最常见的设备振动问题
- 格式:doc
- 大小:49.00 KB
- 文档页数:9
转动设备常见振动故障频谱特征及案例分析一、不平衡转子不平衡是由于转子部件质量偏心或转子部件出现缺损造成的故障,它是旋转机械最常见的故障。
结构设计不合理,制造和安装误差,材质不均匀造成的质量偏心,以及转子运行过程中由于腐蚀、结垢、交变应力作用等造成的零部件局部损坏、脱落等,都会使转子在转动过程中受到旋转离心力的作用,发生异常振动。
转子不平衡的主要振动特征:1、振动方向以径向为主,悬臂式转子不平衡可能会表现出轴向振动;2、波形为典型的正弦波;3、振动频率为工频,水平与垂直方向振动的相位差接近90度。
案例:某装置泵轴承箱靠联轴器侧振动烈度水平13.2 mm/s,垂直11.8mm/s,轴向12.0 mm/s。
各方向振动都为工频成分,水平、垂直波形为正弦波,水平振动频谱如图1所示,水平振动波形如图2所示。
再对水平和垂直振动进行双通道相位差测量,显示相位差接近90度。
诊断为不平衡故障,并且不平衡很可能出现在联轴器部位。
解体检查未见零部件的明显磨损,但联轴器经检测存在质量偏心,动平衡操作时对联轴器相应部位进行打磨校正后振动降至2.4 mm/s。
二、不对中转子不对中包括轴系不对中和轴承不对中两种情况。
轴系不对中是指转子联接后各转子的轴线不在同一条直线上。
轴承不对中是指轴颈在轴承中偏斜,轴颈与轴承孔轴线相互不平行。
通常所讲不对中多指轴系不对中。
不对中的振动特征:1、最大振动往往在不对中联轴器两侧的轴承上,振动值随负荷的增大而增高;2、平行不对中主要引起径向振动,振动频率为2倍工频,同时也存在工频和多倍频,但以工频和2倍工频为主;3、平行不对中在联轴节两端径向振动的相位差接近180度;4、角度不对中时,轴向振动较大,振动频率为工频,联轴器两端轴向振动相位差接近180度。
案例:某卧式高速泵振动达16.0 mm/s,由振动频谱图(图3)可以看出,50 Hz(电机工频)及其2倍频幅值显着,且2倍频振幅明显高于工频,初步判定为不对中故障。
引起设备振动故障最常见的四大故障有:不平衡、不对中、机械松动和轴承故障。
1、质量不平衡所谓不平衡即是质量和几何中心线不重合所导致的一种故障状态。
当转子旋转时,其"重心"产生一个离心力作用在轴承上,该力的大小随着转子的旋转而稳定的变化。
不平衡的类型有三种:静不平衡或力不平衡、力矩不平衡或偶不平衡和动不平衡。
不平衡时频谱的表象:波形为正弦波;轴心轨迹为圆或椭圆;1X频率为主;径向(水平和垂直)振动为主;振幅随转速升高而增大;过临界转速有共振峰;悬臂转子不平衡水平和垂直轴向振动都很大。
另外,如果滑轮、齿轮、轴承或转子的旋转中心偏离几何中心线就会出现偏心。
2、不对中不对中的现象较为普遍,且非常重要,因为它而增加的旋转力会对轴承和密封件施加异常的应力。
不对中的类型有:平行不对中、角度不对中、平行和角度不对中。
典型的不对中主要由以下原因引起:原部件的不精确装配,如电机、泵等;安装后原部件间的相对位置发生移动;因为管道系统的压力而造成的扭曲变形;由于扭矩而引起的柔性支撑扭曲变形;温度变化引起的机器变形;耦合面与轴线不垂直;由于地基柔性太大,在旋紧固定螺栓时机器发生移动。
实际上大多数不对中案例都是轴线角度不对中和平行不对中的组合。
一般原则是:诊断应该根据轴向和垂直(或水平)方向上随着1X转速的增加,对应的2X处的振动级的变化情况来判断。
对于齿轮联轴器,一般认为存在以下振动特征:1)对中不良引起转子2倍频振动分量,不对中越严重,2倍频分量所占比例越大;2)不对中量和联轴器内阻尼越大,倍频振动的幅值越大;3)不对中产生的振动幅值,随着转速的升高而增大;4)对中不良引起的弯曲振动中有工频的2,4,6,8…等偶数倍频振动分量,且靠近联轴器处的轴承的弯曲振动振幅大于远离联轴器处的轴承振幅;扭转振动有工频的1,3,5,7…等奇数倍频振动分量,靠近联轴器处的轴承的弯曲振动振幅小于远离联轴器处的轴承振幅。
3、机械松动由于松动会产生非常明显的1X基频波峰。
十五种常见的设备振动故障及其特征频谱2020.2.3∙以下十五种常见的振动故障及其特征频谱: 不平衡、不对中、偏心转子、弯曲轴、机械松动、转子摩擦、共振、皮带和皮带轮、流体动力激振、拍振、偏心转子、电机、齿轮故障、滚动轴承、滑动轴承。
一、不平衡不平衡故障症状特征:∙振动主频率等于转子转速;∙径向振动占优势;∙振动相位稳定;∙振动随转速平方变化;∙振动相位偏移方向与测量方向成正比。
1、力偶不平衡力偶不平衡症状特征:∙同一轴上相位差180°;∙存在1X转速频率而且占优势;∙振动幅值随提高的转速的平方变化;∙可能引起很大的轴向及径向振动幅值;∙动平衡需要在两个修正面内修正。
