复合材料力学第二章2PPT课件
- 格式:ppt
- 大小:3.14 MB
- 文档页数:75
第二章复合材料的复合效应第一节复合效应概述复合材料的复合原理是研究复合材料的结构特性、开拓新材料领域的基础。
耦合:不同性质材料之间的相互作用。
→复合材料性能与结构的协同相长特性(即复合后的材料性能优于每个单独组分的性能)。
从力学、物理学上理解复合材料多样性的基础。
拟解决的问题:寻找材料复合的一般规律。
研究增强机理。
一、材料的复合效应线性效应:平均效应、平行效应、相补效应、相抵效应。
非线性效应:相乘效应、诱导效应、共振效应、系统效应。
复合效应是复合材料的研究对象和重要内容,也是开拓新型复合材料、特别是功能型复合材料的基础理论问题。
非线性效应尚未被充分认识和利用,有待于研究和开发。
1、平均效应:P c=P m V m+P f V f(P:材料性能;V:材料体积含量;c:复合材料;m:基体;f:增强体或功能体)应用:力学性能中的弹性模量、线膨胀率等结构不敏感特性;热传导、电导等物理常数。
例:复合材料的弹性模量:E c=E m V m+E f V f(混合定律)2、相补效应:性能互补→提高综合性能。
例:脆性高强度纤维与韧性基体复合,适宜的结合形成复合材料。
→性能显示为增强体与基体互补。
3、相乘效应:X/Y·Y/Z=X/Z(X、Y、Z:物理性能)两种具有转换效应的材料复合→发生相乘效应→设计功能复合材料。
例:磁电效应(对材料施加磁场产生电流)——传感器,电子回路元件中应用。
压电体BaTiO3与磁滞伸缩铁氧体NiFe2O4烧结而成的复合材料。
对该材料施加磁场时会在铁氧体中产生压力,此压力传递到BaTiO3,就会在复合材料中产生电场。
最大输出已达103V·A。
单一成分的Cr2O3也有磁电效应,但最大输出只有约170V·A。
4、共振效应:两个相邻的材料在一定条件下,产生机械的、电的、磁的共振。
应用:改变复合材料某一部位的结构→复合材料固有频率的改变→避免材料工作时引起的破坏。
吸波材料:调整复合材料的固有频率,吸收外来波。
第二章单向层合板的正轴刚度本章的一些讲法与讲义次序不同,请同学们注意,另外一些在材料力已阐明的概念,如应力、应变等在这里不再强调,希望大家能自学与复习。
§2—1 正交各向异性材料的特点●各向同性材料●各向异性材料我们这里所指的各向异性材料的特点仅仅是指在不同方向上材料的力学性质不同(机械性能)。
●正交各向异性材料正交各向异性材料是一种特殊的各向异性材料。
其特点为: 这类材料有三个互相垂直的弹性对称面(与弹性对称面对称的点性质相同),在平行方向上的弹性质(力学特性)均相同。
如多层单向板,当不考虑纤维与基体性质的不均匀性,粘结层又很薄可以忽略,即把它写作“连续匀质”材料看,则三个弹性对称面分别为:与单层平行的面及与它垂直的纵向、横向的两个切面。
板上任何两点,在平行方向上的力学性质是一样的。
把这三个弹性平面相交的三个轴称为弹性主轴,也称为正轴。
下图是一种典型的正交个向异性材料,当厚度很小时可处理为正交个向异性板。
用宏观力学处理连续纤维增强复合材料层压板结构时,总是把单向层板作为基本单元来分析层合板。
层合板的组成增强纤维排列方向一致所粘合的薄层称单向(单层)板(层),有时把很多单层粘合在一起,各层的纤维排列方向均一致,也称单向板。
正轴的弹性常数正交各向异性弹性体,1、2、3轴为它的弹性主轴,则沿这三个轴共有9各独立弹性常数。
1E 、2E 、3E ——杨氏模量; 12G 、13G 、23G ——剪切模量; 21v 、31v 、32v ——泊松系数。
21v 表示在1方向拉伸时在2方向产生的收缩效应系数;同样,12v 表示在2方向拉伸时在1方产生的收缩效应系数。
1221v v ≠ 这点与各向同性材料不同。
并有关系式212121E v E v = 313131E v E v = 323232E v E v = ∴ 12v、13v 、23v 是不独立的系数。
顺便指出,有的文献定义12v 为1方向拉伸时在2方向的收缩系数。