模糊控制4
- 格式:ppt
- 大小:596.00 KB
- 文档页数:47
模糊控制原理与应用
模糊控制是一种基于模糊逻辑的控制方法,它可以处理那些难以用传
统控制方法精确描述的系统。
模糊控制的基本思想是将输入和输出之
间的关系用模糊集合来描述,然后通过模糊推理来确定控制规则,最
终实现对系统的控制。
模糊控制的优点在于它可以处理那些难以用传统控制方法精确描述的
系统,例如非线性系统、模糊系统、多变量系统等。
此外,模糊控制
还具有较好的鲁棒性和适应性,能够在一定程度上克服系统参数变化
和外部干扰的影响。
模糊控制的应用非常广泛,例如在工业控制、交通控制、机器人控制、医疗诊断等领域都有着广泛的应用。
在工业控制中,模糊控制可以用
于控制温度、湿度、压力等参数,以及控制机器人的运动轨迹和速度。
在交通控制中,模糊控制可以用于控制交通信号灯的时序和周期,以
及优化交通流量。
在医疗诊断中,模糊控制可以用于对患者的病情进
行评估和诊断。
在模糊控制的实现过程中,需要进行模糊化、模糊推理和去模糊化等
步骤。
其中,模糊化是将输入和输出之间的关系用模糊集合来描述,
模糊推理是根据模糊规则进行推理,得出控制结果,去模糊化是将模
糊结果转化为具体的控制量。
总之,模糊控制是一种基于模糊逻辑的控制方法,它可以处理那些难以用传统控制方法精确描述的系统。
模糊控制具有广泛的应用前景,在工业控制、交通控制、机器人控制、医疗诊断等领域都有着广泛的应用。
在模糊控制的实现过程中,需要进行模糊化、模糊推理和去模糊化等步骤。
摘要交流伺服电机现广泛应用于机械结构的驱动部件和各种数控机床。
PID控制是伺服系统中使用最多的控制模式之一。
尽管传统的PID控制系统构造简单、运转稳定,但交流伺服电机存在非线性的、强耦合。
当参数变动或非线性因素的影响发生变化时,控制不能实时改动,不能满足系统高性能、高精度的要求。
结合模糊控制和传统PID控制成一种新的控制方法--模糊PID控制是解决上述问题的一种很好的途径。
模糊控制器不需要被控对象的数学模型,而是根据之前人为设定的控制要求设计用来控制的决策算法,使用此方式确定控制量。
模糊控制和传统PID控制融合的结果,不单具有模糊控制的高性能,还具备传统PID控制精准度高的长处。
本文对PID控制算法的原理和模糊控制算法作了简要的描述和比较。
指出模糊PID混合控制法,在误差很大时使用模糊控制,在不大时使用PID控制,在MATLAB软件中,对交流伺服系统的位置控制进行了仿真。
结果表明,该控制系统仿真结果与理论上差距较小。
关键词:PID控制;模糊控制;模糊PID控制器;MATLAB第1章绪论1.1 研究课题的任务本课题的任务是了解交流伺服系统,比较并结合两种控制的优点,结合成一种新的控制方式--模糊PID控制。
该控制法在系统输出差距大时采用模糊控制,而在差距较小时采用PID控制。
文章最后给出了模糊PID位置控制的MATLAB响应图,同时给出了常规PID控制下的效果图,并比较分析。
1.3 交流伺服系统工作原理相对单一的系统,其一般是根据位置检测反馈组成闭环位置伺服系统。
其组成框图参考图1-1内容[14]。
此类系统主要原理是对比输入的目标位置信号和位置检测设备测试的真实位置信号统计其偏差且使用功率变换器的输入端弱化误差。
控制量被信号转换和功率放大驱动,驱动伺服组织,促使误差不断缩减少,一直到最佳值。
(1)位置检测装置是此类系统的关键构成方面,完整系统的动态功能是否可以满足需求,关键的是位置检测传感器的科学选择以及精度。
模糊控制器是一种基于模糊逻辑理论的控制系统,它利用模糊集合的概念来描述模糊输入和输出,通过模糊规则和模糊推理实现对系统的控制。
模糊控制器的组成主要包括模糊化、模糊推理、解模糊和规则库四个部分,每个部分都有其独特的用途。
1. 模糊化模糊化是将系统的实际输入转化为模糊集合的过程。
