二次函数的性质总结
- 格式:docx
- 大小:36.74 KB
- 文档页数:3
二次函数总结二次函数是数学中一种常见且重要的函数形式。
它的一般形式可以表示为f(x) = ax^2 + bx + c,其中a、b和c为常数,且a不等于零。
二次函数是一个拱形曲线,它在数学、物理和经济等领域都有广泛的应用。
在本文中,将对二次函数的性质、图像、方程以及实际问题中的应用进行总结和探讨。
一、二次函数的性质二次函数有一些重要的性质,其中最基本的是二次项的系数a 决定了函数的开口方向。
当a大于零时,二次函数的图像开口向上,形成一个U型;当a小于零时,二次函数的图像开口向下,形成一个倒U型。
另一个重要性质是二次函数的对称轴与顶点。
对称轴是函数图像上对称的线,它通过顶点,并且与x轴垂直。
顶点是二次函数图像的最低点或最高点,它的横坐标可以通过-b/2a来确定。
二、二次函数的图像二次函数的图像是一个拱形曲线,其形状由a的正负决定。
当a大于零时,图像开口向上,当a小于零时,图像开口向下。
图像的形状还与常数b和c的取值相关。
常数b决定了图像在x方向上的平移,即左右移动;常数c决定了图像在y方向上的平移,即上下移动。
通过改变这些常数的取值,可以使图像的位置和形状发生变化,从而满足不同的条件。
三、二次函数的方程解二次函数的方程是一个重要的应用技巧,因为它可以帮助我们找到函数图像与坐标轴的交点。
二次函数的方程可以通过将f(x)设置为零来表示,即ax^2 + bx + c = 0。
解这个方程可以使用公式x = (-b ± √(b^2 - 4ac)) / 2a,也称为二次方程的根式解。
这个解式给出了二次函数与x轴的交点的横坐标。
方程的解有三种情况:当Δ = b^2 - 4ac大于零时,方程有两个不同的实数解;当Δ等于零时,方程有一个实数解;当Δ小于零时,方程没有实数解。
四、二次函数在实际问题中的应用二次函数在实际问题中有广泛的应用。
其中一个常见的应用是抛物线的运动模型。
当我们抛出一个物体时,它的运动轨迹可以用二次函数来描述。
初中数学二次函数知识点总结一、二次函数的定义和性质:二次函数是形如f(x) = ax² + bx + c(a ≠ 0)的函数,其中a、b、c为常数,且a 的值决定了抛物线的开口方向。
1. 二次函数的图像是一条抛物线,可以分为三种情况:a)当a > 0时,抛物线开口向上,函数的最小值为c;b)当a < 0时,抛物线开口向下,函数的最大值为c;c)当a = 0时,函数为线性函数,图像为一条直线。
2. 抛物线的对称轴方程为x = -b/(2a)。
3. 抛物线的顶点坐标为对称轴上的点,可以通过对称轴方程求得。
4. 当抛物线开口向上时,函数的值随着x的增大而增大;当抛物线开口向下时,函数的值随着x的增大而减小。
5. 当二次函数与x轴交点时,即f(x) = 0,可以通过因式分解、配方法或求根公式求得x的值。
二、二次函数的图像及其性质的应用:1. 求解二次不等式:可以通过函数图像的性质进行解题,即判断图像与x轴的交点的情况。
2. 求解实际问题:如抛物线模型、最值问题等,将实际问题转化为二次函数的问题,再通过函数图像的性质求解。
三、二次函数的基本变形:1. y = a(x - h)² + k:顶点坐标为(h, k),对称轴方程为x = h,图像开口方向与a 的正负有关。
2. y = ax² + bx + c + d:在基本函数的基础上进行平移,平移量为(d, d)。
3. y = a(x - h)² + k + d:在基本函数的基础上进行平移和伸缩,平移量为(d, d),伸缩量为a。
4. y = a(x - h)² + k + d:在基本函数的基础上进行平移、伸缩和翻转,平移量为(d, d),伸缩量为a,翻转轴为直线x = h。
