机械设备典型故障的振动特性
- 格式:ppt
- 大小:1007.50 KB
- 文档页数:31
机械震动总结报告范文摘要:本报告旨在总结机械震动的特性、产生原因、评价与控制方法等方面的研究成果,并提出针对性的改进建议。
通过实验、理论分析以及相关文献的综合研究,本报告对机械震动进行了全面的分析。
一、引言机械震动是机械系统运行中普遍存在的问题,它不仅影响机械设备的寿命与运行可靠性,还对人员安全与舒适性产生负面影响。
因此,深入研究机械震动的特性与控制方法具有重要意义。
二、机械震动的特性机械震动可分为结构振动与运动不平衡引起的震动两个方面。
结构振动可以进一步细分为弹性振动、固有频率振动、共振振动和自由振动等。
运动不平衡震动是指机械系统在高速旋转时由于质量不平衡而产生的振动。
机械震动具有周期性、随机性和冲击性等特点。
三、机械震动的产生原因机械震动的产生原因很多,包括机械系统的设计、制造与安装等方面因素,如结构刚度不足、轴承损坏、未能正确安装等。
同时,运行过程中的外力扰动、机械系统的故障以及材料疲劳等也是机械震动产生的原因。
四、机械震动的评价方法机械震动的评价方法包括振动参数测量与分析、人体感受评价和影响分析等。
振动参数测量与分析可以通过加速度传感器、速度传感器等获取振动信号,并利用频率谱分析、阶次分析等方法对振动信号进行处理与评估。
人体感受评价主要通过实验与人员主观感受相结合来进行。
而影响分析则通过对机械震动引起的噪声、振动等对周围环境与设备的影响进行分析与预测。
五、机械震动的控制方法机械震动的控制方法包括设计改进、结构增强、材料优化等方面的措施。
在设计阶段,应考虑结构刚度、惯性力的平衡等因素,同时合理选择材料与制造工艺。
在运行阶段,可以通过动平衡、振动隔离、减振措施等来控制机械震动。
六、改进建议综合以上研究成果,本报告提出以下改进建议:1. 加强机械震动的设计与制造规范,提高机械系统的耐震性能;2. 在设计阶段加大对结构刚度、质量平衡等的考虑;3. 加强结构优化设计,减少共振现象的发生;4. 提高材料的抗疲劳与抗震性能;5. 加强振动监测与预警,及时发现并解决机械系统中的故障。
电机振动故障的原因及解决对策张凯锋摘要:电机振动故障的出现不但会对其自身的结构和构件造成损坏,同时还可能会引发严重的事故,因此对电机振动故障的原因进行研究非常重要。
基于此,本文对电机振动故障发生的原因进行了分析,然后提出了一些针对性的解决对策,仅供参考。
关键词:电机运行;振动故障;原因分析;解决对策电机实际运行过程中,由于振动故障而导致机器停止运转的状况时有发生,造成的经济损失也非常严重。
因此,对电机振动故障的原因进行分析是非常必要的。
1 电机振动故障的特点电机的振动故障是一种常见的故障,并且还具有特定的故障特征。
实际上,在发电机运行期间经常会发生不同程度的振动,对于很小的机械振动可以接受。
但是,如果振动幅度超过一定范围,则会发生振动故障的问题。
关于振动故障的问题,由于轴承的类型和额定转速不同,发电机各部分的振动水平也不同。
因此,分析其故障特性非常重要。
1.1 结构特殊发电机通常分为立式和卧式,大型发电机组和中型发电机组为立式,小型发电机组为卧式。
由于发电机本身的特殊结构,振动干扰相对复杂。
从结构的角度来看,机组的轴环和衬套之间有一定的间隙,该间隙是不固定的,从而导致机组的大轴磁贴之间存在运动,并且运动轨迹是可变的。
1.2 振动故障的逐渐变化由于发电机的转轮的旋转速度不如其它旋转机械高,因此振动故障的发生通常是渐进且不可逆的,突发事故通常很少发生,因此,设备的正常运行需要定期维护。