2、悬臂转子不平衡悬臂转子不平衡症状特征:∙径向和轴向方向存在1X转速频率;∙轴向方向读数同相位,但是径向方向读数可能不稳定;∙悬臂转子经常存在力不平衡和力偶不平衡两者,所以都需要修正。
二、不对中1、角向不对中角向不对中症状特征:∙特征是轴向振动大;∙联轴器两侧振动相位差180°;∙典型地为1X和2X转速大的轴向振动;∙通常不是1X,2X或3X转速频率占优势;∙症状可指示联轴器故障。
2、平行不对中平行不对中症状特征:∙大的径向方向相位差180°的振动严重不对中时,产生高次谐波频率;∙2X转速幅值往往大于1X转速幅值,类似于角向不对中的症状;∙联轴器的设计可能影响振动频谱形状和幅值。
3、装斜的滚动轴承装斜的滚动轴承症状特征:∙振动症状类似于角向不对中;∙试图重新对中联轴器或动平衡转子不能解决问题;∙产生相位偏移约180°的侧面;∙对侧面或顶部对底部的扭动运动。
三、偏心转子偏心转子症状特征:∙在转子中心连线方向上最大的1X转速频率振动;∙相对相位差为0°或180°;∙试图动平衡将使一个方向的振动幅值减小,但是另一个方向振动可能增大。
四、弯曲轴弯曲轴症状特征∙弯曲的轴产生大的轴向振动;∙如果弯曲接近轴的跨度中心,则1X转速频率占优势;∙如果弯曲接近轴的跨度两端,则2X转速频率占优势;∙轴向方向的相位差趋向180°。
旋转机械常见振动故障及原因分析旋转机械是指主要依靠旋转动作完成特定功能的机械,典型的旋转机械有汽轮机、燃气轮机、离心式和轴流式压缩机、风机、泵、水轮机、发电机和航空发动机等,广泛应用于电力、石化、冶金和航空航天等部门。
大型旋转机械一般安装有振动监测保护和故障诊断系统,旋转机械主要的振动故障有不平衡、不对中、碰摩和松动等,但诱发因素多样。
本文就旋转设备中,常见的振动故障原因进行分析,与大家共同分享。
一、旋转机械运转产生的振动机械振动中包含着从低频到高频各种频率成分的振动,旋转机械运转时产生的振动也是同样的。
轴系异常(包括转子部件)所产生的振动频率特征如表1。
二、振动故障原因分析1、旋转失速旋转失速是压缩机中最常见的一种不稳定现象。
当压缩机流量减少时,由于冲角增大,叶栅背面将发生边界层分离,流道将部分或全部被堵塞。
这样失速区会以某速度向叶栅运动的反方向传播。
实验表明,失速区的相对速度低于叶栅转动的绝对速度,失速区沿转子的转动方向以低于工频的速度移动,这种相对叶栅的旋转运动即为旋转失速。
旋转失速使压缩机中的流动情况恶化,压比下降,流量及压力随时间波动。
在一定转速下,当入口流量减少到某一值时,机组会产生强烈的旋转失速。
强烈的旋转失速会进一步引起整个压缩机组系统产生危险性更大的不稳定气动现象,即喘振。
此外,旋转失速时压缩机叶片受到一种周期性的激振力,如旋转失速的频率与叶片的固有频率相吻合,将会引起强烈振动,使叶片疲劳损坏造成事故。
旋转失速故障的识别特征:1)振动发生在流量减小时,且随着流量的减小而增大;2)振动频率与工频之比为小于1X的常值;3)转子的轴向振动对转速和流量十分敏感;4)排气压力有波动现象;5)流量指示有波动现象;6)机组的压比有所下降,严重时压比可能会突降;7)分子量较大或压缩比较高的机组比较容易发生。
2、喘振旋转失速严重时可以导致喘振。
喘振除了与压缩机内部的气体流动情况有关,还同与之相连的管道网络系统的工作特性有密切的联系。
机械设备典型故障的振动特性1. 引言机械设备在正常运行过程中,可能会出现各种故障,其中振动故障是一种常见的故障类型。
振动特性是用来描述机械设备振动状态的重要参数,通过对振动特性的分析,可以确定故障的类型和严重程度,并采取相应的维修措施。
本文将介绍机械设备典型故障的振动特性,包括离心机械设备的不平衡振动、齿轮传动的故障振动、轴承的故障振动以及主轴的故障振动。
2. 离心机械设备的不平衡振动离心机械设备的不平衡振动是一种常见的故障类型。
当离心机械设备的转子存在不平衡时,会导致设备产生振动。
不平衡振动的特点是振动频率较低,振动幅值较大。
不平衡振动的振动特性可以通过振动传感器进行监测和分析。
常见的振动特性参数包括振动幅值、振动频率和相位。
3. 齿轮传动的故障振动齿轮传动是机械设备中常用的传动方式之一,但是在使用过程中会出现齿轮的故障,导致振动增大。
齿轮传动的故障振动可以分为齿轮啮合故障和轴承故障两种情况。
•齿轮啮合故障振动:齿轮啮合故障会导致传动系统产生周期性振动,其频率与齿轮的啮合频率有关。
常见的齿轮啮合故障包括齿轮齿面磨损、齿轮齿面脱落等。
•轴承故障振动:轴承是机械设备中常见的零部件之一,当轴承出现故障时,会导致传动系统产生高频振动。
轴承故障的振动特点包括高频率、小幅度的振动,振动信号中常含有谐波成分。
轴承是机械设备中常见的关键零部件之一,其故障会导致设备振动增大。
