,应进行仿真和测试验证。
通过仿真和测试可以验证设计方案的可行性和优劣,及时发现和解决问题,确保产品的性能和质量。
七、持续改进和优化产品结构设计是一个不断改进和优化的过程。
设计人员应及时关注市场和用户的反馈意见,不断改进产品的结构设计,提高产品的竞争力和用户满意度。
产品结构设计是产品开发和制造过程中非常重要的环节。
通过充分了解产品需求、模块化设计、合理选择材料和工艺、考虑可靠性和安全性、注重外观设计、进行仿真和测试验证以及持续改进和优化,可以设计出性能优良、质量可靠的产品,满足市场和用户需求。
塑料产品结构设计资料目录一、零件壁厚 (1)二、脱模斜度 (4)三、圆角设计 (5)四、加强筋的设计 (7)五、支柱的设计 (8)六、螺丝柱的设计 (9)七、孔的设计 (10)八、止口的设计 (11)九、卡扣的设计 (13)十、反止口的设计 (18)零件设计必须满足来自于零件制造端的要求,对通过注射加工工艺而获得的塑胶件也是如此。
在满足产品功能、质量以及外观等要求下,塑胶件设计必须使得注射模具加工简单、成本低,同时零件注射时间短、效率高、零件缺陷少、质量高,这就是面向注射加工的设计。
现将详细介绍塑胶件设计指南,使得塑胶件设计是面向注射加工的设计。
一、零件壁厚在塑胶件的设计中,零件壁厚是首先考虑的参数,零件壁厚决定了零件的力学性能、零件的外观、零件的可注射性以及零件的成本等。
可以说,零件壁厚的选择和设计决定了零件设计的成功与失败。
1、零件壁厚必须适中由于塑胶材料的特性和注射工艺的特殊性,塑胶件的壁厚必须在一个合适的范围内,不能太薄,也不能太厚。
壁厚太小,零件注射时流动阻力大,塑胶熔料很难充满整个型腔,不得不通过性能更高的注射设备来获得更高的充填速度和注射压力。
壁厚太大,零件冷却时间增加,零件成型周期增加,零件生产效率低;同时过大的壁厚很容易造成零件产生缩水、气孔、翘曲等质量问题。
零件壁厚可根据材料的不同及产品外形尺寸的大小来选择,其范围一般为0.6~6.0mm,常用的厚度一般在1.5~3.0mm之间。
表1是常用塑料件料厚推荐值,小型产品是指最大外形尺寸L<80.0mm,中型产品是指最大外形尺寸为80.0mm<L<200.0mm,大型产品是指最大外形尺寸L>200.0mm。
表1 常用塑料件料厚推荐值(单位mm)2、尽量减少零件壁厚决定塑胶件壁厚的关键因素包括:1)零件的结构强度是否足够。
一般来说,壁厚越大,零件强度越好。
但零件壁厚超过一定范围时,由于缩水和气孔等质量问题的产生,增加零件壁厚反而会降低零件强度。
如何在结构设计中规避注塑缺陷一、常用塑料及用途介绍任何一件工业产品在设计的早期过程中,一定牵涉考虑选择成形物料。
因为在产品生产时、装配时、和完成的时间,物料有着相互影响的关系。
没有不好的材料,只有不好的产品,选材的错误是产品不佳的重要原因。
实际选材不仅关系到产品的质量,还与产品的成本密切相关。
由此可见,正确选材是如何重要。
1.根据用途选材所选材料满足制品的使用要求是首要条件,制品的用途不但包括其应用领域的归属,还应包括制品的使用环境,受力类型、作用方式以及使用对象等等要素。
使用环境是指材料或制品在使用时所经受的温度、温度、介质等条件,还要特别注意日光暴晒和风雨等影响。
如在户外使用的产品就不能选择象ABS等耐候性差的材料。
