圆周运动与天体问题
- 格式:doc
- 大小:83.50 KB
- 文档页数:5
圆周运动问题分析【专题分析】圆周运动问题是高考中频繁考查的一种题型,这种运动形式涉及到了受力分析、牛顿运动定律、天体运动、能量关系、电场、磁场等知识,甚至连原子核的衰变也可以与圆周运动结合(衰变后在磁场中做圆周运动)。
可见,圆周运动一直受到命题人员的厚爱是有一定原因的。
不论圆周运动题目到底和什么知识相联系,我们都可以把它们分为匀速圆周运动和变速圆周运动两种。
同时,也可以把常用的解题方法归结为两条。
1、匀速圆周运动匀速圆周运动的规律非常简单,就是物体受到的合外力提供向心力。
只要受力分析找到合外力,再写出向心力的表达式就可解决问题。
2、竖直面内的非匀速圆周运动物理情景:在重力作用下做变速运动,最高点速度最小,最低点速度最大,所以最高点不容易通过。
特点:在最高点和最低点都满足“合外力等于向心力”, 其他位置满足“半径方向的合外力等于向心力”, 整个过程中机械能守恒。
注意:上面所述“半径方向的合外力等于向心力”实际上适用于一切情况。
另外,涉及的题目可能不仅仅是重力改变速率,可能还有电场力作用,此时,应能找出转动过程中的速率最大的位置和速率最小的位置。
基本解题方法:1、涉及受力,使用向心力方程;2、涉及速度,使用机械能守恒定律或动能定理。
【题型讲解】题型一 匀速圆周运动问题例题1:如图所示,两小球A 、B 在一漏斗形的光滑容器的内壁做匀速圆周运动,容器的中轴竖直,小球的运动平面为水平面,若两小球的质量相同,圆周半径关系为r A >r B ,则两小球运动过程中的线速度、角速度、周期以及向心力、支持力的关系如何?(只比较大小)解析:题目中两个小球都在做匀速圆周运动,其向心力由合外力提供,由受力分析可知,重力与支持力的合力提供向心力,如图3-2-2所示,由几何关系,两小球运动的向心力相等,所受支持力相等。
两小球圆周运动的向心力相等,半径关系为r A >r B ,由公式rvmF 2=向,可得v A >v B ; 由公式2ωmr F =向,可得ωA <ωB ; 由公式ωπ2=T ,可得T A >T B ;A B图3-2-1A B 图3-2-2[变式训练]如图3-3-3所示,三条长度不同的轻绳分别悬挂三个小球A 、B 、C ,轻绳的另一端都固定于天花板上的P 点。
一、圆周运动 1、线速度v= (定义式)= 2、角速度w= (定义式)= 3、周期T= = 4、向心加速度a n = = = 5、需要的向心力大小F= = = = = 二、天体运动 1、基本公式GMm/r 2= = = = 2、v= ;w= ;a= T= 3、星球表面:GMm/r=三、天体质量和密度估算(1)已知r 和v 求M 公式:M=已知r 、v 、R,求ρ=(2)已知r 和T 求M 公式:M=已知r 、T 、R,求ρ=(3)已知g 和R 求M 公式:M=已知g 、R,求ρ=一、圆周运动1、线速度v= (定义式)=2、角速度w= (定义式)=3、周期T= =4、向心加速度a n = = =5、需要的向心力大小F= = == =二、天体运动1、基本公式 GMm/r 2= = = =2、v= ;w= ;a=T=3、星球表面:GMm/r=三、天体质量和密度估算(1)已知r 和v 求M 公式: M=已知r 、v 、R,求ρ= (2)已知r 和T 求M 公式: M=已知r 、T 、R,求ρ=(3)已知g 和R 求M 公式:M=已知g 、R,求ρ=一、圆周运动 1、线速度v= (定义式)= 2、角速度w= (定义式)= 3、周期T= = 4、向心加速度a n = = = 5、需要的向心力大小F= = = = = 二、天体运动 1、基本公式GMm/r 2= = = = 2、v= ;w= ;a= T= 3、星球表面:GMm/r= 三、天体质量和密度估算(1)已知r 和v 求M 公式:M=已知r 、v 、R,求ρ=(2)已知r 和T 求M 公式:M=已知r 、T 、R,求ρ=(3)已知g 