轴承的故障振动可以分为内圈故障、外圈故障和滚动体故障三种情况。
•内圈故障振动:内圈故障会导致轴承产生低频振动,其振动频率一般较低,并且振动幅值较大。
•外圈故障振动:外圈故障会导致轴承产生高频振动,其振动频率一般较高,并且振动幅值较小。
•滚动体故障振动:滚动体故障会导致轴承产生特定频率的振动,其频率与滚动体的旋转频率有关。
主轴是机械设备中常见的关键部件之一,其故障会导致设备振动增大。
主轴的故障振动特点与轴承的故障振动类似,包括低频振动、高频振动以及特定频率的振动。
机械振动的原因和控制方法机械振动是指机械系统在运动过程中产生的不稳定波动。
这种振动可能会导致各种问题,包括设备磨损、噪音产生、系统不稳定以及生产效率降低等。
因此,了解机械振动的原因以及采取相应的控制方法至关重要。
本文将讨论机械振动的原因并介绍一些常用的控制方法。
一、机械振动的原因1. 不平衡不平衡是一种常见的机械振动原因。
当旋转的部件存在质量不均匀分布时,会导致高速旋转的不平衡情况,并引起机械系统的振动。
2. 动力激振动力激振是机械振动的另一常见原因。
当外部作用力或扰动作用于机械系统时,会引起系统的振动。
例如,当流体通过管道或风机时,会产生动力激振,引起系统振动。
3. 过度刚度或过度柔度过度刚度或过度柔度也可能导致机械振动。
当刚度过高或过低时,机械系统的固有振动频率与外部激振频率无法匹配,导致系统发生振动。
4. 摩擦和松动摩擦和松动是机械振动的另一常见原因。
在机械系统中,如果存在未适当润滑的表面或连接件,摩擦和松动将导致系统振动。
二、机械振动的控制方法1. 平衡为了控制由于不平衡引起的机械振动,可以进行平衡操作。
这包括在旋转部件上加上补偿块,通过平衡测试来确定所需的修正质量和位置,以减少机械系统的振动。
2. 减振器的使用减振器是常用的控制机械振动的工具。
通过在机械系统中加入减振器,可以吸收和分散振动能量,减少系统振动的幅度。
常见的减振器包括弹簧减振器、阻尼器和橡胶减振器等。
3. 控制刚度和柔度为了避免过度刚度或过度柔度引起的机械振动,需要进行合适的设计和控制。
在设计机械系统时,应确保系统的刚度和柔度在可控范围内,以使其固有振动频率与外部激振频率相匹配。
4. 维护和检修定期维护和检修机械系统有助于防止由于摩擦和松动引起的机械振动。
通过润滑摩擦表面、紧固连接件并定期检查系统的工作状态,可以降低机械振动的风险。
5. 密封和隔音对于一些特殊机械系统,如风机和压缩机,通过合适的密封和隔音设计,可以减少噪音和振动的传播,提高工作环境的舒适度。
一、什么是设备振动位移设备振动位移是指设备在运行时,由于惯性力或外力的作用,导致其产生的移动量。
一般来说,设备振动是不可避免的,但过大的振动会对设备的正常运行产生负面影响。
因此,设备振动位移需要通过标准化的要求来进行规范和控制。
二、常见的设备振动问题设备振动问题多种多样,常见的有以下几种:1. 机械不平衡:由于设备在加工、安装、运输等过程中,存在加工误差、安装不当等问题,导致设备重心偏移而出现振动。
2. 轴承故障:轴承是设备中最重要的部件之一,其故障通常会导致设备振动加剧,严重时可能会引发设备故障。
3. 驱动装置问题:驱动装置如电机、减速机、皮带传动等,如果存在装配不当、润滑失效等问题,会导致设备振动。
三、设备振动位移标准的意义设备振动位移标准对于设备运行和维护具有重要意义。
具体来说,它的意义主要包括以下几个方面:1. 确保设备正常运行: 设备振动位移标准能够规范设备的振动范围,避免过大或过小的振动对设备正常运行产生影响。
2. 延长设备使用寿命:通过对振动进行控制,可以减少设备受到的损耗,从而延长设备的使用寿命。
3. 提高设备工作效率:适当的设备振动可以起到促进工艺加工、增强物料分布、防止物料堵塞等作用,从而提高设备的工作效率。
四、设备振动位移标准相关规范在国际上和国内各行业内,关于设备振动位移的规范和标准很多。
例如,国际标准化组织(ISO)在《ISO 10816-1:1995(E)》中规定了旋转机械的振动评价方法和振动标准,GB/T 10816-2006则是《旋转机械振动测量和评价的通则》。
此外,各个行业内还制定了相应的标准,如电力行业的DL/T 5365-2015《机组用振动监测系统技术规范》、石油化工行业的SY/T 6145-2006《地面输送管道振动技术规范》等。
五、结论设备振动位移标准对于设备的正常运行、使用寿命和工作效率具有重要意义。
各行各业内都制定了相应的标准和规范,实现对设备振动位移的精准控制,保障设备的正常运行。
电机振动常见原因电机振动是指电机在运行过程中产生的机械振动。
电机振动的原因很多,主要包括以下几个方面:1. 动平衡不良:动平衡是指旋转设备在运行时转子的质量分布不均匀,导致引起振动。