2.从经济方面考虑选材我们在选材时一般情况下会有多于一种的材料满足我们的使用要求,这时我们就需要从成本方面考虑选材了,当考虑塑料材料的成本时除了比较材料的价格外还要比较成型加工费用,同时要考虑产品的使用寿命和维修费用等。
二、外形设计准则对于塑料件,如外形设计错误,很可能造成模具报废,所以要特别小心。
外形设计要求产品外观美观、流畅,曲面过渡圆滑、自然,符合人体工程。
现实生活中使用的大多数电子产品,外壳主要都是由上、下壳组成,理论上上下壳的外形可以重合,但实际上由于模具的制造精度、注塑参数等因素影响,造成上、下外形尺寸大小不一致,即面刮(面壳大于底壳)或底刮(底壳大于面壳)。
可接受面刮<0.15mm,可接受底刮<0.1mm。
所以在无法保证零段差时,尽量使产品:面壳>底壳。
一般来说,上壳因有较多的按键孔,成型缩水较大,所以缩水率选择较大,一般选0.5%。
底壳成型缩水较小,所以缩水率选择较小,一般选0.4%。
即面壳缩水率一般比底壳大0.1%三、壁厚设计要点塑料材料的壁厚基本原则是尽可能的均匀,在满足使用要求及工艺要求的前提下尽可能的小。
壁厚的大小取决於产品需要承受的外力、是否作为其他零件的支撑、承接柱位的数量、伸出部份的多少以及选用的塑胶材料而定。
产品结构设计注意事项第一章塑胶结构设计规范一、结构设计材料及壁厚1、材料选择2、壳体厚度3、零件厚度设计实例二、产品结构设计脱模斜度1、脱模斜度要点三、产品结构设计加强筋1、加强筋与壁厚的关系2、加强筋设计实例四、产品结构设计螺丝柱和螺丝孔1、柱子的问题2、孔的问题3、“减胶”的问题五、螺丝柱的设计六、产品结构设计止口应用1、止口的作用2、壳体止口的设计需要注意的事项3、面壳与底壳断差的要求七、产品结构设计卡扣应用1、卡扣设计的关键点2、常见卡扣设计第一章塑胶结构设计规范1、材料及厚度1.1、材料的选取a.ABS塑料:高流动性,便宜,适用于对强度要求不太高的部件(不直接受冲击,不承受可靠性测试中结构耐久性的部件),如内部支撑架(键板支架、LCD支架)等。
ABS电镀附着性能好,普遍用在产品电镀的零部件上(如按钮、侧键、装饰件)导航键、电镀装饰件等)。
b.PC+ABS塑料:流动性好,强度不错,价格适中。
适用于作高刚性、高冲击韧性的制件,如框架、壳体等。
常用材料代号:拜尔T85、T65。
c.PC塑料:高强度,价格贵,流动性不好。
适用于对强度要求较高的外壳、按键、传动机架、镜片等。
常用材料代号如:帝人L1250Y、PC2405、PC2605。
d.POM塑料:具有高的刚度和硬度、极佳的耐疲劳性和耐磨性、较小的蠕变性和吸水性、较好的尺寸稳定性和化学稳定性、良好的绝缘性等。
常用于滑轮、传动齿轮、蜗轮、蜗杆、传动机构件等,常用材料代号如:M90-44。
e.PA塑料:坚韧、吸水、但当水份完全挥发后会变得脆弱。
常用于齿轮、滑轮等。
受冲击力较大的关键齿轮,需添加填充物。
材料代号如:CM3003G-30。
f.PMMA塑料:有极好的透光性,在光的加速老化240小时后仍可透过92%的太阳光,室外十年仍有89%,紫外线达78.5% 。
机械强度较高,有一定的耐寒性、耐腐蚀,绝缘性能良好,尺寸稳定,易于成型,质较脆,常用于有一定强度要求的透明结构件,如镜片、遥控窗、导光件等。
