泛函分析总结
- 格式:doc
- 大小:545.00 KB
- 文档页数:4
泛函分析复习与总结泛函分析是数学中的一个重要分支,是研究无限维空间上的函数和线性算子的学科。
它的研究对象不再是有限维线性空间上的向量,而是函数或者函数空间,包括无限维的函数空间。
泛函分析在数学中有着广泛的应用,例如在微分方程的理论研究中,泛函分析有助于研究解的连续性、唯一性和存在性等问题;在概率理论中,泛函分析有助于研究随机过程的性质等。
下面将对泛函分析的重要内容进行复习和总结。
1.线性空间与拓扑空间线性空间是指具有线性结构的集合,泛函分析研究的对象就是线性空间上的函数或者函数空间。
拓扑空间是指在集合中引入一个拓扑结构,使得可以定义连续性和收敛性等概念。
泛函分析的研究对象通常是拓扑线性空间,即同时具有线性结构和拓扑结构的空间。
2.赋范空间与完备空间赋范空间是指在线性空间上定义了一个范数(或称规范),从而使得该空间成为一个度量空间。
范数的引入使得我们可以定义距离,并且可以定义收敛性。
完备空间是指其中的Cauchy列总是收敛于该空间中的点。
泛函分析中,赋范空间和完备空间是重要的概念,在研究函数的连续性和收敛性时起到了关键的作用。
3.内积空间与希尔伯特空间内积空间是指在线性空间上定义了一个内积,从而可以定义长度和夹角。
希尔伯特空间是指满足内积空间中所有Cauchy列都收敛于该空间中的点的空间。
内积空间和希尔伯特空间在泛函分析中具有重要的作用,特别是在研究函数的正交性和投影等问题时。
4.线性算子与连续算子线性算子是指将一个线性空间映射到另一个线性空间的映射。
连续算子是指在拓扑空间上保持连续性的线性算子。
泛函分析中,线性算子和连续算子是重要的研究对象,它们可以用来描述函数之间的关系和映射。
5. Banach空间与可分空间Banach空间是指在完备的范数空间上定义了一个范数,从而构成一个完备空间。
可分空间是指线性空间中存在可数稠密子集的空间。
Banach空间和可分空间是泛函分析中重要的类别,它们在研究最优性,特别是最优解的存在性和表示性时起到了关键的作用。
泛函分析学习心得在我学习泛函分析的过程中,我认为泛函分析是数学中非常重要的一个分支,它不仅有着广泛的应用,还对于理解数学的基本概念和思想有着重要的贡献。
下面是我在学习泛函分析的心得体会。
首先,泛函分析是研究无穷维空间中的向量和函数的性质和行为的数学学科。
相比于有限维空间,无穷维空间更为复杂和抽象,因此泛函分析需要引入一些新的概念和工具来描述和研究无穷维空间中的对象。
其中最基本的概念就是线性空间和赋范空间。
线性空间是指满足一定线性运算规则的集合,赋范空间是指在线性空间的基础上引入了范数的空间。
了解这些基本概念是理解泛函分析的核心,可以帮助我们更好地把握和理解泛函分析的核心思想。
其次,泛函分析的主要研究对象是泛函。
泛函是将一个向量或者函数映射到一个实数的映射。
通过研究泛函,我们可以了解和描述向量或者函数的性质和行为。
在泛函分析中,我们主要关注线性泛函和连续线性泛函。
线性泛函是指满足一定线性性质的泛函,连续线性泛函是指在赋范空间上满足一定连续性质的线性泛函。
学习泛函分析的关键就是理解和研究泛函的性质和行为,利用泛函来描述和分析无穷维空间中对象的特点。
此外,在泛函分析中还有一些重要的概念和工具,例如:内积、正交、完备性、紧算子、谱理论等。
这些概念和工具在泛函分析中起着关键作用,可以帮助我们深入理解和分析无穷维空间中的对象。
例如,内积可以用来定义向量的长度和角度,正交关系可以用来描述向量的互相垂直的关系,完备性可以用来刻画向量空间的完整性等等。
学习和掌握这些概念和工具对于理解泛函分析的基本原理和思想非常重要。
