数学简易方程知识点
- 格式:docx
- 大小:18.24 KB
- 文档页数:4
简易方程人教版知识点总结一、方程的基本定义1.方程的定义在代数学中,方程是指两个代数式之间用等号连接而成的数学关系。
通常来说,方程中会含有一个或多个未知数,我们需要找到未知数的值,使得方程成立。
例如,下面的代数式就是一个方程:2x + 3 = 7在这个方程中,未知数为x,我们需要找到一个数值,使得等式成立。
2.方程的分类根据代数式中的幂、次数和根号的情况,方程可以分为一元一次方程、一元二次方程和高次方程等多种类型。
根据未知数的个数,方程可以分为一元方程和多元方程。
根据方程中的未知数是否为整数或是分数,方程可以分为整式方程和分式方程。
3.方程的解对于方程来说,我们通常希望找到一个或多个满足方程的解,即使得方程成立的未知数的值。
有时候方程可能有一个解、多个解,或者无解。
二、方程的性质1.方程的等价变形对于一个方程,我们可以通过一系列等价变形来求解方程。
这些等价变形包括加减运算、乘除运算、移项和去括号等操作。
2.方程的解集对于方程来说,我们通常会求得一组解,这些解的集合就是方程的解集。
通过求解方程,我们可以得到方程的解集,并且验证这些解是否满足方程。
3.方程的应用方程在现实生活中有着广泛的应用,比如物理学中的运动方程、经济学中的成本收益方程、化学中的化学方程等等。
通过方程,我们可以描述和解决各种复杂的问题。
三、解一元一次方程的方法1.整式方程的解法对于一元一次方程,我们可以通过运用逆运算的方法,将方程逐步变换成求得未知数的步骤,最终得到方程的解。
2.分式方程的解法对于含有分式的方程,我们可以通过通分、去括号和分离分式的方法,将方程转化为整式方程,然后进行求解。
3.方程组的解法对于一元一次方程组,我们可以采用代入消去法、加减消去法和等式相减法等方法,逐步求解方程组。
四、常见的方程类型1.一元一次方程一元一次方程式指的是只含有一个未知数,并且未知数的最高次数为一的方程。
一元一次方程通常可以通过移项和合并同类项来解决。
简易方程公式知识点总结一、一元一次方程1. 一元一次方程的定义:一元一次方程是指只含有一个未知数的一次方程。
一般地,一元一次方程可以用ax+b=0(a≠0)来表示,其中a和b是已知数,x是未知数。
2. 方程的解:方程ax+b=0的解即为x=-b/a。
其中,如果a=0且b≠0,那么方程无解;如果a=0且b=0,那么方程有无数解。
3. 解方程的方法:解一元一次方程可以通过如下几种方法:a. 移项法:将未知数的项移到等式的一边,其他项移到另一边。
b. 相消法:通过相等的两边增加或减少同一个量,使得方程两边的某个项相消掉。
c. 等价变形法:通过等式的加减乘除变形,使得方程的解变得更明显。
4. 例题:解方程3x+5=2x-7解:将未知数项移到左边去,得到3x-2x=-7-5,即x=-12。
二、一元二次方程1. 一元二次方程的定义:一元二次方程是指含有一个未知数的二次方程。
一般地,一元二次方程可以用ax^2+bx+c=0(a≠0)来表示,其中a、b和c是已知数,x是未知数。
2. 方程的解:一元二次方程的解可以用求根公式来表示,即x=[-b±√(b^2-4ac)]/(2a)。
其中,当Δ=b^2-4ac>0时,方程有两个不相等的实根;当Δ=0时,方程有两个相等的实根;当Δ<0时,方程没有实根。
3. 方程的图像:一元二次方程的图像是一个开口朝上或开口朝下的抛物线,其顶点坐标为(-b/2a,-Δ/4a)。
4. 例题:解方程x^2-5x+6=0解:根据求根公式,Δ=5^2-4*1*6=1,因此方程有两个不相等的实根,即x=[5±√1]/2=3或2。
三、一元三次方程1. 一元三次方程的定义:一元三次方程是指含有一个未知数的三次方程。
一般地,一元三次方程可以用ax^3+bx^2+cx+d=0(a≠0)来表示,其中a、b、c和d是已知数,x是未知数。
2. 方程的解:一般地,一元三次方程没有通用的求解公式,而是需要通过因式分解、配方法、换元等多种方法来求解。