塑料件翻盖转轴结构塑料件翻盖转轴结构是一种广泛应用于日常生活中的产品部件,其设计巧妙,实用性强。
本文将从塑料件翻盖转轴结构的概述、设计要点以及实用性分析三个方面进行详细阐述。
一、塑料件翻盖转轴结构概述塑料件翻盖转轴结构,顾名思义,是由塑料制成的翻盖与转轴组成的部件。
在日常生活中,我们常见的抽屉、柜子、箱包等产品中都有应用。
翻盖通过转轴与基座连接,实现翻盖的开合,为用户提供了方便的操作体验。
二、塑料件翻盖转轴结构的设计要点1.转轴尺寸与材质选择转轴尺寸的选择至关重要,过大或过小都会影响到翻盖的开启和关闭的顺畅程度。
通常情况下,转轴直径应与翻盖重量相适应,以确保翻盖在开启和关闭过程中不至于感到吃力。
此外,转轴的材质选择也至关重要,应具有较高的强度和耐磨性,以保证产品的使用寿命。
2.翻盖与基座的连接方式翻盖与基座的连接方式直接影响到翻盖转轴结构的稳定性。
常见的连接方式有螺纹连接、卡扣连接、胶粘连接等。
在设计时,应充分考虑连接方式的可靠性、耐用性以及易于拆卸性。
3.翻盖开启角度与稳定性翻盖开启角度应符合人体工程学原理,便于用户操作。
同时,要保证翻盖在开启和关闭过程中稳定,避免因不稳定导致意外损坏。
一般可通过增加支撑结构、调整转轴位置等方法来实现翻盖的稳定性。
三、塑料件翻盖转轴结构的实用性分析1.应用领域塑料件翻盖转轴结构应用广泛,涵盖了家居、文具、电子、包装等多个领域。
如在家居产品中,抽屉、柜子、箱包等都有应用;在文具领域,如笔筒、文件夹等产品中也大量使用。
2.产品优势塑料件翻盖转轴结构具有以下优势:(1)材质轻便,便于加工和安装;(2)设计灵活,可根据不同产品需求进行定制;(3)开启和关闭顺畅,操作简便;(4)结构稳定,使用寿命长。
3.市场前景随着人们生活品质的提高,对于日常用品的外观和实用性要求也越来越高。
塑料件翻盖转轴结构凭借其优良的性能和广泛的应用领域,市场前景十分广阔。
在未来,随着技术的不断创新和发展,塑料件翻盖转轴结构将会在更多领域得到应用,满足更多消费者的需求。
塑料件壁厚的设计原则以塑料件壁厚的设计原则为标题,我们来探讨一下塑料件壁厚设计的一些基本原则和注意事项。
一、塑料件壁厚的重要性塑料件的壁厚是指塑料制品在各个部位的壁厚大小。
合理的壁厚设计对于塑料件的性能、质量和成本都有着重要影响。
过厚的壁厚会导致材料的浪费和成本的增加,同时还会增加产品的重量和生产周期。
而过薄的壁厚则容易出现变形、开裂等问题,影响产品的使用寿命和性能。
二、设计原则1. 结构性原则:根据塑料件的结构和功能要求合理设计壁厚。
不同的部位和功能对于壁厚的要求是不同的。
例如,需要承受较大压力的部位应该有较厚的壁厚,而需要保持较轻重量的部位可以选择较薄的壁厚。
2. 注塑性原则:考虑到注塑工艺的要求,尽量避免壁厚突变和过于复杂的结构。
壁厚的突变容易导致注塑过程中的流动不均匀,造成缩孔、气泡等问题。
过于复杂的结构会增加注塑成本和生产周期,并且也容易导致产品品质问题。
3. 材料性原则:根据所选用的塑料材料的特性,合理选择壁厚。
不同的塑料材料对于壁厚的要求是不同的。
一般来说,刚性塑料可以选择较薄的壁厚,而柔性塑料需要选择较厚的壁厚以保证产品的强度和耐用性。
4. 结构强度原则:根据塑料件所需的强度和刚度要求,设计合理的壁厚。