最后,在学习泛函分析过程中,练习和实践也非常重要。
泛函分析是一个非常抽象和理论性很强的学科,对于我们来说可能有一定的难度。
但是通过练习和实践,我们可以更好地理解和运用所学的知识。
可以通过做一些练习题、阅读一些经典的参考书籍、参加研讨会等方式来提升自己的泛函分析水平。
在实践中我们还可以体会到泛函分析的应用,并且可以与其他学科进行交叉的思考,提高自己的综合能力。
泛函分析是现代数学分析的一个重要分支,它主要研究的是函数构成的函数空间以及这些空间上的线性算子。
相较于高中数学中的实变函数和复变函数,泛函分析更多地关注函数之间的相互关系和映射性质,为解决实际问题提供了新的视角和方法。
一、泛函分析的基本概念1. 函数空间:泛函分析研究的对象是函数,这些函数构成一个集合,称为函数空间。
常见的函数空间有实值函数空间、复值函数空间、有界函数空间、连续函数空间等。
2. 线性算子:函数空间上的线性算子是一种映射,它将一个函数映射到另一个函数,同时满足线性性质。
线性算子是泛函分析的核心概念,如积分算子、微分算子、傅里叶变换等。
3. 范数:范数是度量函数空间中函数“大小”的一种方式。
一个函数空间的范数满足以下性质:非负性、齐次性、三角不等式和归一性。
4. 内积:内积是度量函数空间中函数“夹角”的一种方式。
一个函数空间的内积满足以下性质:非负性、齐次性、共轭对称性和三角不等式。
二、泛函分析的主要理论1. 线性算子的谱理论:研究线性算子的特征值和特征向量,以及这些特征值和特征向量的性质。
2. 线性算子的有界性:研究线性算子是否具有有界性,以及有界性的条件。
3. 线性算子的连续性:研究线性算子是否具有连续性,以及连续性的条件。
4. 线性算子的可逆性:研究线性算子是否具有可逆性,以及可逆性的条件。
5. 线性算子的对偶性:研究线性算子的对偶算子,以及对偶算子的性质。
三、泛函分析的应用1. 微分方程:泛函分析为微分方程的求解提供了新的方法,如泛函微分方程、积分方程等。
2. 积分方程:泛函分析为积分方程的求解提供了新的方法,如变分法、迭代法等。
3. 函数论:泛函分析为函数论的研究提供了新的工具,如傅里叶分析、Sobolev空间等。
4. 线性代数:泛函分析为线性代数的研究提供了新的视角,如无穷维线性空间、线性算子等。
总之,泛函分析是一门具有广泛应用前景的数学分支。
通过对函数空间、线性算子、范数、内积等基本概念的研究,泛函分析为解决实际问题提供了新的思路和方法。
泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。
本文主要对前面两大内容进行总结、举例、应用。
一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。
1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。
(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。
这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。
⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。
⑶ 集合X 不一定是数集,也不一定是代数结构。
为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。
⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。
泛函分析知识总结泛函分析是数学中一个重要的分支领域,它研究的是无穷维空间和函数的性质。