第五单元简易方程(思维导图知识梳理例题精讲易错专练)人教版数学五年级上册一、思维导图二、知识点梳理知识点一:用字母表示数1.用字母表示数:在含有字母的式子里,字母之间的乘号可以记作“·”,也可以省略不写;2.用字母表示运算定律加法交换律:a+b=b+a;加法结合律:(a+b)+c=a+(b+c)乘法交换律:ab=ba乘法结合律:(ab)c=a(bc)乘法分配律:(a+b)c=ac+bc注意:数和字母相乘,省略乘号时,一般把数写在字母前面,数和数相等不能省略乘号。
3.用字母表示复杂的数量关系(1)用字母可以表示数量关系。
(2)将字母的具体数值代入含有字母的式子中,即可求得相应式子的值。
4.化简含有字母的式子并代入数据求值计算含有字母的式子的时候,可以先运用运算定律将含有字母的式子进行化简,再求值。
知识点二:方程的意义及等式的性质1.意义:含有未知数的等式叫做方程。
2.等式的性质性质1:等式两边加上或者减去同一个数,左右两边仍然相等;性质2:等式两边乘同一个数,或除以同一个不为0的数,左右两边仍然相等。
注意:方程一定是等式,但等式不一定是方程。
知识点三:解方程及实际问题1.使方程左右相等的未知数的值,叫做方程的解,求方程的解的过程叫做解方程;2.根据等式的性质解不同形式的方程;3.把求得的未知数的值代入原方程,看方程左边的值是否等于右边的值,如果相等,所求的未知数的值就是原方程的解,否则就不是。
注意:解方程的依据是等式的性质;解方程时等号要上下对齐。
4.稍微复杂的方程(1)列方程解决实际问题的步骤:首先,找出未知数,用字母X表示;其次,分析实际问题中的数量关系,找出等量关系,列方程;最后,解方程并检验作答。
(2)方程解法与算式解法的区别列方程解决问题时,未知数用字母表示,参与列式,算式解法中未知数不参与列式;列方程解决问题时根据题中的数量关系,列出含有未知数的等式,求未知数由解方程来完成,算术解法是根据题中已知数和未知数之间的关系确定解答步骤,再进行计算。
自我介绍例文参考自我介绍样本一:我是一个对理想有着执着追求的人,坚信是金子总会发光。
大学毕业后的工作,让我在文案筹划方面有了很大的进步,文笔流畅,熟悉传媒工作、广告学制作与设计等工作方面。
为人热情,活泼,大方,本人好学上进,诚信、敬业、责任心强,有强烈的团体精神,对工作认真积极,严谨负责。
本人性格内外结合,适应才能强,为人老实,有良好的人际交往才能,具备相关的专业知识和认真。
细心、耐心的工作态度及良好的职业道德修养。
相信团体精神的我对工作认真负责,总希望能把事情做得更好!性格开朗,对文字语言和数字敏感,对生活充满希望,对工作充满热情! 能在短期间内适应新环境,有强烈的品质意识;对工作认真负责,上进心强!懂电脑根本操作,纯熟小键盘操作!我的理念是:在年轻的季节我甘愿吃苦受累,只愿通过自己富有激情、积极主动的努力实现自身价值并在工作中做出最大的奉献:作为初学者,我具备出色的学习才能并且乐于学习、敢于创新,不断追求卓越;作为参与者,我具备老实可信的品格、富有团队合作精神;作为指导者,我具备做事干练、果断的风格,良好的沟通和人际协调才能。
受过系统的经济文化相关专业知识训练,有很强的忍受力、意志力和吃苦耐劳的品质,对工作认真负责,积极进取,个性乐观执着,敢于面对困难与挑战。
为了企业公司的利益而早想,为了在企业公司付出个人的思想文化才能程度,尽心尽力的忠诚于企业公司,企业公司这样才有利于我的开展目的,去脚踏实地奋斗实现我的梦想,追求一些生活物资财富等。
努力的为企业公司渐渐的壮观强大的开展起来,成功的阶段渐渐的有所进步,在社会上可以抬得起头,在社会上知名知名度和良好的方面。
在企业公司上奉献我的人生价值和风度才能程度,在社会上全方面的体会出来。
看过了我的个人简历自我介绍信息的企业公司指导人们,请合格同意批准我进入企业公司的工作方面,积极面对企业公司的工作,合适企业公司环境的范围,投入企业公司工作方面的用处和理解,渐渐的习惯起来这企业公司的这一工程职业道路的开展空间。
简易方程知识点总结一、方程的基本概念1. 方程的定义方程是一个数学式子,含有一个或多个未知数,并且方程中包含等号。
方程的一般形式为:a₁x + a₂y + ... + aₙz = b,其中a₁、a₂、...、aₙ和b为已知数,x、y、...、z为未知数。