一般来说,壁厚越大,产品的强度和刚度也越高。
但是过大的壁厚会导致产品重量增加和成本上升,因此需要在强度和成本之间进行权衡。
5. 工艺性原则:考虑到塑料件的成型工艺,尽量选择符合工艺要求的壁厚。
不同的成型工艺对于壁厚的要求是不同的。
一般来说,注塑成型工艺对于壁厚的要求相对较宽松,挤出和吹塑等工艺对于壁厚的要求相对较严格。
6. 经济性原则:在满足产品性能和质量要求的前提下,尽量选择较薄的壁厚以降低成本。
通过合理设计壁厚可以减少材料的使用量,降低成本。
三、注意事项1. 避免壁厚过于薄或过于厚,需要根据具体的产品要求和材料特性进行合理选择。
2. 尽量避免壁厚的突变和过于复杂的结构,以减少生产工艺问题和提高产品质量。
塑料产品设计规范一、塑料及塑料模的基本概念1.1 塑料的分类及性能塑料的品种很多,可以按其组成、性质和用途等对它们进行分类。
1.1.1 依据其热性能分类按照热性能塑料可以分为热塑性塑料和热固性塑料两类。
塑料受热熔融,冷却后凝固,再次加热又可软化熔融,重新制成产品,这一过程可以反复进行多次,而材料的化学结构基本上不起变化,称之为热塑性塑料。
常用的热塑性塑料有:聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯等。
在一定温度下能变成粘稠状态,但是经过一定时间加热塑制成形后,不会因再度加热而软化熔融。
这是因为在成形过程中聚合物分子之间发生了化学反应,形成了交联网状结构,使之成为不熔的固态,所以只能塑制一次,称为热固性塑料。
常用的热固性塑料有:酚醛树脂、环氧树脂、有机硅塑料等。
1.1.2 依据其用途分类按用途不同塑料可以分为通用塑料、工程塑料和特种塑料。
一般把价格低、产量大、用途广而受力不大的,常用于制造日用品的塑料称为通用塑料。
例如:聚乙烯、聚丙烯、聚氯乙烯、酚醛、聚苯乙烯等等。
把机械强度高、刚性大的,常用于取代钢铁或有色金属材料制造机械零件或工程结构受力件的塑料称为工程塑料。
例如:聚砜、聚酰胺、聚碳酸酯、聚醚酮等等。
另外,将一些具有特殊功能的塑料,称为特种塑料。
例如:导电的聚乙炔、耐高温的聚芳砜等。
随着聚合物合成技术的发展,塑料可以通过采取各种措施来改进性能和增加强度,从而制成新颖的塑料品种。
1.2 塑料成形方法及塑料的种类1.2.1 塑料的成形方法1.注射成形:注射成形技术是据压铸原理发展起来的,是目前塑料加工中最普遍采用的方法之一。
注射成形是间歇操作,成形周期短,生产效率高,产品种类繁多,生产灵活。
其制品已占塑料制品总产量的30%以上。
注射成形的工艺原理是将颗粒状塑料原料置于塑料注射成形机内并加热熔化,通过压力作用注射到模具内定型,经过一段时间冷却后取出制品。
2.吹塑成形:吹塑成形是目前塑料成形生产的主要方法,它包括挤出吹塑,如吹塑薄膜;中空吹塑,如吹塑中空的塑料容器等。
塑料产品设计指南零件设计必须满足来自于零件制造端的要求,对通过注射加工工艺而获得的塑胶件也是如此。
在满足产品功能、质量以及外观等要求下,塑胶件设计必须使得注射模具加工简单、成本低,同时零件注射时间短、效率高、零件缺陷少、质量高,这就是面向注射加工的设计。
现将详细介绍塑胶件设计指南,使得塑胶件设计是面向注射加工的设计。