在泛函分析中,我们考虑的对象是函数空间,而不是具体的函数。
泛函分析广泛应用于数学、物理学、工程学等领域。
1.线性空间与拓扑空间:泛函分析的基础是线性空间的理论。
线性空间是指具有加法和数乘运算,同时满足线性结构条件的集合。
泛函分析还引入了拓扑空间的概念,拓扑空间是指在线性空间的基础上引入了距离、收敛等概念,并给出了一些性质。
2.范数与内积:范数和内积是泛函分析中常用的两个概念。
范数是定义在线性空间上的一种非负实值函数,它满足正定性、齐次性和三角不等式。
范数可以用来度量向量的大小。
内积是将两个向量映射到实数的一个运算,它满足对称性、线性性和正定性。
3.完备性和紧性:完备性是指一个空间中的柯西序列收敛于空间内的一个点。
完备性是一个重要的性质,它可以用来判断一个空间是否是可度量空间,即能够定义距离的空间。
紧性是指一个空间内的每个序列都存在收敛的子序列。
紧性常用于分析序列在空间内的收敛性。
4.泛函空间和对偶空间:泛函分析中经常考虑的是函数空间,函数空间是指由一类满足特定条件的函数构成的空间。
常用的函数空间有连续函数空间、可积函数空间等。
函数空间还可以定义内积、范数等结构。
对偶空间是一个线性空间的对偶空间,它由该线性空间上的线性函数构成。
5.泛函的连续性和收敛性:泛函分析研究的是空间到实数域的映射,所以泛函的连续性和收敛性是一个重要的问题。
在泛函分析中,我们定义了一个泛函的连续性,当且仅当对于任意给定的序列,如果其收敛于一个点,那么其映射的泛函值也会收敛于该泛函值。
类似地,我们还可以定义泛函的收敛性。
6.算子:算子是泛函分析中一个重要的概念,它是一种将一个空间映射到另一个空间的映射。
线性算子是指满足线性性质的映射,而有界算子是指满足一定范围内的性质的映射。
算子可以是线性差分方程、微分算符等。
7.泛函分析在物理学和工程学中的应用:泛函分析在物理学和工程学中有广泛的应用。
泛函分析知识点总结本页仅作为文档封面,使用时可以删除This document is for reference only-rar21year.March泛函分析一,距离空间定义设X是任一非空集合,对于X中的任意两点x,y,均有一个实数d(x,y)与它对应,且满足:1)d(x,y)≥0(非负性)2)d(x,y)=0当且仅当x=y(严格正)3)d(x,y)=d(y,x)4)d(x,y)≤d(x,z)+d(z,y)(三角不等式)则称d(x,y)为X中的一个距离,定义了距离d的集合称为一个距离空间,记为(X,d),有时简记为X。
设(X,d)是一个距离空间,X中的一个数列,存在X中的任意点,如果当n趋于无穷时,这个数列按照距离收敛到这个点,则称这个数列以这点收敛。
(x,y)是x,y的二元函数,若当存在一个x的数列收敛到x,存在一个y 的数列收敛到y,则这个距离关于x,y的二元函数也收敛。
(利用三角不等式证明)开球的定义(X,d)是一个距离空间,r>0,集合B(x0,r)={x∈X|d(x,x0)<r}则称以x0为中心,r为半径的开球。
有界集:称A为有界集,若存在一个开球,使得A属于这个开球。
内点:称x0为集合G的内点,若存在一个开球B(x0,r)属于G。
开集:称G为开集,若G中的每一个点都是它的内点。
闭集:开集的补集就是闭集。
(若用接触点定义闭集就是,A的接触点的全体称为A的闭包,也就是闭集。
)闭集的等价条件是这个集合中的收敛点列收敛到这个集合中的元素。
全空间和空集即使开集也是闭集。
任意个开集的并是开集,有限个开集的交是开集。
任意个闭集的交是闭集,有限个闭集的并是闭集。
等价距离:两个距离空间称为等价距离,如果它们之间可以互相表示。