2. 方程的分类根据未知数的次数和方程的类型,方程可以分为一元一次方程、一元二次方程、二元一次方程、线性方程组、非线性方程等。
不同类型的方程有不同的解法和应用。
3. 方程的解解方程即求出使方程成立的未知数的值。
解方程的方法可以包括代入法、加减消去法、公式法、配方法等。
根据方程的类型和特点选择不同的解法。
二、一元一次方程1. 一元一次方程的定义一元一次方程是指只含有一个未知数,并且未知数的指数为1的方程。
一元一次方程的一般形式为:ax + b = c,其中a、b、c为已知数,x为未知数。
2. 一元一次方程的解法解一元一次方程的方法可以包括逆运算法、加减消去法、代入法等。
通过这些方法可以求出一元一次方程的唯一解。
3. 一元一次方程的应用一元一次方程在实际生活中有着广泛的应用,比如物品的价格与数量之间的关系、人员的工资与工作时间之间的关系等,都可以用一元一次方程来描述和解决。
三、一元二次方程1. 一元二次方程的定义一元二次方程是指只含有一个未知数,并且未知数的指数为2的方程。
一元二次方程的一般形式为:ax² + bx + c = 0,其中a、b、c为已知数,x为未知数。
2. 一元二次方程的解法解一元二次方程的方法可以包括公式法、配方法、完全平方式等。
根据一元二次方程的系数和特点选择不同的解法,可以求出一元二次方程的实数根或复数根。
3. 一元二次方程的应用一元二次方程在实际生活中也有着广泛的应用,比如物体的抛体运动、图形的面积和周长之间的关系等,都可以用一元二次方程来描述和解决。
四、二元一次方程1. 二元一次方程的定义二元一次方程是指含有两个未知数的一次方程,一般形式为:ax + by = c,dx + ey = f。
简易方程的所有知识点总结一、方程的定义方程是指数学表达式中出现一个或多个未知数的等式,它通常用来描述某种数学关系。
方程通常表示为A(x) = B(x),其中A(x)和B(x)是关于未知数x的表达式。
方程的解就是满足方程的所有符合条件的x的值。
二、一元一次方程一元一次方程是指只包含一个未知数,并且未知数的最高次数是一次的方程。
例如:2x+3=7就是一个一元一次方程。
解一元一次方程的方法包括整理方程、移项、通分、两边加减同一个数等步骤,最终得到未知数的值。
三、一元二次方程一元二次方程是指只包含一个未知数,并且未知数的最高次数是二次的方程。
例如:x^2 + 3x + 2 = 0 就是一个一元二次方程。
解一元二次方程的方法包括配方法、公式法、直接代入求解等。
四、线性方程组线性方程组是指包含两个或两个以上一元一次方程的方程组。
例如:{2x + y = 7; x - 3y = 5}就是一个线性方程组。
解线性方程组的方法包括代入法、消元法、加减法等。
五、二元二次方程二元二次方程是指包含两个未知数,并且未知数的最高次数是二次的方程。
例如:x^2 + y^2 = 25 就是一个二元二次方程。
解二元二次方程通常需要用到代入法等方法。
六、方程的性质(1)等式性质:如果一个等式的两边都加(减)同一个数(或者两个式子相加,或者相减)仍相等;(2)应用分配率:即对于任意的实数a、b、c,有a(b+c) = ab + ac;(3)等式乘法:如果两个实数相等,那么它们的平方也相等,即a = b,则a^2 = b^2。
同理,如果两个实数不等,那么它们的平方也不等,即a ≠ b,则a^2 ≠ b^2。
七、方程的解法(1)代入法:将解得的值代入原方程,验证是否成立;(2)消元法:通过加减或者乘除操作,使未知数相消或抵消,从而求解出一个未知数的值;(3)配方法:将方程转化为完全平方形式,再利用平方公式求解;(4)公式法:利用一元二次方程的求根公式来求解方程;(5)逆运算:利用减法逆运算来消去未知数的系数,从而求解出未知数的值;(6)图解法:将方程转化为图形,通过图形求解。
简易方程有关知识点总结一、基本概念1、方程的定义数学中,若一个式子中含有未知数,并要求使该式子成立的未知数的数值,则这一式子称为方程。
2、方程的分类方程的种类很多,一般可以分为一元一次方程、一元二次方程、一元三次方程、二元一次方程、二元二次方程等等。