四、二次函数的相关概念:1. 零点:即函数与x轴交点的横坐标,可以通过因式分解、配方法或求根公式求得。
2. 最值:当二次函数开口向上时,函数的最小值为c;开口向下时,函数的最大值为c。
二次函数的性质及应用二次函数是一类形式为y = ax² + bx + c(a ≠ 0)的函数,它在数学中具有重要的性质和广泛的应用。
本文将介绍二次函数的性质以及它在实际问题中的应用。
一、二次函数的性质1. 函数图像二次函数的图像通常为抛物线,具体的形状取决于a的正负和大小:- 当a > 0时,图像开口向上,形状类似于“U”字型;- 当a < 0时,图像开口向下,形状类似于倒置的“U”字型。
2. 对称性二次函数关于其顶点具有对称性。
设二次函数的顶点坐标为(h, k),则函数图像关于直线x = h对称。
3. 零点与判别式二次函数的零点即为方程ax² + bx + c = 0的解。
一元二次方程的判别式Δ = b² - 4ac可以判断二次函数的零点情况:- 当Δ > 0时,方程有两个不相等的实根,函数图像与x轴有两个交点;- 当Δ = 0时,方程有两个相等的实根,函数图像与x轴有一个切点;- 当Δ < 0时,方程无实根,函数图像与x轴无交点。
4. 极值点二次函数在最高点(开口向下)或最低点(开口向上)取得极值。
当二次函数开口向上时,极小值等于函数的最低点y = k;当二次函数开口向下时,极大值等于函数的最高点y = k。
二、二次函数的应用1. 物理学应用二次函数在物理学中有广泛的应用,例如抛物线运动。
抛物线运动可以用二次函数的形式进行建模,通过分析和解决相关的二次函数问题,可以求得抛物线物体的最高点、运动轨迹等信息。
2. 经济学应用经济学中的一些问题也可以通过二次函数来描述和解决。
比如,成本函数和利润函数常常使用二次函数来表示,通过求解这些二次函数的极值点,可以确定最低成本、最大利润等关键数据。
3. 工程学应用工程学中的一些问题也可以用二次函数进行建模。
比如,在建筑设计中,可以用二次函数来描述一个拱形或穹顶的形状;在电子工程中可以通过二次函数来描述某些电子元件的特性和响应等等。
二次函数的性质总结二次函数是高中数学中一类研究较深的函数,它的性质研究内容涉及范围较广。
总的来说,二次函数的性质可以归纳为以下八条:一、二次函数的定义二次函数是指以二次项即x2作为最高项的多项式的函数,表示为y=ax2+bx+c(a≠0),其中a、b、c为常数。
为了使二次函数更容易分析,我们引入一个概念叫做抛物线,把y=ax2+bx+c函数图像想象成一个抛物线,便于绘制图像,更好的研究它的性质。
二、抛物线特点物线有着不同的特点:1、a>0:抛物线是一个向上开口的曲线;2、a<0:抛物线是一个向下开口的曲线;3、抛物线的顶点是一个关于x轴对称的点,记为(x1,y1);4、抛物线的顶点的y坐标值为:y1=a*x1*x1+b*x1+c;5、抛物线的焦点为(x2,y2),x2=-b/2a,y2=a*x2*x2+b*x2+c;6、抛物线的焦点到顶点的距离为:x1-x2=b/2a;7、抛物线的焦点到顶点的距离平方为:(x1-x2)2+y1-y2=b2/4a2。
三、二次函数的图像特点从抛物线的特点可知,二次函数的图像也有自己特定的特点,如:1、a>0时,在顶点向右的方向,函数的值单调递增;在顶点向左的方向,函数的值单调递减;2、a<0时,在顶点向右的方向,函数的值单调递减;在顶点向左的方向,函数的值单调递增;3、在抛物线开口的方向,函数值永远都不会超过顶点值;4、函数的零点为凹点,此时切线平行x轴;5、函数的导数有着自己特定的性质:当y=ax2+bx+c时,函数的导数为y′=2ax+b,同时,x=-b/2a时,函数的导数为零;6、a>0时,函数的图像的最小值为顶点的 y标值,函数的图像的最大值为无穷大;a<0时,函数的图像的最大值为顶点的y坐标值,函数的图像的最小值为负无穷大;7、函数的极值点为凹点。