连续映射:在两个距离空间之间存在一个映射:T,称T为连续映射。
若在定义域的距离空间中存在一个开集,经过映射T,在另一个距离空间定义的距离下是任意小的。
映射T是连续的等价于值域里的开集的原像仍然是开集。
泛函分析复习与总结汇编泛函分析是数学中的一个重要分支,它研究的是无穷维空间中的函数和函数空间的性质。
泛函分析具有很强的抽象性和广泛的应用性,在数学和物理学中都有着重要的地位。
本文将对泛函分析的基本概念、定理与应用进行复习与总结。
一、基本概念1.线性空间与赋范线性空间:线性空间是指满足线性运算规则的集合,包括实数域上的向量空间和复数域上的向量空间。
赋范线性空间是在线性空间的基础上,引入了范数的概念,即给每个向量赋予一个非负实数,满足非负性、齐次性和三角不等式等性质。
2.内积空间与希尔伯特空间:内积空间是在赋范线性空间的基础上,引入了内积的概念,即给每一对向量赋予一个复数,满足线性性、共轭对称性和正定性等性质。
希尔伯特空间是一个完备的内积空间,即内积空间中的柯西序列收敛于该空间中的元素。
3.函数空间:函数空间是指由特定性质的函数组成的集合,常见的函数空间有连续函数空间、可微函数空间和L^p空间等。
二、定理与性质1.希尔伯特空间的性质:希尔伯特空间是一个完备的内积空间,任意一序列收敛于希尔伯特空间中的元素,该序列收敛于该元素的充分必要条件是该序列的柯西序列。
2. Riesz表示定理:Riesz表示定理是希尔伯特空间的一个重要定理,它指出了希尔伯特空间中的任意线性连续泛函都可以由内积表示。
具体地说,对于希尔伯特空间中的任意线性连续泛函f,存在唯一的y∈H,使得对于所有的x∈H,有f(x)=(x,y)。
3.泛函分析的基本算子理论:算子是泛函分析中的一个重要概念,它用来描述线性变换的性质。
常见的算子包括线性算子、连续算子和紧算子等。
4.开放映射定理:开放映射定理是泛函分析中的一个重要定理,它指出了一个连续算子的开集的像还是开集。
具体地说,如果X和Y是两个赋范线性空间,并且T:X→Y是一个连续线性算子,如果T是开映射,则其像T(X)也是Y中的开集。
三、应用泛函分析在数学和物理学的各个领域都有重要的应用,包括偏微分方程、最优控制理论和量子力学等。
泛函分析知识点总结1.Baire定理定理(Baire纲定理)完备的距离空间是第⼆类型集。
解释:完备的距离空间(X,d),∀x∈X都是内点,因为X在X中是开集。
⼀个⽆处稠密(nowhere dense)的集合就是闭包不含内点的集合不会是整个X,即X不是第⼀类型集,所以只能是第⼆类型集。
注:完备的距离空间是第⼆类型集,那么它的闭包⾄少存在⼀个内点。
这个经常被⽤来证明。
例如,开映射定理、闭图像定理等。
2. 闭包和导集的区别根据定义,集合的闭包是集合的导集和集合的并。
导集是集合所有聚点组成的集合,不包含孤⽴点。
所以闭包是集合导集和孤⽴点组成的集合。
3.闭集在度量空间中,如果⼀个集合所有的极限点都是这个集合中的点,那么这个集合是闭集。
4.不动点定理压缩映射:设(X,d)是距离空间,T是X到X的映射,如果存在⼀个常数θ(0≤θ<1),对于所有的x,y∈X,满⾜下述不等式:d(Tx,Ty)<θd(x,y)则称T是X上的⼀个压缩映射。
不动点定理:设X是完备的距离空间,T是X到X的压缩映射,则T在X上有唯⼀的不动点x∗.即Tx∗=x∗是⽅程Tx=x在X上的唯⼀解。
5.施密特正交化将⼀个线性⽆关的集合{x n}进⾏施密特正交化。
e1=x1 ||x1||e2=x2−<x2,e1>e1 ||x2−<x2,e1>e1||e j+1=x j+1−j∑k=1<x j+1,e k>e k ||x j+1−j∑k=1<x j+1,e k>e k||注:本质上说就是让x j+1减去其在e k,k=0,…,j上的分量,就正交化了。