一、零件壁厚在塑胶件的设计中,零件壁厚是首先考虑的参数,零件壁厚决定了零件的力学性能、零件的外观、零件的可注射性以及零件的成本等。
可以说,零件壁厚的选择和设计决定了零件设计的成功与失败。
1、零件壁厚必须适中由于塑胶材料的特性和注射工艺的特殊性,塑胶件的壁厚必须在一个合适的范围内,不能太薄,也不能太厚。
壁厚太小,零件注射时流动阻力大,塑胶熔料很难充满整个型腔,不得不通过性能更高的注射设备来获得更高的充填速度和注射压力。
壁厚太大,零件冷却时间增加,零件成型周期增加,零件生产效率低;同时过大的壁厚很容易造成零件产生缩水、气孔、翘曲等质量问题。
零件壁厚可根据材料的不同及产品外形尺寸的大小来选择,其范围一般为0.6~6.0mm,常用的厚度一般在1.5~3.0mm之间。
表1是常用塑料件料厚推荐值,小型产品是指最大外形尺寸L<80.0mm,中型产品是指最大外形尺寸为80.0mm<L<200.0mm,大型产品是指最大外形尺寸L>200.0mm。
表1 常用塑料件料厚推荐值(单位mm)2、尽量减少零件壁厚决定塑胶件壁厚的关键因素包括:1)零件的结构强度是否足够。
一般来说,壁厚越大,零件强度越好。
但零件壁厚超过一定范围时,由于缩水和气孔等质量问题的产生,增加零件壁厚反而会降低零件强度。
2)零件成型时能否抵抗脱模力。
零件太薄,容易因顶出而变形。
3)能否抵抗装配时的紧固力。
4)有金属埋入件时,埋入件周围强度是否足够。
一般金属埋入件与周围塑胶材料收缩不均匀,容易产生应力集中,强度低。
5)零件能否均匀分散所承受的冲击力。
注塑件结构设计要点吕文果塑料是四大工程材料(钢铁、木材、水泥和塑料之一,它是以高分子量的合成树脂为主要成份,在一定条件下可塑制成一定形状且在常温下保持形状不变的材料。
塑料总体分为热固性和热塑性两种,区分两种塑料的规则一般是在一定温度加热一段时间或加入硬化剂后有无发生化学反应而硬化,发生化学反应而硬化的叫热固性塑料,反之则叫热塑性塑料。
它广泛应用于工业、农业、国防等行业。
但是塑料与其它材料相比又具有自己的一些特有的性能,这些性能决定它的一些特有的使用场合、加工方法、生产工艺等。
一般来说塑料的成型方法有以下几种:注射成型、挤压成型、压铸成型、发泡、吹塑、真空吸塑、中空成型、机加工等。
由于塑料的种类及性能、使用场合、成型工艺等条件的影响,对塑料件的结构设计也就自然会产生一些特殊的要求及方法。
由于热固性塑料与热塑性塑料最终的形态不同,结构设计过程中的好多要求也就不一样,涉及的范围相当之大。
下面我们就针对注射成型的热塑性塑料件的结构设计从胶模斜度、塑件的壁厚、加强筋、支承柱、孔、公差等方面作一些初略的讨论。
一、壁厚合理确定塑件的壁厚是非常重要的,其它的形体和尺寸如加强筋和圆角等都是以壁厚为参照的。
塑料产品的壁厚主要决定于塑料的使用要求,即产品需要承受的外力、是否作为其他零件的支撑、承接柱位的数量、伸出部份的多少以、选用的塑胶材料、重量、电气性能、尺寸稳定性以及装配等各项要求而定。
如果壁厚不均匀,会使塑料熔体的充模速度和冷却收缩不均匀,由此会引起凹陷、真空泡、翘曲、甚至开裂。
壁厚均匀是塑料件设计的一大原则。
一般的热塑性塑料壁厚设计在1~6mm范围。
最常用的为2~3mm。
大型件也有超过6mm的。
表1是一些热塑性塑料壁厚的推荐值。
在取较小壁厚时,要考虑制品在使用和装配时的强度和刚度。