和R 求M 公式:M=已知g 、R,求ρ=一、圆周运动1、线速度v= (定义式)=2、角速度w= (定义式)=3、周期T= =4、向心加速度a n = = =5、需要的向心力大小F= = == =二、天体运动 1、基本公式 GMm/r 2= = = =2、v= ;w= ;a= T=3、星球表面:GMm/r= 三、天体质量和密度估算 (1)已知r 和v 求M 公式:M= 已知r 、v 、R,求ρ= (2)已知r 和T 求M 公式:M= 已知r 、T 、R,求ρ= (3)已知g 和R 求M 公式: M= 已知g 、R,求ρ=。
圆周运动复习一.复习精要一.描述圆周运动的物理量——v 、ω、T 、 f 、 n 、 a 向v= r ω T=2π/ ω T=1/f ω= 2πn ωπωv r Tr r v a ====22224向 二匀速圆周运动:物体在圆周上运动;任意相等的时间内通过的圆弧长度相等。
三.匀速圆周运动的向心力:ωπωmv r T m mr r mv ma F =====22224向向 四. 做匀速圆周运动的物体,受到的合外力的方向一定沿半径指向圆心(向心力),大小一定等于mv 2 / r .二.针对训练1.对于做匀速圆周运动的物体,下列说法不正确...的是: A. 线速度和周期不变 B. 单位时间里通过的路程一定大于位移C. 角速度和转速不变D. 所受合力的大小不变,加速度方向不断改变2.如图所示,轻杆的一端有一个小球,另一端有光滑的固定轴O 。
现给球一初速度,使球和杆一起绕O 轴在竖直面内转动,不计空气阻力,用F 球的作用力,则F ( )A 一定是拉力B 一定是推力C 一定等于0D 可能是拉力,可能是推力,也可能等于03.关于向心力的说法不正确...是: A. 向心力的方向沿半径指向圆心B. 做匀速圆周运动的物体,其向心力是不变的C. 向心力不改变质点速度的大小D. 做匀速圆周运动的物体,其向心力即为其所受的合外力4.关于离心现象,下列说法不正确...的是: A. 脱水桶、离心分离器是利用离心现象工作的B. 限制速度、加防护罩可以防止离心现象造成的危害C. 做圆周运动的物体,当向心力突然增大时做离心运动D. 做圆周运动的物体,当合外力消失时,它将沿切线做匀速直线运动5.广州和北京处在地球不同的纬度,当两地的建筑物随地球自转时,则有:A. 广州的线速度比北京的线速度大B. 广州的向心加速度比北京的向心加速度小C. 广州的角速度比北京的角速度大D. 两地向心加速度的方向都沿地球半径指向地心6.甲、乙两球做匀速圆周运动,向心加速度a 随半径r 变化的关系图像如图6所示,由图像可知: A. 甲球运动时,角速度大小为2 rad/s B. 乙球运动时,线速度大小为6m/sC. 甲球运动时,线速度大小不变D. 乙球运动时,角速度大小不变图687.载重汽车以恒定的速率通过丘陵地,轮胎很旧。
高中物理必修1+2知识点总结与题型梳理物理必修一知识点框架高中物理必修二题型梳理题型一运动的合成与分解问题题型概述:运动的合成与分解问题常见的模型有两类。
一是绳(杆)末端速度分解的问题,二是小船过河的问题,两类问题的关键都在于速度的合成与分解。
思维模板:(1)在绳(杆)末端速度分解问题中,要注意物体的实际速度一定是合速度,分解时两个分速度的方向应取绳(杆)的方向和垂直绳(杆)的方向;如果有两个物体通过绳(杆)相连,则两个物体沿绳(杆)方向速度相等。
(2)小船过河时,同时参与两个运动,一是小船相对于水的运动,二是小船随着水一起运动,分析时可以用平行四边形定则,也可以用正交分解法,有些问题可以用解析法分析,有些问题则需要用图解法分析。
题型二抛体运动问题题型概述:抛体运动包括平抛运动和斜抛运动,不管是平抛运动还是斜抛运动,研究方法都是采用正交分解法,一般是将速度分解到水平和竖直两个方向上。
思维模板:题型三圆周运动问题题型概述:圆周运动问题按照受力情况可分为水平面内的圆周运动和竖直面内的圆周运动,按其运动性质可分为匀速圆周运动和变速圆周运动。
