S13S 22
, C 22
S11S 33
S
2 13
S
,
C 23
S 1 2 S 1 3 S S2 3 1 1 S
, C 33
S11S 22 S
S
2 12
C 44
1 S 44
, C 55
1 S 55
, C 66
1 S 66
其中:
S S 1 1 S 2 2 S 3 3 S 1 1 S 2 2 3 S 2 2 S 1 2 3 S 3 3 S 1 2 2 2 S 1 2 S 2 3 S 1 3
S12 0
S11 0
0 2 S11 S12
0 0
0
0
0 0 0 0 0 0
0 0
2S11 S120ຫໍສະໝຸດ 02S11 S12
同样可写出几种特殊材料的刚度矩阵形式及独立常数 个数。
2 S 1 1 S 1 2 2 ( 1 / E / E ) 2 ( 1 ) / E 1 / G
§2-2 正交各向异性材料的工程常数
i j 为应力在i方向作用时在j方向产生横向应变的泊松比
ij
j i
根据柔度矩阵的对称性 Sij S ji
可得: i j j i 正交各向异性材料三个互等关系 Ei E j
由此可见:只要知道3个弹性模量和3个泊松比,就可
以计算出另3个泊松比。所以:有9个独立的工程常数
下面用二维图形简单解释一下应力-应变关系
1 E2
32 E3
0
0
0
S ij
13 E1
23 E2
0
0
1 E3
0
0
1 G 23
0 0
0
0