在模糊控制系统中,输入往往是模糊的、不确定的,因此需要将这些模糊的输入转化为模糊集合。
模糊化的主要目的是将具体的输入转化为模糊语言值,如“很冷”、“冷”、“适中”、“热”、“很热”等,以便更好地描述系统的输入状态。
2. 模糊推理模糊推理是模糊控制器的核心部分,它用于根据模糊规则和模糊输入来得出模糊输出。
模糊推理的过程是基于一系列的模糊规则,这些规则描述了系统输入和输出之间的关系。
通过模糊推理,模糊控制器能够根据输入的模糊语言值,利用模糊规则进行推理,从而得出模糊输出的模糊语言值。
3. 解模糊解模糊是将模糊输出转化为具体的控制量的过程。
在模糊控制系统中,输出往往是模糊的语言值,需要通过解模糊将其转化为具体的控制量。
解模糊的方法有很多种,常见的方法包括最大隶属度法、加权平均法和中心平均法等。
解模糊的目的是将模糊输出转化为可以直接应用于控制系统的具体输出值。
4. 规则库规则库是模糊控制器中存储的一系列模糊规则的集合。
模糊规则描述了系统输入和输出之间的关系,它通常采用“如果…那么…”的形式来表示。
在模糊控制器中,规则库起着至关重要的作用,它包含了系统的专业知识和经验,是模糊控制器能够有效进行模糊推理的基础。
总体来说,模糊控制器的组成部分分别完成了模糊输入的转化、模糊推理的实现、模糊输出的转化和存储的模糊规则,这些部分相互协作,共同实现了对模糊、不确定系统的精确控制。
模糊控制器在工业控制、汽车控制、电力系统控制等领域有着广泛的应用,其独特的优势使其成为一种不可忽视的控制方法。
模糊控制器作为一种基于模糊逻辑理论的控制系统,在实际应用中具有诸多优势。
模糊控制重心法一、引言模糊控制是一种基于模糊逻辑的控制方法,它模拟人类的思维方式,将模糊的输入转化为模糊的输出,适用于复杂的非线性系统。
而重心法则是模糊控制中的一种常用规则,用于确定输出的模糊值。
本文将介绍模糊控制的基本原理以及重心法的应用。
二、模糊控制的基本原理模糊控制系统包括模糊化、模糊推理和解模糊三个主要部分。
模糊化将输入的实际值转换为模糊值,模糊推理根据预设的规则进行推理,得出模糊输出,解模糊将模糊输出转换为实际值。
模糊控制的关键在于模糊推理,其中重要的一环就是模糊规则的表达。
模糊规则由条件部分和结论部分组成,条件部分是输入的模糊集合,结论部分是输出的模糊集合。
模糊推理的方法有很多种,其中一种常用的方法就是基于重心法的推理。
三、重心法的原理重心法是一种基于几何思想的模糊推理方法,它利用模糊集合的特征值来确定输出的模糊值。
对于模糊集合来说,它可以看作是在数轴上的一个分布,其中心位置就是重心。
重心法的基本思想是将输入集合和输出集合在数轴上表示出来,通过计算它们的重心位置来确定输出的模糊值。
具体来说,重心法首先将模糊集合的隶属度函数进行插值,得到一个连续的函数。
然后,通过对连续函数进行积分,求解出其重心位置。
最后,根据重心位置确定输出的模糊值。
四、重心法的应用重心法在模糊控制中的应用非常广泛。
例如,在温度控制系统中,可以通过重心法来确定加热或降温的程度;在汽车制动系统中,可以通过重心法来确定刹车力度的大小。
以温度控制系统为例,假设输入是温度的模糊集合,输出是加热程度的模糊集合。
通过重心法,可以根据输入的模糊值和对应的隶属度函数,计算出输出的模糊值。
具体来说,可以通过将输入和输出模糊集合进行插值,得到连续函数。
然后,通过对连续函数进行积分,求解出其重心位置,即输出的模糊值。
五、总结模糊控制重心法是一种基于模糊逻辑的控制方法,它通过计算模糊集合的重心位置来确定输出的模糊值。
重心法在模糊控制中有着广泛的应用,可以用于各种复杂的非线性系统。
第一部分模糊控制第2讲模糊控制原理第一节模糊控制(推理)系统的基本结构1.1 模糊控制系统的组成模糊控制器1.2 模糊控制器(推理)的结构1.2 模糊控制器的结构模糊化模糊化的作用是将输入的精确量转换成模糊量。