、二次函数的特点从图像可以看出,二次函数具有以下特点:1、当a>0时,此函数是一个单调递增函数,有一个唯一的极大值,记为y=max;2、当a<0时,此函数是一个单调递减函数,有一个唯一的极小值,记为y=min;3、当a=0时,此函数是一个线性函数,没有极值点;4、此函数向x轴对称,其对称轴为y轴;5、把此函数图像想象成一个抛物线,给出的抛物线的特点可以进一步用来描述此函数的性质。
2.已知二次函数 的图象如图所示, 有以下结论: ① ;② ;③ ;④ ;⑤ 其中所有正确结论的序号是( ) A. ①②B. ①③④C. ①②③⑤D. ①②③④⑤3.二次函数 的图象如图所示, 则下列关系式中错误的是( ) A. a <0 B. c >0 C. >0 4、D. >0图12为二次函数 的图象, 给出下列说法:① ;②方程 的根为 ;③ ;④当 时, y 随x 值的增大而增大;⑤当 时, . 其中, 正确的说法有 .(请写出所有正确说法的序号)5.已知=次函数y =ax +bx+c 的图象如图. 则下列5个代数式: ac, a+b+c, 4a -2b+c, 2a+b, 2a -b 中, 其值大于0的个数为( ) A. 2B 3C 、4D 、5四、二次函数解析式的确定 例4.求二次函数解析式:(1)抛物线过(0, 2), (1, 1), (3, 5);(2)顶点M (-1, 2), 且过N (2, 1);(3)已知抛物线过A (1, 0)和B (4, 0)两点, 交y 轴于C 点且BC =5, 求该二次函数的解析式。
(1) 练习: 根据下列条件求关于x 的二次函数的解析式 当x=3时, y 最小值=-1, 且图象过(0, 7)图象过点(0, -2)(1, 2)且对称轴为直线x=图象经过(0, 1)(1, 0)(3, 0)五、二次函数与x 轴、y 轴的交点(二次函数与一元二次方程的关系)11 1 Oxy已知抛物线y=x2-2x-8,(1)求证: 该抛物线与x轴一定有两个交点;(2)若该抛物线与x轴的两个交点为A、B, 且它的顶点为P, 求△ABP的面积。
2、1.二次函数y=x2-2x-3图象与x轴交点之间的距离为如图所示, 二次函数y=x2-4x+3的图象交x轴于A、B两点, 交y 轴于点C,则△ABC的面积为( )A.6B.4C.3D.13.若二次函数y=(m+5)x2+2(m+1)x+m的图象全部在x轴的上方, 则m 的取值范围是六、直线与二次函数的问题例6 已知: 二次函数为y=x2-x+m, (1)写出它的图像的开口方向, 对称轴及顶点坐标;(2)m为何值时, 顶点在x轴上方, (3)若抛物线与y轴交于A, 过A作AB∥x轴交抛物线于另一点B, 当S△AOB=4时, 求此二次函数的解析式.1.抛物线y=x2+7x+3与直线y=2x+9的交点坐标为。
二次函数性质总结1。
定义域、值域:任意的实数都是二次函数的定义域;对任意的实数,在y=x( t)图象上的任一点P( x)都有唯一确定的位置。
2。
对称性:二次函数图象关于原点对称。
3。
顶点坐标公式: y=kx+b=kx。
2。
对称性:二次函数图象关于原点对称。
3。
顶点坐标公式:y=kx+b=kx。
4。
奇偶性:若一个二次函数y=kx+b=0,则该函数一定是偶函数,它的图象关于y轴对称,这与奇函数的定义相同。
4。
平移性:设二次函数的解析式为y=kx+b=kx+b,如果将k=0,即可得到原二次函数的图象平行于y轴,因此二次函数图象具有平移性。