水平面内的圆周运动多为匀速圆周运动,竖直面内的圆周运动一般为变速圆周运动。
对水平面内的圆周运动重在考查向心力的供求关系及临界问题,而竖直面内的圆周运动则重在考查最高点的受力情况。
思维模板:(1)对圆周运动,应先分析物体是否做匀速圆周运动,若是,则物体所受的合外力等于向心力,由列方程求解即可;若物体的运动不是匀速圆周运动,则应将物体所受的力进行正交分解,物体在指向圆心方向上的合力等于向心力。
(2)竖直面内的圆周运动可以分为三个模型:绳模型:只能对物体提供指向圆心的弹力,能通过最高点的临界态为重力等于向心力。
杆模型:可以提供指向圆心或背离圆心的力,能通过最高点的临界态是速度为零。
题型四天体运动类问题题型概述:天体运动类问题是牛顿运动定律与万有引力定律及圆周运动的综合性题目,近几年来考查频率极高。
解决天体运动问题的方法一、基本模型计算天体间的万有引力时,将天体视为质点,天体的全部质量集中于天体的中心;一天体绕另一天体的稳定运行视为匀速圆周运动;研究天体的自转运动时,将天体视为均匀球体。
二、基本规律1.天体在轨道稳定运行时,做匀速圆周运动,具有向心加速度,需要向心力。
所需向心力由中心天体对它的万有引力提供。
设质量为m的天体绕质量为M的天体,在半径为r的轨道上以速度v匀速圆周运动,由牛顿第二定律及万有引力定律有:。
这就是分析与求解天体运行问题的基本关系式,由于有线速度与角速度关系、角速度与周期关系,这一基本关系式还可表示为:或。
2.在天体表面,物体所受万有引力近似等于所受重力。
设天体质量为M,半径为R,其表面的重力加速度为g,由这一近似关系有:,即。
这一关系式的应用,可实现天体表面重力加速度g与的相互替代,因此称为“黄金代换”。
3.天体自转时,表面各物体随天体自转的角速度相同,等于天体自转角速度,由于赤道上物体轨道半径最大,所需向心力最大。
对于赤道上的物体,由万有引力定律及牛顿第二定律有:,式中N为天体表面对物体的支持力。
如果天体自转角速度过大,赤道上的物体将最先被“甩”出,“甩”出的临界条件是:N=0,此时有:,由此式可以计算天体不瓦解所对应的最大自转角速度;如果已知天体自转的角速度,由及可计算出天体不瓦解的最小密度。
三、常见题型1.估算天体质量问题由关系式可以看出,对于一个天体,只要知道了另一天体绕它运行的轨道半径及周期,可估算出被绕天体的质量。
例1.据媒体报道,嫦娥一号卫星环月工作轨道为圆轨道,轨道高200km,运行周期为127分钟。
若还知道引力常量和月球半径,仅利用以上条件不能求出的是A.月球表面的重力加速度B.月球对卫星的吸引力C.卫星绕月运行的速度D.卫星绕月运行的加速度解析:设月球质量为M,半径为R,月面重力加速度为g,卫星高度为h,运行周期为T,线速度为v,加速度为a,月球对卫星的吸引力为F。
天体的圆周运动一、天体(卫星)绕中心天体做圆周运动(中心天体质量M , 天体半径R, 天体表面重力加速度g )1、两个基本关系:(1).万有引力=向心力 ()m h MmG =+2R ()()()h Tm h m h V +=+=+R 4R R 2222πω (2).万有引力=重力 地表面物体的重力加速度:mg = G 2R Mm (黄金替换)高空物体的重力加速度:mg 0 = G 2)(h R Mm +2、考点: (1)基本计算(2)卫星间的对比,例如:半径、线速度、角速度、周期、向心加速度大小、向心力大小(3)卫星的变轨问题3、解题思路:(1)建立物理模型,画出草图(2)找出题目给出物理量,如相同量和不同量,一般从轨道半径r 入手(3)灵活选用公式进行分析二、两种特殊的地球卫星:1、近地卫星:指的是贴着地球表面运行的卫星。
特点: 轨道半径最小(等于地球半径),运行线速度最大(等于第一宇宙速度)、角速度最大、周期最小。
2、地球同步卫星 :指的是运行情况与地球自转同步,即地球自转一圈,卫星也转一圈。
特点: 同步卫星的轨道在赤道正上方,且运行周期T=24h 、角速度W 是固定的。