具体过程为:1)尺度变换尺度变换,将输入变量由基本论域变换到各自的论域范围。
变量作为精确量时,其实际变化范围称为基本论域;作为模糊语言变量时,变量范围称为模糊集论域。
2)模糊处理将变换后的输入量进行模糊化,使精确的输入量变成模糊量,并用相应的模糊集来表示。
知识库1.2 模糊控制器的结构数据库规则库数据库主要包括各语言变量的隶属函数,尺度变换因子及模糊空间的分级数等。
规则库包括了用模糊语言变量表示的一系列控制规则。
它们反映了控制专家的经验和知识。
1.2 模糊控制器的结构◆模糊推理模糊推理是模糊控制器的核心,它具有模拟人的基于模糊概念的推理能力。
◆清晰化作用:将模糊推理得到的模糊控制量变换为实际用于控制的清晰量。
包括:1) 将模糊量经清晰化变换成论域范围的清晰量。
2) 将清晰量经尺度变换变化成实际的控制量。
1.3 模糊控制器的维数模糊控制器输入变量的个数称为模糊控制器的维数。
对于单输入单输出的控制系统,一般有以下三种情况:一维模糊控制器一个输入:误差;输出为控制量或控制量的变化。
二维模糊控制二个输入:误差及误差的变化。
三维模糊控制器三个输入为输入:误差、误差的变化、误差变化的速率。
第二节模糊控制系统的基本原理2.1 模糊化运算(Fuzzification)2.2 清晰化计算(Defuzzification)2.3 数据库(Data base)2.4 规则库(Rule base)2.4 模糊推理(Fuzzy Inference)2.1 模糊化运算(Fuzzification)模糊化运算是将输入空间的观测量映射为输入论域上的模糊集合。
首先需要对输入变量进行尺度变换,将其变化到相应的论域范围,然后将其模糊化,得到相应的模糊集合。
控制系统中的模糊控制与遗传算法优化比较在控制系统中,模糊控制和遗传算法优化是两种常用的控制方法。
它们分别基于模糊逻辑和遗传算法的原理和算法进行系统的建模和优化,用于处理复杂的、模糊的和非线性的控制问题。
本文将就这两种方法展开比较,并探讨它们在不同应用场景下的优势和不足。
一、模糊控制模糊控制是一种基于模糊逻辑的控制方法,能够处理对系统的控制要求不明确或者具有模糊性的问题。
在模糊控制中,通过建立模糊规则库,将模糊输入和输出之间的关系进行数学化表示。
模糊控制系统通过对输入和输出进行模糊化和去模糊化的过程,从而实现对系统的控制。
模糊控制的优点是能够处理非线性和模糊的系统模型,并且具有较强的鲁棒性。
它能够适应系统的复杂性和不确定性,并在这种情况下仍能保持较好的控制效果。
此外,模糊控制方法的设计和调试相对较为简便,不需要准确的系统模型,只需要通过经验和专家知识进行系统参数的调整和优化。
然而,模糊控制也存在一些不足之处。
首先,模糊控制需要依赖人工建立的模糊规则库,这需要一定的专业知识和经验,并且规则库的建立过程较为繁琐。
其次,模糊控制在处理高维系统和大规模系统时存在困难,由于规则库的复杂度和计算复杂度的增加,可能导致计算量过大和实时性下降。
最后,模糊控制的性能高度依赖规则库和模糊化方法的选择,对于不同的问题,需要进行不同的定制和参数调整。
二、遗传算法优化遗传算法是一种模拟生物进化过程的优化算法,通过模拟遗传、突变、选择等过程,使用一组个体的编码表示问题解,并通过优胜劣汰的原则寻找最优解。
在应用于控制系统中,遗传算法主要用于参数优化和系统优化。
遗传算法优化的优势在于能够全局搜索和适应系统非线性和复杂性,具有较好的寻优能力和鲁棒性。
通过引入随机性和多样性的原则,遗传算法能够在问题的解空间中进行有效的搜索和探索,从而找到问题的最优解或更优解。
此外,遗传算法的并行计算能力强,适用于高维和大规模问题的求解。
然而,遗传算法优化也存在一些局限性。
模糊控制摘要:模糊控制是一种针对非线性系统的控制方法,通过使用模糊集合和模糊逻辑对系统进行建模和控制。
本文将介绍模糊控制的基本原理、应用领域以及设计步骤。