5。
周期性:二次函数的图象关于点K=0对称,因此二次函数在[0, K]上单调增加,且其周期为2π( k=0, 1)。
6。
最值:过(0, 1)并且不等于K的任何实数x, y, z都是二次函数的最值;其中最大值是y=0,最小值是y=K。
7。
最值,最大值,值域的求法:二次函数的最大值和最小值分别是:y=kx+b=kx;当k=0时, y=kx+b=kx,根据一元二次方程求最大值和最小值的方法,列出方程组: y=kx+b=kx,解得b, k为正整数,且b>0,所以y的最大值为最大值= k;当k=0时, y=kx+b=kx,根据方程组解得k>0,所以y的最小值为最小值=k。
二次函数值域为:当k=0,且b>0时,二次函数的值域是[-b, b];当k=0,且b<0时,二次函数的值域是[b, b]。
因此y=kx+b=kx是二次函数值域的一个充要条件。
8。
最大值和最小值的求法:最大值和最小值分别是: y=kx+b=kx;当k=0时, y=kx+b=kx,根据一元二次方程求最大值和最小值的方法,列出方程组: y=kx+b=kx,解得b, k 为正整数,且b>0,所以y的最大值为最大值=k;当k=0时,y=kx+b=kx,根据方程组解得k>0,所以y的最小值为最小值=k。
二次函数知识点总结二次函数是数学中一种重要的函数形式,具有较广泛的应用。
本文将详细介绍二次函数的定义、性质、图像与变换、解析式、根与判别式、与其他函数的关系以及应用等知识点。
一、定义与性质:二次函数是指形式为f(x) = ax^2 + bx + c的函数,其中a、b、c为已知常数,且a ≠ 0。
二次函数的定义域为全体实数集R,值域根据a的正负值有所不同。
二次函数的图像为抛物线,开口向上或向下。
性质1:二次函数f(x) = ax^2 + bx + c的导数为f'(x) = 2ax + b。
性质2:当二次函数的对称轴为x=h时,最高/最低点的横坐标为x=h,纵坐标为f(h)。
性质3:如果a>0,则抛物线开口向上,最低点为最小值;如果a<0,则抛物线开口向下,最高点为最大值。
二、图像与变换:二次函数的图像为一条抛物线,关键要素有顶点、对称轴、开口方向以及最高/最低点等。
1.顶点:二次函数的顶点坐标为(-b/2a,f(-b/2a)),其中-b/2a为对称轴的横坐标,f(-b/2a)为对称轴上的纵坐标。
2.对称轴:二次函数的对称轴是垂直于x轴的一条线,其方程为x=-b/2a。
3.开口方向:二次函数的开口方向由二次项系数a的正负决定。
若a>0,开口向上;若a<0,开口向下。
4.最高/最低点:顶点即为最高或最低点,纵坐标为二次函数的最值。
变换1:平移变换二次函数f(x) = ax^2 + bx + c关于横轴上下平移h个单位的函数为f(x) = a(x-h)^2 + bx + c。
变换2:垂直伸缩与翻转二次函数f(x) = ax^2 + bx + c关于纵轴上下压缩k倍且翻转ξ度的函数为f(x) = a(k(x-ξ))^2 + bx + c。
三、解析式:二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b、c为已知常数,且a ≠ 0。
根据实际问题的要求,可以确定二次函数的具体形式。
二次函数性质总结二次函数是高中数学中经常遇到的一个函数类型,它的一般形式为y=ax^2+bx+c,其中a、b、c为常数,a不等于0。
二次函数的性质有很多,下面就逐一进行总结:一、基本性质:1. 对称性:二次函数在抛物线的顶点处有对称轴,对称轴是图像的一条垂直线。
如果二次函数是y=ax^2+bx+c,则对称轴的方程为x=-b/2a。