由公式可得,距离地面高度h 、线速度V 大小、向心加速度a 大小都固定。
因此卫星的运行轨道是唯一的。
但向心力大小是没固定的,因为每颗卫星的质量是不同的。
三、三种宇宙速度1、第一宇宙速度: 卫星贴近地球表面飞行所具有的速度。
大小:由 R v m R Mm G 22= , mg RMm G =2 代入数据可得:V=7.9 km/s 特点:既是最大环绕速度,也是最小发射速度 (??)2、第二宇宙速度:脱离地球而飞到其他行星所具有的速度。
V=11.2 km/s3、第三宇宙速度:逃逸出太阳系所具有的速度。
V=16.7 km/s课前练习1、人造卫星进入轨道作匀速圆周运动时,卫星内物体()A.处于完全失重状态,所受重力为零B.处于完全失重状态,但仍受重力作用C.所受重力就是它作匀速圆周运动所需的向心力D.处于平衡状态,即所受合外力为零2、绕地球运行的人造地球卫星的质量、速度、卫星与地面间距离三者之间的关系是()A.质量越大,离地面越远,速度越小B.质量越大,离地面越远,速度越大C.与质量无关,离地面越近,速度越大D.与质量无关,离地面越近,速度越小3、关于地球的第一宇宙速度,下列说法中正确的是( )A它是人造地球卫星环绕地球运转的最小速度B它是近地圆行轨道上人造卫星的运行速度C 它是能使卫星进入近地轨道最小发射速度D它是能使卫星进入轨道的最大发射速度巩固练习1、同步卫星相对地面静止,犹如悬在高空中,下列说法中不正确的是:()A.同步卫星处于平衡状态B.同步卫星的速率是唯一的C.同步卫星加速度大小是唯一的D.各国的同步卫星都在同一圆周上运行2、关于地球同步通迅卫星,下列说法正确的是:A.所有的地球同步卫星的质量都相等B.各国发射的这种卫星轨道半径都一样C.它运行的线速度一定小于第一宇宙速度D.它运行的线速度介于第一和第二宇宙速度之间3、如图三颗人造地球卫星A、B、C在地球的大气层外沿如图所示的轨道做匀速圆周运动,已知m A = m B> m C,则A.线速度大小的关系是v A>v B=v C B.周期关系是T A<T B=T CC.向心力大小的关系是F A>F B>F C D.向心加速度大小的关系是a A>a B>a C4、2009年2月11日,俄罗斯的“宇宙—2251”卫星和美国的“铱—33”卫星在西伯利亚上空约805 km 处发生碰撞,假定有甲、乙两块碎片绕地球运动的轨道都是圆,甲的运行速率比乙的大,则下列正确的A.甲的运行周期一定比乙的长B.甲距地面的高度一定比乙的高C.甲的向心力一定比乙的小D.甲的加速度一定比乙的大5、火星有两颗卫星,分别是火卫一和火卫二,它们的轨道近似为圆。
难点之三:圆周运动的实例分析一、难点形成的原因1、对向心力和向心加速度的定义把握不牢固,解题时不能灵活的应用。
2、圆周运动线速度与角速度的关系及速度的合成与分解的综合知识应用不熟练,只是了解大概,在解题过程中不能灵活应用;3、圆周运动有一些要求思维长度较长的题目,受力分析不按照一定的步骤,漏掉重力或其它力,因为一点小失误,导致全盘皆错。
4、圆周运动的周期性把握不准。
5、缺少生活经验,缺少仔细观察事物的经历,很多实例知道大概却不能理解本质,更不能把物理知识与生活实例很好的联系起来。
二、难点突破(1)匀速圆周运动与非匀速圆周运动a.圆周运动是变速运动,因为物体的运动方向(即速度方向)在不断变化。
圆周运动也不可能是匀变速运动,因为即使是匀速圆周运动,其加速度方向也是时刻变化的。
b.最常见的圆周运动有:①天体(包括人造天体)在万有引力作用下的运动;②核外电子在库仑力作用下绕原子核的运动;③带电粒子在垂直匀强磁场的平面里在磁场力作用下的运动;④物体在各种外力(重力、弹力、摩擦力、电场力、磁场力等)作用下的圆周运动。
c.匀速圆周运动只是速度方向改变,而速度大小不变。
做匀速圆周运动的物体,它所受的所有力的合力提供向心力,其方向一定指向圆心。
非匀速圆周运动的物体所受的合外力沿着半径指向圆心的分力,提供向心力,产生向心加速度;合外力沿切线方向的分力,产生切向加速度,其效果是改变速度的大小。