然后再除以对应范数,进⾏单位化。
6.Hilbert空间的同构n为的实(复)Hilbert空间与R n(C n)同构。
(保距离,保线性,保范数,保内积)⽆限维可分Hilbert空间与l2空间(L2[0,1])等距同构。
7.算⼦的连续性和有界性连续性:对于X中的任何收敛于x0的点列{x n},恒有Tx n→Tx0,n→=∞有界性:存在正常数M,使得对⼀切x∈X,有||Tx||≤M||x||⼀点连续,则处处连续:设X和Y是数域\textbf{F}上的线性赋范空间,T:X→Y是⼀个线性算⼦。
泛函分析报告知识的总结泛函分析是数学中的一个重要分支领域,它研究的是无穷维空间上的函数及其性质。
泛函分析的应用广泛,包括函数空间、傅里叶分析、偏微分方程等等。
下面是我对泛函分析的一些知识进行总结。
首先,泛函分析的基础是线性代数和实分析。
线性代数研究的是向量空间及其线性关系,实分析则研究的是实数空间上的函数性质,例如收敛性、极限、连续性等等。
这两个基础学科为泛函分析的理论及应用打下了坚实的基础。
其次,泛函分析的核心是函数空间的研究。
函数空间是指一组函数的集合,其中的函数可以是有界函数、可积函数、连续函数等等。
泛函分析研究的是函数空间上的线性算子及其性质,例如范数、内积、完备性等等。
常见的函数空间有Lp空间、C(X)空间、Sobolev空间等等。
然后,泛函分析的重要工具是算子理论。
算子理论研究的是线性算子的性质和作用。
在泛函分析中,线性算子可以将一个函数映射到另一个函数,例如导数、积分等。
算子理论主要研究线性算子的性质,例如有界算子、紧算子、自伴算子等等。
算子理论在解析、几何等问题中有着广泛的应用。
此外,泛函分析也研究了拓扑结构及度量空间的性质。
拓扑结构是用来描述集合上点的邻域关系的概念,是泛函分析中重要的概念。
度量空间是带有度量函数的拓扑空间,度量函数可以度量空间中两个点之间的距离。
拓扑结构和度量空间的研究为泛函分析提供了一种统一的框架。
最后,泛函分析的应用广泛,特别是在数学的其他分支领域中。
在偏微分方程中,泛函分析可以用来研究问题的存在性、唯一性和稳定性;在概率论中,泛函分析可以用来研究随机过程的性质和收敛性;在图像处理中,泛函分析可以用来研究图像的压缩和恢复等等。
总之,泛函分析在数学及其应用领域中具有重要的地位和作用。
总结起来,泛函分析研究的是无穷维空间上的函数及其性质,它的基础是线性代数和实分析。
泛函分析的核心是函数空间的研究,它的重要工具是算子理论及拓扑结构和度量空间的性质。
泛函分析的应用非常广泛,涉及到数学的各个分支领域。
泛函分析总结范文泛函分析是数学中的一个重要分支领域,主要研究无穷维空间上的函数和算子的性质及其应用。
泛函分析是分析学、线性代数和拓扑学的交叉学科,涉及了大量的数学工具和理论。
本文将对泛函分析的基本概念、主要内容和一些典型应用进行总结。
泛函分析的基本概念主要包括:线性空间、范数、完备性等。
线性空间是泛函分析的基础,它是一个向量空间,具有加法和标量乘法运算,并且满足数乘和向量加法的线性性质。
范数是用来度量线性空间中向量的大小的一种方法,它满足非负性、齐次性和三角不等式等性质。
完备性是指拓扑空间中的序列具有极限,即序列的极限点也在该空间中。
泛函分析的主要内容包括:线性算子、连续算子、紧算子、Hilbert空间、巴拿赫空间等。
线性算子是将一个线性空间映射到另一个线性空间的映射,它保持向量的线性性质。
连续算子是一种满足一些特定性质的线性算子,它能够保持拓扑性质不变。
紧算子是一种特殊的连续算子,它将有界集映射为列紧集。