电机的转子在制造过程中、组装过程中或者长期使用过程中,如果没有进行相应的动平衡调整,都有可能导致电机的振动。
2. 固定不牢固:电机安装时,如果固定方式不正确或者固定螺栓松动,都会导致电机振动。
此外,电机的基座和机体之间的连接,如果松动或者固定不牢固,也会引起电机振动。
3. 轴伸不良:电机的轴伸包括轴的弯曲和轴的不对中。
轴的弯曲可能是由于轴材质不好或者在运输、使用过程中发生了扭曲;轴的不对中是指轴与轴承安装孔不重合,导致电机运转时发生偏心,引起振动。
4. 磨损严重:电机在长期使用过程中,内部的零部件会发生磨损,如轴承、齿轮、轴等,这些磨损会使电机运行不平稳,产生振动。
此外,电机的外部零部件如传动装置、风叶等如果磨损严重也会引起振动。
5. 不平衡载荷:在某些应用中,电机驱动的设备会受到不均匀载荷的作用,如风扇、离心机等。
这些载荷不平衡会导致电机的振动。
6. 驱动系统故障:电机的振动也可能是由于驱动系统的故障引起的,如变频器的工作频率不稳定、电机过载、驱动系统的传动装置出现故障等。
对于以上原因,可以采取一些措施来减少电机振动:1. 进行动平衡调整:在电机制造过程中、安装运输过程中都可以进行动平衡调整,确保电机转子的质量分布均匀。
2. 确保固定牢固:在电机安装过程中,要注意固定螺栓的使用和拧紧力度,以确保电机的固定牢固。
3. 定期检查维护:定期检查电机的各个部件,发现松动、磨损等问题及时修复和更换。
4. 选择合适的传动装置:不同的应用场景需要选择合适的传动装置,避免不平衡载荷对电机造成不利影响。
5. 定期校准驱动系统:对于电机驱动系统,要定期校准和维护,确保各个部件和参数的稳定和正常工作。
6. 定期润滑:电机的轴承和传动装置等部件需要定期润滑,以减少摩擦和磨损,降低振动。
设备运行时振动过大问题分析设备运行时振动过大是工业生产中常见的问题,它不仅会降低设备的工作效率,还可能引发设备故障和安全隐患。
本文将从几个方面对设备运行时振动过大问题进行分析,并提出相应的解决方案。
一、振动过大的原因分析1. 设备本身问题:设备的制造质量、结构设计和加工精度等因素会对设备的振动产生直接影响。
例如,设备零部件安装不牢固、不平衡或损坏等情况都可能导致振动过大。
2. 工艺参数不合理:设备在运行过程中,工艺参数的设定对振动也起着重要影响。
例如,轴承润滑不良、设备运行速度过高或过低、工作负荷超过设备承载能力等都会导致振动异常增大。
3. 环境条件影响:环境条件也是设备振动的一个重要因素。
例如,温度过高会导致设备材料膨胀而引起振动增大,而湿度过高则可能导致设备腐蚀和结构松动。
二、解决方案1. 设备维护保养:定期检查、清洁和润滑设备,及时发现和修复设备故障和损坏,保证设备的正常运行。
此外,还可以针对设备的特点和工作环境制定合理的维护计划,包括清理灰尘、调整零部件、更换磨损的零件等。
2. 优化工艺参数:根据设备的特点和工作要求,合理设定工艺参数,避免负荷过重或过轻,控制设备的运行速度在合理范围内,确保设备的平稳运行。
此外,合理选择润滑剂、提高轴承的润滑状态,也能有效减少振动。
3. 改善工作环境条件:合理调控工作环境温度、湿度等因素,避免极端条件对设备产生不利影响。
对于温度过高的情况,可以考虑增加散热装置或采取降温措施;对于湿度过大的情况,可以增加通风设备或者加强设备的防腐措施。
4. 加强设备检测与监控:安装振动传感器、温度传感器等设备,监测设备的运行状况,及时发现振动异常的预兆,并采取相应的措施。
通过建立设备运行数据的数据库,对设备的振动情况进行持续监测和分析,能够提前发现潜在故障,并及时采取维修措施。
结语设备运行时振动过大问题的分析和解决需要综合考虑设备本身、工艺参数、环境条件以及设备检测与监控等多个因素。
汽轮机振动故障的原因分析与处理汽轮机是一种工作在高速和高温环境下的设备,在其运行过程中,振动是一种常见的问题。
由于振动对设备的结构和部件造成的磨损和损坏,以及对设备的性能和可靠性产生的影响,因此振动故障的原因分析和处理非常重要。
本文将从以下几个方面对汽轮机振动故障的原因进行分析与处理。
一、原因分析1. 设备松动或磨损汽轮机运行时,部件之间的松动或磨损会引起机组振动。
如机架、轴承、齿轮和叶片等部件在运转时出现松动,或者是由于长期摩擦而导致了磨损,都会造成机组振动。
2. 不平衡汽轮机协调运转需要保证各部件的平衡性,在某些情况下,如叶轮的制造误差或者叶片领域加工不均等,会导致汽轮机的不平衡,使其产生振动。
3. 轴承故障汽轮机轴承故障也是一种常见的振动故障。
轴承故障会导致轴承工作不稳定,引起机组的振动,严重的还会导致机组运行停顿。
4. 不良的安装环境汽轮机的操作环境也是影响机组振动的原因之一。