从经济角度来看,过厚的产品不但增加物料成本,还延长生产周期。
尽量使塑件各处的壁厚均匀,否则会引起收缩不均匀使塑件产生变形和气泡、凹陷的工艺问题。
塑料产品结构设计注意事项 1、塑料产品开发的结构设计原则 ⑴、结构设计要合理:装配间隙合理,所有插入式的结构均应预留间隙;保证有足够的强度和刚度(安规测试),并适当设计合理的安全系数。 ⑵、塑件的结构设计应综合考虑模具的可制造性,尽量简化模具的制造。 ⑶、塑件的结构要考虑其可塑性,即零件注塑生产效率要高,尽量降低注塑的报废率。 ⑷、考虑便于装配生产(尤其和装配不能冲突)。 ⑸、塑件的结构尽可能采用标准、成熟的结构,所谓模块化设计。 ⑹、能通用/公用的,尽量使用已有的零件,不新开模具。 ⑺、兼顾成本。 2、材料的选取
⑴、ABS:高流动性,便宜,适用于对强度要求不太高的部件(不直接受冲击,不承受可靠性测试中结构耐久性的部件),如内部支撑架(键板支架、LCD支架)等。还有就是普遍用在电镀的部件上(如按钮、侧键、导航键、电镀装饰件等)。目前常用奇美PA-757、PA-777D等 。 ⑵、PC+ABS:流动性好,强度不错,价格适中。适用于作高刚性、高冲击韧性的制件,如框架、壳体等。常用材料代号:拜尔T85、T65。 ⑶、PC:高强度,价格贵,流动性不好。适用于对强度要求较高的外壳、按键、传动机架、镜片等。常用材料代号如:帝人L1250Y、PC2405、PC2605。 ⑷、POM具有高的刚度和硬度、极佳的耐疲劳性和耐磨性、较小的蠕变性和吸水性、较好的尺寸稳定性和化学稳定性、良好的绝缘性等。常用于滑轮、传动齿轮、蜗轮、蜗杆、传动机构件等,常用材料代号如:M90-44。 ⑸、PA坚韧、吸水、但当水份完全挥发后会变得脆弱。常用于齿轮、滑轮等。受冲击力较大的关键齿轮,需添加填充物。材料代号如:CM3003G-30。 ⑹、PMMA有极好的透光性,在光的加速老化240小时后仍可透过92%的太阳光,室外十年仍有89%,紫外线达78.5%。机械强度较高,有一定的耐寒性、耐腐蚀,绝缘性能良好,尺寸稳定,易于成型,质较脆,常用于有一定强度要求的透明结构件,如镜片、遥控窗、导光件等。常用材料代号如:三菱VH001。 3、结构中常见的问题注意点
3.1、塑料零件的脱模斜度: 参 照 图 材料名称 型腔(a1) 型芯(a2) 聚酰胺(普通) 20~40′ 25~40′ 聚酰胺(增强) 20~50′ 20~40′ 聚乙烯 25~45′ 20~45′ 聚甲醛 35~1°30′ 30~1° 聚氯醚 25~45′ 20~45′ 聚碳酸酯 35~1° 30~50′ 聚苯乙烯 35~1°30′ 30~1° 有机玻璃 35~1°30′ 30~1° ABS塑料 40~1°20′ 30~1° 脱模角的大小是没有一定的准则,多数是凭经验和依照产品的深度来决定。此外,成型的方式,壁厚和塑料的选择也在考虑之列。一般来说,对模塑产品的任何一个侧面,都需有一定量的脱模斜度,以便产品从模具中顺利脱出。脱模斜度的大小一般以0.5°~1°居多。具体选择脱模斜度注意以下几点: ⑴、塑件表面是光面的,尺寸精度要求高的,收缩率小的,应选用较小的脱模斜度,如0.5°。 ⑵、较高、较大的尺寸,根据实际计算取较小的脱模斜度。 ⑶、塑件的收缩率大的,应选用较大的斜度值。 ⑷、塑件壁厚较厚时,会使成型收缩增大,脱模斜度应采用较大的数值。 ⑸、透明件脱模斜度应加大,以免引起划伤。一般情况下,PS料脱模斜度应不少于2.5°~3°,ABS及PC料脱模斜度应不小于1.5°~2°。 ⑹、带皮纹、喷砂等外观处理的塑件侧壁应根据具体情况取2°~5°的脱模斜度,视具体的皮纹深度而定。皮纹深度越深,脱模斜度应越大。 ⑺、结构设计成对插时,插穿面斜度一般为1°~3°。 ⑻、取斜度的方向,一般内孔以小端为准,符合图样,斜度由扩大方向取得,外形以大端为准,符合图样,斜度由缩小方向取得。 ⑼、一般情况下,脱模斜度不包括在塑件公差范围内。 ⑽、外壳面脱模斜度大于等于3°。除外壳面外,壳体其余特征的脱模斜度以1°为标准脱模斜度。特别的也可以按照下面的原则来取:低于3mm高的加强筋的脱模斜度取0.5°,3~5mm取1°,其余取1.5°;低于3mm高的腔体的脱模斜度取0.5°,3~5mm取1°,其余取1.5°。 3.2、塑件壁厚确定以及壁厚处理 合理的确定塑件的壁厚是很重要的。塑件的壁厚首先决定于塑件的使用要求:包括零件的强度、质量成本、电气性能、尺寸稳定性以及装配等各项要求,一般壁厚都有经验值,参考类似即可确定,其中注意点如下: ⑴、塑件壁厚应尽量均匀,避免太薄、太厚及壁厚突变,若塑件要求必须有壁厚变化,应采用渐变或圆弧过渡,否则会因引起收缩不均匀使塑件变形、影响塑件强度、影响注塑时流动性等成型工艺问题。厚薄差别尽量控制在基本壁厚的25%以内,整个部件的最小壁厚不得小于0.4mm,且该处背面不是A级外观面,并要求面积不得大于100mm²。 ⑵、塑件壁厚一般在1~5mm范围内。而最常用的数值为2~3mm。 ⑶、尽量不要将加强筋和螺钉柱设计的太厚,一般建议取本体壁厚的一半较保险,否则容易引起缩影等外观问题。 ⑷、尽量不要将零件设计成单独的平板,尺寸很小另论,否则变形导致零件不平整。 ⑸、塑胶制品的最小壁厚及常见壁厚推荐值见下表。 塑料料制品的最小壁厚及常用壁厚推荐值(单位mm) 工程塑料 最小壁厚 小型制品壁厚 中型制品壁厚 大型制品壁厚 尼龙(PA) 0.45 0.76 1.50 2.40~3.20 聚乙烯(PE) 0.60 1.25 1.60 2.40~3.20 聚苯乙烯(PS) 0.75 1.25 1.60 3.20~5.40 改性聚苯乙烯 0.75 1.25 1.60 3.2~5.4 有机玻璃(PMMA) (372) 0.80 1.50 2.20 4.00~6.50 聚丙烯(PP) 0.85 1.45 1.75 2.40~3.20 聚碳酸酯(PC) 0.95 1.80 2.30 3.00~4.50 聚甲醛(POM) 0.8 1.40 1.60 2.40~3.20 聚砜(PSU) 0.95 1.80 2.30 3.00~4.50 ABS 0.80 1.50 2.20 2.40~3.20 PC+ABS 0.75 1.50 2.20 2.40~3.20 聚氯乙烯(硬) 1.15 1.60 1.80 3.2~5.8 聚氯乙烯(软) 0.85 1.25 1.50 2.4~3.2 聚酰胺 0.45 0.75 1.50 2.4~3.2 聚苯醚 1.20 1.75 2.50 3.5~6.4 聚砜 0.95 1.80 2.30 3.0~4.5 氯化聚醚 0.90 1.35 1.80 2.5~3.4 醋酸纤维素 0.70 1.25 1.90 3.2~4.8 乙基纤维素 0.90 1.25 1.60 2.4~3.2 丙烯酸类 0.70 0.90 2.40 3.0~6.0 3.3、塑件加强