Hilbert空间是一种完备的内积空间,具有内积和范数的结构,它在量子力学和信号处理等领域有广泛应用。
巴拿赫空间是一种完备的范数空间,它在泛函分析和函数论中起着重要作用。
泛函分析的典型应用主要包括:函数逼近、偏微分方程、优化问题等。
函数逼近是利用泛函分析的方法来研究函数序列的极限性质,它在信号处理和图像处理等领域有广泛应用。
偏微分方程是描述自然界中各种现象的重要数学模型,通过泛函分析的方法可以研究其解的存在性和唯一性等性质。
优化问题是在给定一定条件下寻求最优解的问题,泛函分析可以提供寻找最优解的方法和工具。
总之,泛函分析是数学中重要的分析工具和理论体系,它对于理解和解决现实问题具有重要意义。
通过研究线性空间、范数、完备性、线性算子、连续算子、紧算子、Hilbert空间、巴拿赫空间等概念,可以建立起一套完整的理论框架。
通过应用泛函分析的方法和理论,可以解决函数逼近、偏微分方程、优化问题等实际问题。
泛函分析知识点小结及应用§1 度量空间的进一步例子设X 是任一非空集合,若对于∈∀y x ,X ,都有唯一确定的实数()y x d,与之对应,且满足 1.非负性:()y x d,0≥,()y x d ,=0y x =⇔;2. 对称性:d(x,y)=d(y,x);3.三角不等式:对∈∀z y x ,,X ,都有()y x d ,≤()z x d ,+()z y d ,, 则称(X ,d )为度量空间,X 中的元素称为点。
欧氏空间n R 对nR 中任意两点()n x x x x ,,,21 =和()n y y y y ,,,21 =,规定距离为()y x d ,=()2112⎪⎭⎫⎝⎛-∑=n i i i y x .[]b a C ,空间 []b a C ,表示闭区间[]b a ,上实值(或复值)连续函数的全体.对[]b a C ,中任意两点y x ,,定义()y x d ,=()()t y t x b t a -≤≤max . p l ()1+∞<≤p 空间 记pl ={}⎭⎬⎫⎩⎨⎧∞<=∑∞=∞=11k p kk k x x x . 设{}∞==1k k x x ,{}∞==1k k y y ∈p l ,定义 ()y x d ,=p i p i i y x 11⎪⎪⎭⎫ ⎝⎛-∞=. 例1 序列空间S令S 表示实数列(或复数列)的全体,对{}∞==∀1k k x x ,{}∞==1k k y y ,令 ()y x d ,=∑∞=121k k k k k k y x y x -+-1. 例2 有界函数空间()A B设A 是一个给定的集合,令()A B 表示A 上有界实值(或复值)函数的全体. ∈∀y x ,()A B ,定义 ()y x d ,=()()t y t x At -∈sup .例3 可测函数空间()X M设()X M为X 上实值(或复值)的可测函数的全体,m 为Lebesgue 测度,若()X m ∞<,对任意两个可测函数()t f 及()t g ,由于()()()()11<-+-t g t f t g t f ,故不等式左边为X 上可积函数. 令 ()g f d,=()()()()t 1f t g t d Xf yg t -⎰+-.§2 度量空间中的极限设{}∞=1n n x 是()d X ,中点列,若X x ∈∃,s.t. ()0,lim =∞→x x d n n (*)则称{}∞=1n n x 是收敛点列,x 是点列{}∞=1n n x 的极限.收敛点列的极限是唯一的. 若设n x 既牧敛于x 又收敛y ,则因为()()()0,,,0→+≤≤n n x y d x x d y x d ()∞→n ,而有 ()y x d ,=0. 所以x =y .注 (*)式换一个表达方式:()x x d n n ,lim ∞→=()x x d n n ,lim ∞→. 