在安装汽轮机时,其安装环境应满足一定的要求,否则将对机组的振动稳定性产生影响。
二、处理方法1. 检查和修理损坏或松动的部件首先,要对造成汽轮机振动故障的松动或损坏的部件进行检查和维修。
对于损坏的部件,可以进行采购更换,对于松动的部件,则可以进行紧固或者更换件,保证设备的稳定性和运行性能。
对于汽轮机不平衡引起的振动故障,可以通过进行平衡调整来消除振动。
具体方法是,使用专业的平衡仪器进行平衡测试,然后根据测试结果制定相应的调整计划进行平衡调整。
当汽轮机的振动故障是由于轴承故障所导致时,应尽快更换转子上的轴承,以保证汽轮机的稳定运行。
加强安装环境,包括选择适当的土建施工方式、精确的安装的严格执行,以及采用符合要求的管理和操作程序等。
在安装中严格按照操作规程和操作标准操作,以保证设备工作在良好的安装环境下。
综上所述,汽轮机振动故障是一种常见的问题,通常是由于部件松动、磨损或不平衡、轴承故障、安装环境等原因导致。
针对不同原因,对应的处理方法也有所不同。
石油化工转动设备的振动故障分析及处理摘要:石油化工行业引进了大量机械和设备,促进了工业发展,特别是引进了旋转设备,大大提高了生产力。
在实践中,由于各种原因,设备振动造成的故障是不可避免的,设备振动幅度与设备间隙有关,间隙越大,设备损坏越大,设备故障的可能性越大,影响设备正常运行的可能性越大,因此需要对这应该是解决办法。
关键词:转动设备;振动;处理引言在石油化工中,大量设备特别是旋转设备的应用促进了石油工业的发展。
如果在实际操作过程中存在各种因素,则在操作过程中会发生装置的位置偏移,从而导致振动。
设备的振动幅度和控制间隙相互联系,间隙越大,振动越大,声音越大,导致设备正常运行。
因此,要做好石化旋转设备的振动故障分析,并提出故障处理对策。
1、石油化工中主要的转动设备运行问题在石油化工设备、烟机、风扇、气压计、燃气能源、合成器等方面是主要的旋转装置和振动源。
这些地基通常由离心式或轴向压缩机组成,具有高功率转速特性,其中大多数是主要生产设备,一旦出现故障,可能会造成生产损失,直接影响企业的经济效益。
随着石油化工的不断发展,生产设备的规模和重量都有所增加,对自动检测、缺陷检测等提出了新的要求尤其是旋转设备振动一直是设备故障的主要原因之一,设备振动造成的损坏,额外的能量损失,维修停机是生产成本上升的主要原因,对生产安全和员工健康构成了更大的威胁。
2、石油化工转动设备振动故障类型2.1转子失衡与弯曲石油化学旋转设备被广泛用作主要设备。
设计和安装轴时,容易出现偏心或质量差等问题,导致转子不平衡、相互力和设备振动。
同时,转子转动的过程中,会产生离心力或离心炬,当离心力发生变化时,设备发生振动,包括大小和方向。
此外,转子在弯曲时也会受到设备振动的影响,主要是横截面几何中心和转子旋转轴之间的不一致,导致质量偏差和不平衡。
2.2支承松动支承松动是指系统连接刚度不足或不牢固,导致机器阻力降低和设备振动过大。
在松动的情况下,极易引发系统不连续位移,发生碰磨现象,产生不稳定的振动,如果情况更严重,会对设备造成很大的冲击,并产生很大的振动声。
15类39个机械振动故障及其特征频谱讲解的非常详细你学会了吗学会了。
机械振动故障是指机械设备在运行中出现的振动异常现象,它是机械设备磨损、松动、不平衡、共振等问题的表现。
了解机械振动故障及其特征频谱对于检测和预防故障具有重要意义。
下面将详细介绍15类39个机械振动故障及其特征频谱。
1.不平衡故障:当旋转部件不平衡时会引起振动,其特征频谱多在主轴转速及其倍频处出现。
2.轴承故障:常见的轴承故障有滚动体故障、内外圈故障和滚道故障。
其特征频谱包含滚动体抛出频率、倒流频率、内圈通过、外圈通过频率等。
3.齿轮故障:齿轮故障主要包括齿轮缺陷、齿根断裂和齿面磨损。
特征频谱包括齿轮传动频率及其倍频、齿轮包络谱等。
4.松动故障:机械设备过程中的松动故障会导致振动异常。
特征频谱一般包括主共振频率及其倍频。
5.磨损故障:磨损故障是机械设备使用时间过长导致的故障,其特征频谱一般包括零件接触频率、偏心频率等。
6.传动带故障:传动带在工作中容易出现断裂、脱落等故障,其特征频谱包括带速频率、杂音频率等。
7.轴弯曲故障:轴弯曲会引起振动异常,其特征频谱一般包括弯曲频率及其倍频。
8.泵故障:泵故障常见的有叶轮裂纹、泵轴弯曲等,特征频谱包括泵叶轮频率、泵叶片共振频率等。
9.电机故障:电机故障主要有轴承故障、定子故障等,特征频谱包括电机1倍频、整周期故障频率等。
10.切削形状异常:机械设备切削形状异常也会导致振动异常,特征频谱包括刀具频率、零件频率等。
11.错位故障:轴同步装置故障会导致振动异常,特征频谱包括传动带频率等。
12.泄漏故障:机械设备泄漏故障会导致振动异常,特征频谱包括泄漏频率等。