其中最为常见的是一元一次方程。
3、方程的解对于一个方程,如果存在使该方程成立的未知数的数值,这些数值称为方程的解。
方程的根据解的个数可以分为无解、有限解和无限解。
4、方程的性质方程的解的性质是方程与未知数之间的关系,包括方程的解的个数、解的范围、解的存在性等等。
二、一元一次方程1、定义一元一次方程是指其中只包含一个未知数,并且该未知数的最高次数为一的方程。
2、一元一次方程的一般形式一般来说,一元一次方程可以写成ax + b = 0的形式,其中a和b为常数,a≠0。
3、一元一次方程的解法解一元一次方程的方法有直接解法、倒代法、加减法、代入法、合并同类项法等等。
其中直接解法是最常用的一种方法。
4、方程的应用一元一次方程在现实生活中有着广泛的应用,如各种代数问题、利润问题、工程问题、经济问题等等。
5、一元一次方程组一元一次方程组是指由一些一元一次方程组成的方程组。
解一元一次方程组可以用消元法、代入法等方法求解。
三、一元二次方程1、定义一元二次方程是指其中只包含一个未知数,并且该未知数的最高次数为二的方程。
2、一元二次方程的一般形式一般来说,一元二次方程可以写成ax² + bx + c = 0的形式,其中a、b和c为常数,且a≠0。
3、一元二次方程的解法解一元二次方程的方法有因式分解法、配方法、求根公式法等等。
其中求根公式法是最常用的一种方法。
4、方程的应用一元二次方程在现实生活中也有着广泛的应用,如抛物线问题、物体抛射问题、图形的面积问题等等。
5、讨论一元二次方程的根当解一元二次方程时,可以讨论它的根的情况,包括有无根、有一根或两根等情况。
四、方程的图形1、方程的图形一般来说,方程的图形是指包含该方程所有解的点的集合,可以用来直观地表示方程。
简易方程的数学知识点总结一、概念简易方程是指只含有一个未知数的一次方程,即未知数的最高次幂为一。
一般形式为ax+b=0。
其中,a和b为已知数,x为未知数。
二、解一元一次方程的方法1. 直接相减法当已知数和未知数在等式两边分布时,可用直接相减法解方程。
例如:2x+3=7解:先将3移到等号右边,得2x=7-3,再相减得2x=4,最后除以2,得x=2。
2. 相反数相加法当未知数的系数为1时,可应用相反数相加法。
例如:x-5=2解:将x移到等号右边,得x=2+5,最后得x=7。
3. 等式两边加减法用等式两边的数值的交换性和对等性来解方程。
例如:3x-4=11解:先将-4移到等号右边,得3x=11+4,再相加得3x=15,最后除以3,得x=5。
4. 辗转相减法用变形公式解一元一次方程,通过等号两边的数值进行运算,将运算结果分别代入方程得到解。
例如:2x+5=11解:首先将5移到等号右边,得2x=11-5,再相减得2x=6,最后除以2,得x=3。
将解代入原方程验证。
5. 等式两边乘除法通过等式两边的乘法或除法运算解方程。
例如:3x/2-4=5解:首先将4移到等号右边,得3x/2=5+4,再相加得3x/2=9,最后乘以2/3,得x=6。
将解代入原方程验证。
6. 试算法通过适当的试算及验证得出方程的解。
例如:4x+3=19解:设计一个未知数值,代入解方程得出的结果进行验证。
设x=4,代入得4*4+3=19,验证结果正确,得出x=4。
三、实际应用1. 量的问题通过方程式的列立和解法可以解决关于量的问题,如长方形的周长、面积等问题。
2. 轻松购物通过方程式解决购物问题,如打折、满减等问题。
3. 交通问题通过方程式解决交通问题,如两车相遇、相距多远等问题。
4. 职业生涯规划通过方程式解决职业规划问题,如薪水增长、晋升等问题。
5. 金融问题通过方程式解决金融问题,如利息计算、投资回报等问题。
总结:简易方程是数学中的基本概念之一,是一种重要的计算工具。
简易方程所有的知识点总结1. 方程的定义方程是含有未知数的数学关系,它可以表示为两个表达式之间的相等关系。
方程通常用字母表示未知数,通过代数方法可以求解出未知数的取值。
2. 未知数在方程中,未知数通常用字母表示,表示未知的数量或者大小。
在求解方程时,我们通过代数运算来确定未知数的值。
3. 方程的解解方程就是要找出使方程成立的未知数值,使得方程左边的表达式等于右边的表达式。