即当点列极限存在时,距离运算与极限运算可以换序. 更一般地有 距离()y x d,是x 和y 的连续函数.具体空间中点列收敛的具体意义:1. 欧氏空间n R m x =()()()()m n m m x x x ,,,21 , ,2,1=m ,为nR 中的点列,x =()n x x x ,,,21 ∈n R ,()x x d m ,=()()()()()()2222211n m n m m x x x x x x -++-+- . x x m → ()∞→m ⇔ 对每个n i ≤≤1,有 ()i m i x x → ()∞→m .2. []b a C , 设{}⊂∞=1n n x []b a C ,,∈x []b a C ,,则()x x d n ,=()()0max →-≤≤t x t x n bt a ()∞→n ⇔ {}∞=1n n x 在[]b a ,一致收敛于x .3. 序列空间S 设m x =()()()(),,,,21m n m m ξξξ, ,2,1=m ,及x =() ,,,,21n ξξξ分别是S 中的点列及点,则()()()∑∞=→-+-=10121,k k m kkm k k m x x d ξξξξ ()∞→m ⇔ m x 依坐标收敛于x .4. 可测函数空间()X M设{}∞=1n n f ⊂()X M ,f ⊂()X M ,则因()f f d n ,=()()()()⎰-+-X nn dm t f t f t f t f 1,有 f f n → ⇔ f f n ⇒. §3 度量空间中的稠密集 可分空间定义 设X 是度量空间,N 和M 是X 的两个子集,令M 表示M 的闭包,若N ⊂M ,则称集M 在集N 中稠密,当N =X 时,称M 为X 的一个稠密子集. 若X 有一个可数的稠密子集,则称X 是可分空间. 例1 n 维欧氏空间nR 是可分空间. 事实上,坐标为有理数的点的全体是nR 的可数稠密子集. 例2 离散距离空间X 可分 ⇔ X 是可数集. 例3 ∞l 是不可分空间.§4 连续映射 定义 设X =()d X ,,Y =()dY ~,是两个度量空间,T 是X 到Y 中的映射:X =()d X ,T→ Y =()d Y ~,. 0x ∈X ,若∀ε>0,∃δ>0,s.t. ∀x ∈X 且()0,x x d <δ,都有()0,~Tx Tx d <ε,则称T 在0x 连续:定理 1 设T 是度量空间()d X ,到度量空间()d Y ~,中的映射:()d X ,T →()d Y ~,, 则T 在0x 连续 ⇔ 当n x →0x 时,必有n Tx →0Tx .定理2 度量空间X 到Y 中的映照T 是X 上的连续映射 ⇔ 任意开集M ⊂Y ,M T 1-是X 中的开集.定理2' 度量空间X 到Y 中的映照T 是X 上的连续映照 ⇔ 任意闭集M ⊂Y ,M T 1-是X 中的闭集.§5 柯西点列和完备度量空间定义 1 设X =(X ,d )是度量空间,{}∞=1n n x 是X 中的点列. 若>∀ε0,()N ∈=∃εN N ,s.t.当N n m >,时,有()m n x x d ,<ε,则称{}∞=1n n x 是X 中的柯西点列或基本点列. 若度量空间(X ,d )中每个柯西点列都收敛,则称(X ,d )是完备的度量空间.在一般空间中,柯西点列不一定收敛,如点列1, 1.4, 1,41, ,412.1 在1R 中收敛于2,在有理数集中不收敛.但度量空间中每一个收敛点列都是柯西点列.定理1 完备度量空间X 的子空间M 是完备度量空间 ⇔ M 是X中的闭子空间.常见例子:(1)C (收敛的实或复数列的全体)是完备度量空间 (2) []b a C,是完备的度量空间(3) []b a P ,(实系数多项式全体) 是不完备的度量空间§6 度量空间的完备化 定义 1 设(X ,d ),(X ~,d ~)是两个度量空间,若存在X 到X ~上的保距映射T (∀1x ,2x ∈X ,有d ~(T 1x ,T 2x )=d (1x ,2x )),则称(X ,d )和(X ~,d ~)等距同构,此时称T 为X 到X ~上的等距同构映照。