13.气动故障:气动系统故障会引起振动异常,特征频谱包括气体脉动频率等。
14.液压故障:液压系统故障会导致振动异常,特征频谱包括液压湍流频率等。
15.电控故障:电控系统故障会引起机械设备振动异常,特征频谱包括开关频率、电机倍频等。
以上是15类39个机械振动故障及其特征频谱的详细介绍。
电动机水泵及泵房振动的常见原因及消除措施1.电动机水泵振动的常见原因:(1)电动机和水泵的轴线不同心,即轴偏心现象:这可能是由于安装不当或轴承损坏造成的。
解决方法是重新安装,并确保轴承的良好状态。
(2)水泵叶轮不平衡:由于叶轮的制造或安装问题,可能存在叶片偏重的情况。
解决方法是重新加工或更换叶轮。
(3)水泵轴旋转不平稳:主要由于轴承磨损或损坏导致的。
解决方法是更换轴承,确保轴的稳定性。
(4)输水管道或泵房的固定不牢:如果管道或泵房的支架不稳固,会导致振动。
解决方法是加强固定,确保其稳定性。
2.泵房振动的常见原因:(1)地基不稳或地基沉降:地基不稳或沉降会导致泵房整体产生震动。
解决方法是加固地基或进行地基处理。
(2)泵房结构松动或脱落:如果泵房的结构件松动或脱落,会引起振动。
解决方法是进行维修和加固,确保结构的牢固性。
(3)管道布置不合理:管道布置不当会导致液体在流动过程中产生较大的阻力,从而引起振动。
解决方法是合理布置管道,减少阻力。
(4)泵房内设备不平衡:如果泵房内的设备存在不平衡,如水泵的扇叶偏重等,会导致振动。
解决方法是进行设备平衡调整或更换。
3.消除措施:(1)加强安装:在安装过程中,确保电动机和水泵轴线同心,避免偏心现象的出现。
(2)轴承维护:定期检查轴承的状况,如发现磨损或损坏,及时更换。
(3)叶轮加工:确保叶轮的平衡性,如有需要,进行加工或更换。
(4)加强固定:对输水管道和泵房进行牢固的支撑和固定,避免振动产生。
(5)地基处理:对于地基不稳或有沉降现象的泵房,进行加固和处理,确保地基的稳定性。
(6)维修和加固:对于松动或脱落的泵房结构件,进行维修和加固,保证结构的牢固性。
(7)合理布置管道:根据实际情况,进行合理布置管道,减少液体在流动过程中的阻力。
(8)设备平衡调整:对于不平衡的设备,进行平衡调整或更换,确保设备的平稳运行。
综上所述,电动机水泵振动的常见原因主要涉及轴偏心、叶轮不平衡、轴旋转不平稳和管道固定等问题。
汽轮机运行振动的大原因分析及应对措施汽轮机是一种常用的热能动力设备,通常被用于发电站和工业生产中。
在汽轮机运行过程中,振动是一个常见的问题,如果振动过大或频率异常,将会对设备造成损坏甚至对安全带来威胁。
对汽轮机运行振动的大原因进行分析,并提出应对措施,对于保障汽轮机的安全运行具有重要意义。
一、振动的大原因分析1. 设备失衡汽轮机的转子在高速旋转时,如果存在失衡现象,将会导致设备振动过大。
设备失衡可能的原因有:制造不良、零部件磨损、安装不当等。
失衡导致的振动是汽轮机振动的重要原因之一。
2. 轴承故障轴承是汽轮机中重要的部件,负责支撑和保持转子的旋转。
如果轴承损坏或润滑不良,将导致振动增加,严重的情况下还会引起设备故障。
3. 转子不平衡汽轮机转子旋转时,如果存在不平衡现象,将导致振动增加。
转子不平衡可能是由于制造工艺不良、材料缺陷等原因造成的。
4. 叶片腐蚀或损坏汽轮机叶片在运行中会受到高温高压蒸汽的冲击,长时间的腐蚀和疲劳可能导致叶片损坏,进而引起振动。
5. 冲击负载汽轮机在启动和停车的过程中,由于受到冲击负载,会引起振动。
特别是在高速运行中,由于冲击负载的存在,振动往往会加剧。
6. 输送系统故障汽轮机的输送系统包括汽水系统、外部管道系统等,如果这些系统存在故障,将会影响汽轮机的正常运行,引起振动增加。
7. 系统共振汽轮机与其它设备或结构(如建筑物)之间的共振效应,会导致振动增加。
共振效应的产生可能由于结构设计不合理或装置不恰当引起。
8. 运行状况监测不足运行状况监测不足将导致对振动的监控不及时,可能会延长振动问题的存在时间,进而造成设备损坏。
二、应对措施1. 精确平衡对汽轮机的转子进行精确平衡,可避免由于设备失衡引起的振动问题。
通过动平衡仪等专业设备进行平衡校正,可以有效解决这一问题。
2. 定期检查轴承定期对汽轮机的轴承进行检查,并进行润滑维护。
一旦发现轴承存在故障,应立即更换或修理。
3. 定期检查转子定期对汽轮机的转子进行检查,发现发现不平衡或损坏情况,进行修复或更换。
电机振动故障的诊断与处理技巧电机作为现代工业生产中最常见的动力设备之一,一直扮演着至关重要的角色。
然而,由于长时间的运行和使用,电机振动故障可能会出现。
这些振动故障不仅会影响电机的正常运转,还可能对设备和工作环境产生负面影响。
因此,及时准确地诊断和处理电机振动故障至关重要。