例1:如图3-1所示,两根轻绳同系一个质量m=0.1kg 的小球,两绳的另一端分别固定在轴上的A 、B 两处,上面绳AC 长L=2m ,当两绳都拉直时,与轴的夹角分别为30°和45°,求当小球随轴一起在水平面内做匀速圆周运动角速度为ω=4rad/s 时,上下两轻绳拉力各为多少? 【审题】两绳张紧时,小球受的力由0逐渐增大时,ω可能出现两个临界值。
【解析】如图3-1所示,当BC 刚好被拉直,但其拉力T 2恰为零,设此时角速度为ω1,AC 绳上拉力设为T 1,对小球有:mg T =︒30cos 1 ①30sin L ωm =30sin T AB 211②代入数据得: s rad /4.21=ω,要使BC 绳有拉力,应有ω>ω1,当AC 绳恰被拉直,但其拉力T 1恰为零,设此时角速度为ω2,BC 绳拉力为T 2,则有mg T =︒45cos 2 ③T 2sin45°=m 22ωL AC sin30°④代入数据得:ω2=3.16rad/s 。
天体问题解题思路
解决天体运动问题,有两条思路:
1、“地上一式”:地面附近万有引力近似等于物体的重力,既G(Mm/R²)=mg 整理得:GM=gR²
2、“天上一式”:天体运动都可以近似地看成匀速圆周运动,其向心力由万有引力提供。
F引=F向,一般有以下几个表述公式:G(Mm/r²)=m(v²/r)=mω²r=m(2π/T)²r。
人造地球卫星绕地球做圆周运动,要用“天上一式”解决。
假如卫星的线速度减小到原来的1/2,卫星仍做圆周运动,但卫星要变轨。
由于线速度减小,向心力mv²/r 减小,万有引力大于卫星所需的向心力,卫星将做向心运动,轨道半径将变小,卫星进入新的轨道运行时,由v=√(GM/r)运行速度将增大。
卫星的发射回收就是用的这一原理。
物理部分
第二单元圆周运动与天体问题
[考点点击]
本单元包括曲线运动中圆周运动和万有引力定律部分内容。
⒈圆周运动分为匀速圆周运动和非匀速圆周运动。
匀速圆周运动是加速度大小不变、方向时刻改变的变加速曲线运动。
一般情况的竖直平面的圆周运动是非匀速圆周运动,对此,我们通常只研究两个特殊状态,即最高点与最低点,必须注意其临界条件的判断。
⒉要分清在约束物体做圆周运动时绳与杆的区别。
绳对球只能提供拉力,而杆对球既可能是拉力,也可能是压力;绳对球的拉力的方向只能沿绳,而杆对球的力的方向可以沿杆也可以不沿杆。
物体在竖直平面内的圆周运动,在不同约束条件下物体能完成圆周运动的条件不同:在绳(或沿圆环内侧运动)约
束下,最高点速度v ≥,在杆(或管)约束下,最高点速度v≥0。
⒊万有引力定律在发现新的天体、测定天体质量、计算天体密度、研究天体运动规律等方面有着重要的作用。
由于航天技术、人造地球卫星属于现代科技发展的重要领域。
所以近年来高考对此内容年年都考,它是高考的热点,也是复习的重点和难点。
基本思路是两条:
⑴万有引力提供向心力 GmM/r2=mv2/r=mω2r=4π2mr/T2。
⑵忽略地球自转影响,万有引力等于重力, GmM/R2=mg。
⒋天体运动问题中几个关系
⑴天体半径和轨道半径的关系。
一般情况下,卫星轨道半径总大于行星的半径,当卫星贴近行星表面运行时可以近似认为轨道半径等于行星半径。
⑵自转周期和公转周期的关系。
一般情况下,天体的自转周期和公转周期是不相等的。
如地球自转周期为24h,公转周期为365d。
⑶地球同步卫星和一般卫星的关系。
地球同步卫星和地球相对静止。
有四个一定:周期一定,T=24h;离地高度一定,h=3.6 × 104km;线速度大小一定,v=3.08km/s;轨道平面和赤道平面一定重合。
一般卫星v max=7.9km/s,
T min=85min,轨道也可以是任意的,只要轨道平面通过地球球心即可。
⑷赤道上的物体和近地卫星的关系。
放在赤道上的
物体,万有引力和地面对它支持力之合力提供向心力,
即GmM/R02-N= mω2R0,这里N=mg,它的向心加速度a