2. 零点:二次函数的零点是函数图像与x轴的交点,即使f(x)=0的解。
对于y=ax^2+bx+c,可以用求根公式x=[-b±√(b^2-4ac)]/2a来求解。
3. 导函数:二次函数的导函数是一次函数,即f'(x)=2ax+b。
导数可以用来研究函数的变化趋势、极值等性质。
二、图像特征:1. 开口方向:当a>0时,二次函数的抛物线开口向上,称为正向抛物线;当a<0时,二次函数的抛物线开口向下,称为负向抛物线。
2. 顶点坐标:对于y=a(x-h)^2+k形式的二次函数,顶点坐标为(h,k),其中h为对称轴的横坐标,k为对称轴的纵坐标。
3. 最值:当二次函数开口向上时,最小值为顶点值;当二次函数开口向下时,最大值为顶点值。
4. 平移变换:二次函数的图像可以通过平移变换来进行位置调整,平移的方式有水平、垂直两个方向,可以通过更改常数c、h、k来实现。
三、根性质:1. 根的个数:二次函数的根的个数不会超过2个。
当判别式D=b^2-4ac大于0时,方程有两个不相等的实数根;当判别式D=0时,方程有两个相等的实数根;当判别式D小于0时,方程没有实数根。
2. 根的关系:如果一个二次函数有两个根x1和x2,则有以下性质:根的和x1+x2=-b/a,根的积x1x2=c/a。
3. 根的位置:根的位置与二次函数的开口方向有关。
当二次函数开口向上时,如果根存在,则根的值在顶点的两侧;当二次函数开口向下时,根的值在顶点的外侧。
四、函数变化:1. 单调性:二次函数的单调性与二次项系数a的正负有关。
二次函数的图像和性质1.二次函数的图像与性质:解析式a 的取值开口方向函数值的增减顶点坐标对称轴图像与y轴的交点y = ax2当a0时;开口向上;在对称轴的左侧y随x的增大而减小,在对称轴的右侧 y 随 x 的增大而增大。
当a0时;开口向下;在对称轴的左侧y随 x 的增大而增大,在对称轴的右侧 y 随 x 的增大而减小。
(0,0)x=0(0,0)y = ax2+ k(0,c)x =0 (0,k)y = a( x + h)2(- h,0)x = - h(0,ah2)y=a(x+h)2+k(- h,k)x = - h(0,ah2+ k)y = ax2+bx+c b 4ac - b2 (- , )2a4a b x=-2a(0,c)2.抛物线的平移法则:(1)抛物线y = ax2+ k的图像是由抛物线y = ax2的图像平移k个单位而得到的。
当k 0时向上平移;当k0时向下平移。
(2)抛物线y = a(x + h)2的图像是由抛物线y = ax2的图像平移h个单位而得到的。
当h0时向左平移;当h0时向右平移。
(3)抛物线的y = a(x + h)2+ k图像是由抛物线y = ax2的图像上下平移k个单位,左右平移h个单位而得到的。
当k0时向上平移;当k0时向下平移;当h0时向左平移;当h0 时向右平移。
3.二次函数的最值公式:形如y =ax + bx + c的二次函数。
当a0时,图像有最低点,函数有最小值4ac-b24ac-b2y最小值=4a;当a0时,图像有最高点,函数有最大值,y最大值=4a;4.抛物线y =ax + bx + c与y轴的交点坐标是(0,c)5.抛物线的开口大小是由a决定的,a越大开口越小。
6.二次函数y =ax + bx + c的最值问题:(1)自变量的取值范围是一切实数时求最值的方法有配方法、公式法、判别式法。
(2)自变量的取值范围不是一切实数:b 自变量的取值范围不是一切实数时,应当抓住对称轴x = -2a ,把他与取值范围相比较,再进行求最值。
二次函数的性质知识点总结二次函数是高中数学中重要的概念之一,它在各个领域都有广泛的应用。