等距同构映照是1-1映射. 定理1 (度量空间的完备化定理) 设X =(X ,d )是度量空间,那么一定存在一完备度量空间X ~=(X ~,d ~),使X 与X ~的其个稠密子空间W 等距同构,并且X ~在等距同构意义下是唯一的,即若(Xˆ,d ˆ)也是一完备度量空间,且X 与X ˆ的其个稠密子空间W 等距同构,则(X ~,d ~)与(Xˆ,d ˆ)等距同构. §7压缩映照原理及其应用定义 设X 是度量空间,T 是X 到X 中的压映照,若存在一个数α:0<α<1,s.t. ∀x 、y X ∈,成立 ()Ty Tx d ,≤α()y x d , 则称T 是X 到X 中的压缩映照(简称压缩映照).定理1.(压缩映射定理) 设X 是完备度量空间,T 是X 上的压缩映照,则T 有且只有一个不动点(即方程x Tx =有且只有一个解).补充定义:若TX=X,则称X 是T 的不动点,即X 是T 的不动点⇔X 是方程TX=X 的解。
定理2. 设函数()y x f ,在带状域b x a ≤≤,+∞<<∞-y 中处处连续,且处处有关于y 的偏导数()y x f y,',若存在常数m 和M , 满足 m <M ,0<m ≤()y x f y,'≤M , 则方程 ()y x f ,=0 在区间[]b a ,上必有唯一的连续函数()x y ϕ=作为解:()()≡x x f ϕ,0,∈x []b a ,.§8赋范线性空间和Banach 空间线性空间+范数⇒线性赋范空间线性赋范空间+完备性⇒巴拿赫空间定义1 设X 是任一非空集合,若K 是一个数域(R 或C ),如果X 对某种规定的加法和数乘两种运算封闭,且∀x,y,z ∈X, λ,∈μK, 满足: 1) x+y=y+x (加法交换律) 2) (x+y)+z+x+(x+y) (加法结合律)3) ∈θ∃X, 使x+θ=x (零元素存在性) 4) ∃x ’∈X,使x+x ’=θ (逆元存在性) 5) λ(μx)=μλx=μ(λx) (数乘结合律) 6) 1x=x, 0x=θ7) (λ+μ)x=λx+μx (元素对数的加法分配律) 8) λ(x+y)=λx+λy (数对元素的加法分配律)则称x+y 为x 与y 的和,λx 为数λ与x 的数乘 , 称X 为线性空间或向量空间 (实或复),X 中的元素称为向量。
定义 (范数,赋范线性空间) 设X 为是实(或复)数域F 的线性空间,若对x X ∀∈,存在一个实数x 于之对应,且满足下列条件:(1) 0≥x ; 且0=x ⇔=0x ; (非负性)(2) α=x x ,α∈F ; (正齐(次)性) (3) +≤+x y x y ,,X ∈x y ; (三角不等式)则称x 为x 的范数(norm),称(,)X ∙(或:X )为赋范线性空间定义 完备的赋范线性空间称为巴拿赫(Banach )空间。
例子:[,]C a b ,空间pl ,n 维Euclidean 空间nR ,[,]a b L ,都是Banach 空间。
度量空间与赋范线性空间 区别:度量空间是定义了度量的线性空间,也就是两个元素之间的“长度”,满足非负性、对称性、三角不等式。
赋范线性空间就是定义了范数的线性空间,其满足范数公理(非负性,齐次性,三角不等式)联系:都是在线性空间的前提下讨论的。