为了确保塑件的强度和刚性,而又不致使塑件的壁厚过厚,可以在塑件的适当部位设置加强筋。加强筋还可以避免塑件的变形,在某些情况下,加强筋还可以改善塑件成型过程中塑料流动的情况。 ⑴、加强筋的厚度不应大于壁厚的1/2,以免引起塑件表面缩影;同时从成型流动性考虑,最小不宜低于0.8mm。 ⑵、在必须采用较大的加强筋时,在容易形成缩痕的部位可以设计成纹理,来遮盖缩痕。 ⑶、加强筋应加脱模斜度,筋应标注大端尺寸(但是考虑加工工艺,3D图上可不做出,模具加工时EDM加工会自然产生斜度,高精度零件另论) ⑷、除特殊要求外,加强筋应尽可能矮,加强筋的高不要超过(3~4)×T(T为零件厚度) 小技巧:把表面制成拱形和波形也是增加强度和刚性的方法之一。 ⑸、加强筋厚度与塑件壁厚的关系 当(A-B)/B×100%<8%时,就不会缩水 3.3.1、转角部位加R 在塑件设计过程中,为了避免应力集中,提高塑件强度,改善塑件的流动情况及便于脱模,在塑件的各面或内部连接处,应采用圆弧过度。另外,塑件上的圆角对于模具制造和机械加工及提高模具强度,也是不可少的。在塑件结构上无特殊要求时,塑件的各转角处均应有半径不小于0.5~1mm的圆角。允许的情况下,圆角应尽量大。 对于内外表面的拐角处,外圆角应为内圆角加壁厚,可减少内应力,并能保证壁厚均匀一致。 塑料产品的尖锐转角常常是造成产品破坏的最大因素。消除产品尖锐的转角,不但可以降低该处的应力集中,提高产品的结构强度,也可以使得塑料材料成形时有流线型的流路,以及成品更易于顶出。另外,从模具的观点,圆角也是有益于模具加工和模具强度。 产品所有的内侧和外侧的周边转角园弧都必须尽可能的大,以消除应力集中; 但太大圆弧可能造成缩水,特别是在肋或突柱根部转角园弧。原则上,最小的转角园弧为0.3~0.8mm。 综上所述,园角对于成形品的设计会有以下的一些优点: ⑴、圆角使得成形品提高强度以及降低应力。 ⑵、尖锐转角的消除,自动地降低了龟裂的可能性,就是提高对突然的震动或冲击的抵抗能力。 ⑶、塑料的流动状态将被重大的改善,圆形的转角,使得塑料能够均匀,没有滞留现象以及较少应力的流入模穴内所有的断面,并且改善成形品断面的密度之均匀性。 ⑷、模具强度获得改善,以避免模具内尖锐的转角,造成应力集中,导致龟裂,特别是对于需要热处理或受力较高的部分,圆弧转角更为重要。 圆角加大,应力集中减少。 内圆角R<0.3T----应力剧增。 内圆角R>0.8T----几乎无应力集中。
3.3.2、增设加强肋 肋根部厚度约为0.4~0.6T PC,PPO T<0.6T
PA,PE T<0.5T PMMA,ABS T<0.5T PS T<0.6T
肋间间距>4T 肋高L<3T 3.3.3、利用变化肉厚及形状 ⑴、侧壁加强:既可防止变形,也可改善流动性。 ⑵、边缘加强:用变化的边缘形状来加强,防止变形。 ⑶、周边加强:较大的平面易发生翘曲变形,用周边凹凸或波浪形来防止变形。 ⑷、底部加强:箱形件底部,为加强及防变形通常在造型上做局部沉台或凸起造型。