了解二次函数的性质是理解和解决相关问题的关键。
本文将对二次函数的性质进行详细总结,包括定义、图像特征、导数、极值点、零点和符号规律等方面的知识点。
一、二次函数的定义二次函数是指以自变量的平方作为最高次幂的一类函数。
通常的形式为:f(x) = ax² + bx + c,其中a、b、c为常数,且a ≠ 0。
二、二次函数的图像特征1. 开口方向:二次函数的图像是一个拱形,其开口方向取决于二次系数a的正负性。
如果a > 0,则图像开口向上;如果a < 0,则图像开口向下。
2. 对称轴:二次函数的图像关于对称轴对称。
对称轴的方程为x = -b / (2a)。
3. 零点:二次函数的零点是函数对应的方程f(x) = 0的解。
二次函数的零点可能有0个、1个或2个。
4. 极值点:如果二次函数的开口向上,那么它的最低点为最小值点;如果二次函数的开口向下,那么它的最高点为最大值点。
5. 单调性:二次函数在对称轴两侧有不同的单调性。
三、二次函数的导数对于二次函数f(x) = ax² + bx + c,其导数函数为f'(x) = 2ax + b。
导数函数的图像表示了原二次函数的斜率变化情况。
四、二次函数的极值点1. 极值点的存在性:二次函数存在极值点,当且仅当a ≠ 0。
当a > 0时,函数的最小值位于极值点上;当a < 0时,函数的最大值位于极值点上。
2. 极值点的横坐标:极值点的横坐标可以通过对称轴的方程得到,即x = -b / (2a)。
3. 极值点的纵坐标:将极值点的横坐标带入原函数得到对应的纵坐标。
五、二次函数的零点1. 零点的判定:二次函数的零点即为使函数值为零的自变量取值。
可以通过解二次方程ax² + bx + c = 0来求得零点。
2. 零点的个数:二次函数的零点个数可能为0个、1个或2个,取决于二次方程的判别式Δ = b² - 4ac的正负性。
二次函数的性质总结
二次函数是一种特殊的函数形式,由方程 $y = ax^2 + bx +
c$ 表示,其中 $a$,$b$,$c$ 是实数且 $a \neq 0$。
以下是二次函数的一些重要性质总结:
1. 函数图像形状
二次函数的图像形状是一个抛物线。
当 $a > 0$ 时,图像开口向上;当 $a < 0$ 时,图像开口向下。
2. 零点或根
二次函数的零点或根是使得函数值为零的 $x$ 值。
通过求解方程 $ax^2 + bx + c = 0$,我们可以找到二次函数的零点。
3. 完备平方
对于二次函数 $y = ax^2 + bx + c$,如果它的系数满足 $b^2 - 4ac = 0$,则可以将其写成一个完全平方形式。
完全平方形式为$(mx + n)^2$,其中 $m$ 和 $n$ 是实数。
4. 焦点和直线
对于二次函数 $y = ax^2 + bx + c$,如果 $a > 0$,则它的图像会有一个最低点(最小值),该点被称为焦点。
焦点的坐标为$\left(-\frac{b}{2a}, \frac{4ac - b^2}{4a}\right)$。
与该焦点对应的直线称为准线。
5. 对称轴
对于二次函数 $y = ax^2 + bx + c$,其图像关于一条垂直于$x$ 轴的直线对称。
这条直线被称为对称轴,其方程为 $x = -
\frac{b}{2a}$。
6. 单调性和极值
当 $a > 0$ 时,二次函数开口向上,函数图像在对称轴左侧递减,在对称轴右侧递增。
它在对称轴处有一个最小值。
当 $a <
0$ 时,二次函数开口向下,函数图像在对称轴左侧递增,在对称轴右侧递减。
它在对称轴处有一个最大值。
以上是二次函数的一些重要性质总结。
二次函数在数学和实际应用中有广泛的应用,对于理解和解决问题都具有重要意义。