本文将介绍一些常见的电机振动故障诊断与处理技巧。
首先,定位振动源是诊断电机振动故障的首要步骤。
通常,电机振动可以来源于机械原因、电气原因以及磁场原因。
机械原因包括轴承故障、不平衡、松动等,电气原因可能是由于电机的供电不正常或绕组问题引起的,而磁场原因则可能是由于电机的磁场分布不均匀导致的。
针对不同的振动源,需要采取相应的诊断和处理方法。
其次,针对常见的机械振动故障,轴承故障是其中最常见的问题之一。
检查电机轴承是否有异常声音、温度升高以及是否出现震动等现象是诊断轴承故障的基本方法。
如果电机轴承出现故障,需及时更换轴承,并注意合理选用质量可靠的轴承进行更换。
此外,不平衡也是常见的机械振动问题。
可通过进行静、动平衡来消除电机的不平衡。
另外,对于松动引起的振动,需要检查电机的紧固件是否紧固牢固,并进行适当的紧固操作。
第三,针对电气振动故障,供电不正常是主要原因之一。
检查电源电压和频率是否正常,以及检查电机绕组是否出现线圈接触不良、绝缘破损等问题是诊断电气振动故障的关键步骤。
确保电源电压和频率稳定,并对电机绕组进行绝缘性能检测和维护,如必要时进行绕组的绝缘修复工作,以减少电气振动故障的发生。
最后,针对磁场引起的振动故障,一般是由于电机磁场分布不均匀所导致的。
这可能是由于转子不对称、磁极间隙不均匀等原因造成的。
诊断这类问题需要进行磁极间隙、转子不对称等方面的检查,并采取适当的调整措施,以实现电机磁场的均匀分布,从而减少振动故障。
除了上述的具体诊断和处理技巧外,日常的电机维护也是避免电机振动故障发生的重要措施。
定期清理电机周围的灰尘和杂物,保持电机的冷却通风畅通。
离心式压缩机振动分析及应急维修方法离心式压缩机是一种常见的机械设备,用于将气体或蒸气压缩成高压。
然而,在运行过程中,离心式压缩机可能会出现振动问题,这不仅会影响设备的正常运转,还可能造成设备损坏,因此振动分析和应急维修对于保持设备的正常运行至关重要。
振动分析的目的是确定振动源以及振动的原因。
以下是一些常见的离心式压缩机振动原因:1.不平衡:当离心式压缩机转子的质量不平衡时,会引起转子的振动。
这可能是由于材料不均匀或转子叶片磨损不均等原因引起的。
2.摩擦和磨损:摩擦和磨损也会导致离心式压缩机振动。
例如,滑动轴承的磨损或润滑不良可能导致轴的摆动和振动。
3.弯曲和松动:离心式压缩机的轴可能发生弯曲或松动,导致振动。
这可能是由于长时间使用或不当安装所致。
4.设备松动:散热器罩、管道、法兰等设备松动也可能导致振动问题。
这些设备松动会引起共振和震动。
进行振动分析时,可以通过以下步骤进行:1.观察和记录:观察离心式压缩机的振动情况,并记录振动的特点和出现的频率。
2.测量振动:使用专业的振动测量仪器来测量设备的振动水平。
根据测量结果,可以确定振动的严重程度。
3.检查设备:仔细检查设备,查找设备是否存在松动、磨损、不平衡等问题,并记录下来。
根据振动的原因和严重程度,可以采取以下一些应急维修方法:1.平衡:如果离心式压缩机的振动是由于转子不平衡引起的,可以进行转子的平衡操作。
这可能需要专业的设备和技术,因此最好由专业人士来执行。
2.更换磨损部件:如果振动是由于磨损部件引起的,例如滑动轴承,应及时更换受损部件。
3.调整设备:如果设备存在弯曲或松动问题,可以对设备进行调整,重新安装或更换部件。
4.紧固设备:检查设备的各个部件是否松动,如散热器罩、管道等,并紧固它们,以避免共振和震动。
在进行任何维修操作之前,建议先关闭设备并断开电源。
此外,建议寻求专业维修人员的帮助,特别是在涉及平衡和转子修复方面。
总结起来,离心式压缩机振动的分析和应急维修非常重要。
最常见的设备振动问题可归纳为:对心不良、平衡不良、轴承损坏、基础松动等四种。
•水平、垂直及轴向振动大(但是水平与垂直向的振动大约为轴向的2~3倍)为对心不良。
•水平及垂直振动大、轴向振动相对很小(水平与垂直向的振动大约为轴向的4倍以上)为平衡不良。
•总振动值在标准内,轴承状况值大为轴承损坏(或轴承润滑不良)。
•水泥基座与基础螺丝的振动值如果不同为基础松动。
诊断技术。
1.平衡不良状况诊断
•当转动件惯性轴心线与转动轴心线不在同一直线上时,此转动件即为平衡不良
•造成转动件不平衡的原因
–转动件本身形状不对称
–加工制造上的公差
–组装安装不当
–转动件于运转时变形
–转动件破损磨耗
–转动件附着异物平衡不良频谱特性•振动频谱主要发生
于一倍转速
•振动方向通常都发生于径向
•轴向振幅很小,远小于径向之1/3
•不论在径向或轴向,2倍、3倍、4倍频之振动,几乎没有
2.对心不良状况诊断
•所谓对心不良是指联结在一起的两台设备的运转中心线不在同一直线上
•对心不良的征状–轴承、轴封、联轴器、转轴提早损坏。