解方程的过程就是求出这些未知数的取值。
二、一元一次方程1. 一元一次方程的定义一元一次方程是指只含有一个未知数,并且未知数的最高次数为一的方程。
2. 一元一次方程的一般形式一元一次方程的一般形式可以表示为ax+b=0,其中a和b为已知常数,x为未知数。
3. 解一元一次方程的方法解一元一次方程的方法包括加减消去法、配方法、代入法等。
在解方程的过程中,我们通常通过变换方程的形式来求得未知数的值。
4. 一元一次方程的应用一元一次方程的应用十分广泛,可以用来解决各种实际问题,如物品的购买和销售、工程问题、金融问题等。
三、一元二次方程1. 一元二次方程的定义一元二次方程是指只含有一个未知数,并且未知数的最高次数为二的方程。
2. 一元二次方程的一般形式一元二次方程的一般形式可以表示为ax^2+bx+c=0,其中a、b和c为已知常数,x为未知数。
3. 一元二次方程的求解方法解一元二次方程可以通过配方法、公式法、因式分解法等多种方法。
其中,一元二次方程的解法与因子分解和二次函数有着密切的联系。
4. 一元二次方程的应用一元二次方程在生活中也有很多应用,如物体自由落体运动、抛物线运动、建筑中的拱形结构设计等都可以用一元二次方程进行建模和解决。
四、一元三次方程1. 一元三次方程的定义一元三次方程是指只含有一个未知数,并且未知数的最高次数为三的方程。
2. 一元三次方程的一般形式一元三次方程的一般形式可以表示为ax^3+bx^2+cx+d=0,其中a、b、c和d为已知常数,x为未知数。
简易方程验算知识点总结方程的基本形式是“等号两边的式子”,通常由未知数和已知数以及运算符号组成。
方程的解就是能够使得等号成立的未知数的值。
在数学中,我们常常利用方程来解决实际问题,比如代数方程、含参数的方程、线性方程组等,这些都是方程的具体应用。
在本文中,我们将介绍方程的基本知识,包括方程的定义、解的概念、方程的分类、方程的应用以及方程的解法等内容,希望能够帮助大家更好地理解和掌握方程的知识。
一、方程的定义方程是描述两个数量之间的关系的数学式子,它通常由等号连接的两个表达式组成。
方程中的未知数通常用字母表示,通过解方程可以求得未知数的值。
方程的基本形式为:F(x)=G(x)其中,F(x)和G(x)是含有未知数x的表达式,称为方程的左式和右式,x称为未知数,方程的解就是能够使等式成立的x的值。
例如,方程x+3=5就是一个简单的方程,它表示未知数x和3之和等于5,解为x=2。
二、方程的解的概念方程的解是指能够使等式成立的未知数的值。
一般来说,方程有一个或多个解,有时也可能没有解。
方程的解通常分为实数解和复数解两种。
实数解是指使得方程成立的实数值,例如方程x²-1=0的实数解就是x=1和x=-1。
复数解是指使得方程成立的复数值,例如方程x²+1=0的复数解就是x=i和x=-i。
三、方程的分类根据方程中未知数的次数和幂次,方程可分为一元一次方程、一元二次方程和高次方程等多种类型。
一元一次方程是形如ax+b=0的方程,其中a和b为已知数,x为未知数。
解一元一次方程的基本方法是移项合并同类项,然后分子分母相消,最后求得未知数的值。
一元二次方程是形如ax²+bx+c=0的方程,其中a、b和c为已知数,x为未知数。
求解一元二次方程的常用方法有公式法、配方法和求因式法等。
高次方程是指方程中未知数的次数大于等于3的方程,通常求解这类方程需要利用代数方法等高级数学知识。
四、方程的应用方程在现实生活中有着广泛的应用,比如在商业中,我们可以利用方程来解决成本、利润和销售额等问题;在物理中,方程可以帮助我们描述物体的运动规律和力的平衡等问题;在工程中,方程可以帮助我们解决建筑、电路和化工等问题。
数学简易方程知识点
数学简易方程知识点
在年少学习的日子里,是不是经常追着老师要知识点?知识点在教育实践中,是指对某一个知识的泛称。
掌握知识点是我们提高成绩的关键!下面是店铺收集整理的数学简易方程知识点,仅供参考,大家一起来看看吧。
数学简易方程知识点1
1、在含有字母的式子里,字母中间的乘号可以记作“·”,也可以省略不写。