=ω2R0≈0.034m/s2,远小于地面上g=9.8 m/s2,故在近
向
似计算中可忽略自转影响,GmM/R02=mg。
对于绕行星运
行的卫星,只受一个力即万有引力作用,卫星上物体处
=g=9.8 m/s2。
于完全失重状态。
对近地卫星来讲,a
向
(见能力训练3)
[考题例析]
例1.如图所示,将半径为R,内径很小的半圆形光滑管竖直放置。
两个质量均为m的小球A和B以不同的速度进入管内,A球在最高点C时对管壁上部压力为3mg,B球过C点时,对管壁下部压力为0.75mg,求两球落地之间的水平距离。
解析对A球在最高点C受力分析得:
N1+mg=mv12/R,即4mg= mv12/R,v1=2 ,
对B球在最高点C受力分析得:
mg-N2= mv22/R,即0.25mg= mv22/R,v2=。
A、B球从C飞出落地,飞行时间相同,都作平抛运动,则
S=( v1- v2) t = ( v1- v2)√4R/g =3R。
说明本例必须正确分析作用力和反作用力问题。
例2.地核的体积均为整个地球体积的16%,地核的质量约为地球质量的34%。
经估算,地核的平均密度约为_________kg/m3。
(结果取两位有效数字,引力常量G=6.7 10-11 ,地球半径R=6.4 106m)解析设g为地球表面的重力加速度,由mg=GmM/R2得到
地球平均密度ρ=M/V=(gR2/G)/(4πR3/3)=3g/4πGR 代入数据得到ρ=5.5 103kg/m3
根据题设m1/M=0.34,即ρ
1
v1/ρv=0.34 。
又v1/v=0.16 联立得地核平均密度ρ1=0.34ρ/0.16=0.34 5.5 103/0.16kg/m3=1.2 104 kg/m3
说明许多天体问题用代换式gR2=GM可简化解题。
[能力训练]
1、如图2-2所示,质量为m的小球在竖直平面内的光滑圆环内作圆周运动。
圆半径为R。
小球运动到最高点刚好脱离,那么以下说法不正确的是( ) A.小球通过最高点时受到的向心力等于重力mg
B.小球通过最高点时圆环的压力大小等于mg
C.小球通过最高点时线速度大小等于√gR ,向心加速度大小等于mg D.通过最低点时小球与圆环相互作用力的大小比在最高点时对圆环的压力大6mg
2、一宇航员在某星球上以速度v0竖直上抛一物体,经过t后回落手中。
已知该星体半径为R,那么该星球的第一宇宙速度是( )
A. v0t/R
B.
C.
D.
3、地球赤道上的物体重力加速度为g,物体在赤道上随地球自转的向心加速度为a,要使赤道上物体“飘”起来,则地球的转速应为原来的( )
A.g/a倍 B.倍 C.倍 D.倍
4、如图所示的传动装置中,A、B、C三轮的半径关系为R A=R C=2R B。
当皮带
正常运动时,三轮边缘的线速度大小之比为V
A :V
B
:V
C
=____,三轮边缘的向心
加速度大小之比为a A:a B:
a C=____。
5、有一颗行星,在其赤道上用弹簧秤称得某物体的重力比在两极称量的值少10%,该行星的自转周期为T,万有引力恒量为G,则行星的密度ρ
=____。
参考答案
4、2:1:1, 4:2:1
5、
6、2001年1月26日我国发射了一颗同步卫星,其定点位置与东经98º的经线在同一平面内,若把甘肃嘉峪关处的经度和纬度近似取为东经98º和北纬α=40º,如图所示。
已知地球半径R、地球自转周期T、地球表面重力加速度g(视为常量)和光速C,试求该同步卫星发出微波信号传到嘉峪关处的接收站所需时间(要求用题给的已知量的符号表示)。
参考答案
t = ,其中r =
7、侦察卫星在通过地球两极上空的圆轨道上运行,它的运行轨道距地面高度为h,要使卫星在一天的时间内将地面上赤道各处在日照条件下的情况全都拍摄下来,卫星在通过赤道上空时,卫星上的摄像机至少拍摄地面上赤道圆周的弧长是多少?设地球的半径为R,地面处的重力加速度为g,地球自转的周期为T。
参考答案
S=
选择题答案1、B 2、B 3、C。