–轴承位置有高温甚至大量排出润滑油等现象。
–基础桩螺丝有松脱现象。
–联轴器间隙过大或破损。
–联轴器有高温现象且橡塑料联轴器会有粉末排出。
–马达运转电流偏高。
–轴承损坏在轨道上有180度与内外对称磨损现象。
对心不良频谱特性•振动频率主要发生于1倍、2倍或3倍转速上
•因大部份之不对心乃混合式不对心(角度式+平行式) ,故振动方向同时来自于径向和轴向
3.轴弯曲状况诊断
•轴中心处的弯曲会造成1倍转速频率之振动,振动方向主要发生于轴向
•靠近联轴器的弯曲会造成2倍转速频率之振动,振动方向亦
发生于轴向
4.机械松动状况诊断
松动造成的原因大致可分为两种•外松动
–结构、底板、基础松动或螺栓松脱•内松动
–两配合组件之松动如轴与轴承内圈、轴承盖与轴承外圈、轴与叶片等配合不当
–振动发生于1×、2×、3×……7× 、8×或更高之转速频率,径向和轴向都明显
5.滚动轴承损坏状况诊断
轴承滚动件损坏频率(Ball Spin Frequency ,BSF):BSF= 1/2 × RPM × Pd/Bd × (1 –(Bd / Pd × cos ψ)2 )轴承内环轨道损坏频率(Ball Pass Frequency Inner Race ,BPFI):
BPFI= 1/2 × RPM × N × (1 –Bd / Pd × cos ψ)轴承外环轨道损坏频率(Ball Pass Frequency Outer Race ,BPFO):BPFO= 1/2 × RPM × N × (1 + Bd / Pd × cos ψ)轴承保持器损坏频率(Fundamental Train Frequency ,FTF):
FTF= 1/2 × RPM × (1 × Bd / Pd × cos )其中RPM : 轴之转速N : 轴承滚动体之数目Pd : 轴承节径Bd : 轴承滚动体直径ψ : 滚动体之接触角
•BPFI通常为转速×N ×60%
•BPFO通常为转速×N ×40%
•FTF通常为转速×0.4~0.6
•BSF通常为转速之2~4倍
•轴承组件损坏大部份均会产生HARMONIC并伴随着转速之旁波
•标准之组件损坏顺序为BPFO®BPFI ®BSF ®FTF 6.转轴磨擦状况诊断
•当旋转件与固定件磨擦时,其频谱与松动相似.
•通常会激发转速的整数分数的次简谐振动频率(1/2,1/3,1/4……)
7.叶片状况诊断
•叶片频率(BPF) =叶片数*转速,此为泵浦,风车和压缩机的固有频率
•但若设计不当,扩散片磨损,管路陡弯,扰流阻碍或转轴偏心,皆会引起高BPF
8.扰流状况诊断
•当空气在进出风车,压力或速度产生突然之变化时,会引起扰流现象.
•扰流通常会产生随机,低频的振动,范围约在1~30 Hz 间.
9.孔蚀状况诊断
•当泵浦入口压力不足时,易产生孔蚀(气穴)现象
•孔蚀通常会产生随机,高频且宽频域的振动,会对泵浦内部机件造成腐蚀.
10.齿轮状况诊断
•齿轮啮合频率(GMF)=齿数*转速
•GMF为齿轮机构固有之频率,其大小代表负荷之多寡,而非磨耗.11.齿磨耗,偏心或两轴不平行•齿轮自然频率会被激发出来f n
•GMF会变大,并伴随着磨耗齿轮转速之旁波(side band) •磨耗增加,旁波亦会增多加大.
•偏心或两轴不平行时,会有2倍GMF出现
12.皮带传动问题诊断
•皮带频率=3.124*皮带轮直径*转速/皮带长度
•皮带发生磨破,松动,或配合错误,常会引发1*,2*,3*,4*的皮带频率
13.皮带或皮带轮不对心问题诊断
•皮带轮不对心时,会在1*转速显现高振动
•轴向尤其明显
•被传动件之转速频率会发现在传动件频谱上
14.皮带轮偏心问题诊断
•和不平衡问题一样,振幅主要发生于径向之一倍频.15.马达定子问题诊断
•定子偏心会产生气隙不均而引起振动
•气隙不均会产生局部发热而使马达轴弯曲,故振动会随操作时间而变大
•会在2倍线频率(120 Hz)产生高振动
16.马达转子偏心问题诊断
•转子偏心会产生2倍线频率,并伴随着极通频率(FP=P*迟滞频率)
•FP会在低频区出现(约0.3~2.0 Hz)
17.转子棒松动问题诊断
•转子棒通过频率(RBPF)=转子棒数*转速
•转子棒松动时会产生RBPF及2*RBPF,并伴随着2*FL(120 Hz)之旁波
18.相位问题诊断
•联接器的松动或损坏会产生相位问题
•会引发2倍线频率之大振动
•并伴随着1/3 FL(20 Hz)的旁波
19.同步马达问题诊断
•线通频率(CPF)=定子线圈数*转速
•定子线圈松动时,会产生CPF高振动
•并伴随着转速之旁波
20.直流马达问题诊断
•磁场绕组破损,不良的SCR,联接器松动会产生6倍线
频率(360 Hz)之高振动
振动检测仪检测判断(一)
振动检测仪检测判断(二)。