加号、减号除号以及数与数之间的乘号不能省略。
2、a×a可以写作a·a或a2,a2读作a的平方。
2a表示a+a
3、我们学过的一些典型的数量关系:
(用s—路程、v—速度、t—时间)
行程问题:路程=速度×时间s=vt
速度=路程÷时间v=s÷t
时间=路程÷速度t=s÷v
(用c—总价、a—单价、x—数量)
价格问题:总价=单价×数量c=ax
单价=总价÷数量a=c÷x
数量=总价÷单价x=c÷a
(用c—工作总量、a—工作效率、t—工作时间)
工程问题:工作总量=工作效率×工作时间c=at
工作效律=工作总量÷工作时间a=c÷t
工作时间=工作总量÷工作效率t=c÷a
4、方程:含有未知数的等式称为方程。
使方程左右两边相等的未知数的值,叫做方程的解。
求方程的解的过程叫做解方程。
5、解方程原理:天平平衡。
等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成
立。
、
6、各个数量关系式:加法:和=加数+加数一个加数=和-另一个加数
减法:差=被减数-减数被减数=差+减数减数=被减数-差
乘法:积=因数×因数一个因数=积÷另一个因数
除法:商=被除数÷除数被除数=商×除数除数=被除数÷商
7、所有的方程都是等式,但等式不一定都是方程。
8、方程的检验过程:方程左边=……
9、方程的解是一个数;
解方程式一个计算过程。
=方程右边
所以,X=…是方程的解。
数学简易方程知识点2
简易方程
用字母表示数
用字母表示数是代数的基本特点。
既简单明了,又能表达数量关系的一般规律。
用字母表示数的注意事项
1、数字与字母、字母和字母相乘时,乘号可以简写成“·“或省略不写。
数与数相乘,乘号不能省略。
2、当1和任何字母相乘时,“ 1” 省略不写。
3、数字和字母相乘时,将数字写在字母前面。
含有字母的式子及求值
求含有字母的式子的值或利用公式求值,应注意书写格式
等式与方程
表示相等关系的式子叫等式。
含有未知数的等式叫方程。
判断一个式子是不是方程应具备两个条件:一是含有未知数;二是等式。
所以,方程一定是等式,但等式不一定是方程。
方程的解和解方程
使方程左右两边相等的未知数的值,叫方程的解。
求方程的解的过程叫解方程。
在列方程解文字题时,如果题中要求的未知数已经用字母表示,解答时就不需要写设,否则首先演将所求的未知数设为x。
解方程的方法
1、直接运用四则运算中各部分之间的关系去解。
如x-8=12
加数+加数=和一个加数=和-另一个加数
被减数-减数=差减数=被减数-差被减数=差+减数
被乘数×乘数=积一个因数=积÷另一个因数
被除数÷除数=商除数=被除数÷商被除数=除数×商
2、先把含有未知数x的项看作一个数,然后再解。
如3x+20=41
先把3x看作一个数,然后再解。
3、按四则运算顺序先计算,使方程变形,然后再解。
如2.5×4-x=4.2,
要先求出2.5×4的.积,使方程变形为10-x=4.2,然后再解。
4、利用运算定律或性质,使方程变形,然后再解。
如:2.2x+7.8x=20
先利用运算定律或性质使方程变形为(2.2+7.8)x=20,然后计算括号里面使方程变形为10x=20,最后再解。
数学简易方程知识点3
1、方程的意义
含有未知数的等式,叫做方程。
2、列方程解应用题的一般步骤
(1)弄清题意,找出未知数,并用表示。
(2)找出应用题中数量之间的相等关系,列方程。
(3)解方程。
(4)检验,写出答案。
3、数量关系式
加数=和-另一个加数减数=被减数–差被减数=差+减数
因数=积另一个因数除数=被除数商被除数=商除数
例4用含有字母的式子表示下面的数量关系
(1)的7倍;(2)的5倍加上6;(3)5减的差除以3;
(4)200减5个;(5)比7个多2的数。
例9要修一段公路,平均每天修米,修了6天,还剩下米。
(1)用含有字母的式子表示这段公路有多少米;
(2)根据这个式子,分别求等于50,等于200时,公路长多少米
例11某个数与9的和的12倍等于156,求这个数是多少。
例12王晰买了2支钢笔和5支圆珠笔,共付17元。
一支钢笔的价格是一支圆珠笔的40倍,求每支钢笔多少钱,每支圆珠笔多少钱?
下载全文。