通过深入了解模糊控制,读者可以更好地理解和应用这一控制方法。
1. 导言在传统的控制理论中,线性系统是最常见和最容易处理的一类系统。
然而,许多实际系统都是非线性的,对于这些系统,传统的控制方法往往无法取得良好的效果。
模糊控制方法由于其对于非线性系统的适应性,广泛用于工业控制、机器人控制、汽车控制等领域。
2. 模糊控制的基本原理模糊控制的基本原理是建立模糊集合和模糊逻辑,通过模糊化输入和输出,进行模糊推理和解模糊处理,完成对非线性系统的控制。
模糊集合是实数域上的一种扩展,它允许元素具有模糊隶属度,即一个元素可以属于多个集合。
模糊逻辑则描述了这些模糊集合之间的关系,通过模糊逻辑运算,可以从模糊输入推导出模糊输出。
3. 模糊控制的应用领域模糊控制方法在许多领域中都有着广泛的应用。
其中最常见的应用领域之一是工业控制。
由于工业系统往往具有非线性和复杂性,传统的控制方法往往无法满足要求,而模糊控制方法能够灵活地处理这些问题,提高系统的控制性能。
另外,模糊控制方法还广泛应用于机器人控制、汽车控制、航空控制等领域。
4. 模糊控制的设计步骤模糊控制的设计步骤一般包括五个阶段:模糊化、建立模糊规则、进行模糊推理、解模糊处理和性能评估。
首先,需要将输入和输出模糊化,即将实际的输入输出转换成模糊集合。
然后,根据经验和知识,建立模糊规则库,描述输入与输出之间的关系。
接下来,进行模糊推理,根据输入和模糊规则,通过模糊逻辑运算得到模糊的输出。
然后,对模糊输出进行解模糊处理,得到实际的控制量。
最后,需要对控制系统的性能进行评估,以便进行调整和优化。
5. 模糊控制的优缺点模糊控制方法具有一定的优点和缺点。
其优点包括:对于非线性、时变和不确定系统具有较好的适应性;模糊规则的建立比较直观和简单,无需精确的数学模型;能够考虑因素的模糊性和不确定性。
目录一、PID整定口诀 (2)二、PID控制与模糊控制比较 (3)三、PID控制方案 (4)四、模糊控制方案 (4)五、PID线性控温法 (4)六、PID控制理论 (5)七、模糊控制原理 (6)1.模糊控制系统的基本概念 (6)2.模糊控制系统的组成 (7)3.模糊控制的基本原理 (8)八、模糊PID复合控制算法 (9)1.模糊PID复合算法 (9)2.模糊PID算法运用 (10)九、MATLAB及其模糊逻辑工具箱和仿真环境 (14)1.模糊逻辑工具箱 (14)2.模糊PID的仿真 (15)3.仿真结果与分析 (19)4.结论 (20)十、基于Labview的模糊控制系统设计 (20)1.模糊控制系统的设计 (20)一、PID整定口诀参数整定找最佳,从小到大顺序查。
先是比例后积分,最后再把微分加。
曲线振荡很频繁,比例度盘要放大。
曲线漂浮绕大弯,比例度盘往小扳。
曲线偏离回复慢,积分时间往下降。
曲线波动周期长,积分时间再加长。
曲线振荡频率快,先把微分降下来。
动差大来波动慢,微分时间应加长。
理想曲线两个波,前高后低四比一。
一看二调多分析,调节质量不会低。
(1)参数调整一般规则由各个参数的控制规律可知,比例P使反应变快,微分D使反应提前,积分I使反应滞后。
在一定范围内,P、D值越大,调节的效果越好。
1.在输出不振荡时,增大比例增益P。
2.在输出不振荡时,减小积分时间常数Ti。
3.在输出不振荡时,增大微分时间常数Td。
(2)PID控制器参数整定的方法1.理论计算整定法它主要是依据系统的数学模型,经过理论计算确定控制器参数。
这种方法所得到的计算数据未必可以直接用,还必须通过工程实际进行调整和修改。
2.工程整定方法它主要依赖工程经验,直接在控制系统的试验中进行,且方法简单、易于掌握,在工程实际终被广泛采用。
PID控制器参数的工程整定方法,主要有临界比例法、反应曲线法和衰减法。
三种方法各有其特点,其共同点都是通过试验,然后按照工程经验公式对控制器参数进行整定。