1.3 振动故障的多样性发电机组的振动不是由单一的原因引起的,而是由机械振动、电磁振动、液压振动等各种原因引起发电机组的振动。
因此,在测试和分析机组振动时需要考虑各种因素。
2 电机振动故障的原因由于发电机组的结构比较复杂,因此整个机组对运行环境有很高的要求。
发电机组只能在某些情况下正常运行,因此,发电机组发生故障的可能性增加。
另外,发电机组的振动超过标准,这会对发电机组和人员安全产生不利影响。
2.1 机械振动(1)机组转子振动。
旋转机械常见振动故障及原因分析旋转机械是指主要依靠旋转动作完成特定功能的机械,典型的旋转机械有汽轮机、燃气轮机、离心式和轴流式压缩机、风机、泵、水轮机、发电机和航空发动机等,广泛应用于电力、石化、冶金和航空航天等部门。
大型旋转机械一般安装有振动监测保护和故障诊断系统,旋转机械主要的振动故障有不平衡、不对中、碰摩和松动等,但诱发因素多样。
本文就旋转设备中,常见的振动故障原因进行分析,与大家共同分享。
一、旋转机械运转产生的振动机械振动中包含着从低频到高频各种频率成分的振动,旋转机械运转时产生的振动也是同样的。
轴系异常(包括转子部件)所产生的振动频率特征如表1。
二、振动故障原因分析1、旋转失速旋转失速是压缩机中最常见的一种不稳定现象。
当压缩机流量减少时,由于冲角增大,叶栅背面将发生边界层分离,流道将部分或全部被堵塞。
这样失速区会以某速度向叶栅运动的反方向传播。
实验表明,失速区的相对速度低于叶栅转动的绝对速度,失速区沿转子的转动方向以低于工频的速度移动,这种相对叶栅的旋转运动即为旋转失速。
旋转失速使压缩机中的流动情况恶化,压比下降,流量及压力随时间波动。
在一定转速下,当入口流量减少到某一值时,机组会产生强烈的旋转失速。
强烈的旋转失速会进一步引起整个压缩机组系统产生危险性更大的不稳定气动现象,即喘振。
此外,旋转失速时压缩机叶片受到一种周期性的激振力,如旋转失速的频率与叶片的固有频率相吻合,将会引起强烈振动,使叶片疲劳损坏造成事故。
旋转失速故障的识别特征:1)振动发生在流量减小时,且随着流量的减小而增大;2)振动频率与工频之比为小于1X的常值;3)转子的轴向振动对转速和流量十分敏感;4)排气压力有波动现象;5)流量指示有波动现象;6)机组的压比有所下降,严重时压比可能会突降;7)分子量较大或压缩比较高的机组比较容易发生。
2、喘振旋转失速严重时可以导致喘振。
喘振除了与压缩机内部的气体流动情况有关,还同与之相连的管道网络系统的工作特性有密切的联系。
机械设备典型故障的振动特性1. 引言机械设备在正常运行过程中,可能会出现各种故障,其中振动故障是一种常见的故障类型。
振动特性是用来描述机械设备振动状态的重要参数,通过对振动特性的分析,可以确定故障的类型和严重程度,并采取相应的维修措施。
本文将介绍机械设备典型故障的振动特性,包括离心机械设备的不平衡振动、齿轮传动的故障振动、轴承的故障振动以及主轴的故障振动。
2. 离心机械设备的不平衡振动离心机械设备的不平衡振动是一种常见的故障类型。
当离心机械设备的转子存在不平衡时,会导致设备产生振动。
不平衡振动的特点是振动频率较低,振动幅值较大。
不平衡振动的振动特性可以通过振动传感器进行监测和分析。
常见的振动特性参数包括振动幅值、振动频率和相位。
3. 齿轮传动的故障振动齿轮传动是机械设备中常用的传动方式之一,但是在使用过程中会出现齿轮的故障,导致振动增大。
齿轮传动的故障振动可以分为齿轮啮合故障和轴承故障两种情况。
•齿轮啮合故障振动:齿轮啮合故障会导致传动系统产生周期性振动,其频率与齿轮的啮合频率有关。
常见的齿轮啮合故障包括齿轮齿面磨损、齿轮齿面脱落等。
•轴承故障振动:轴承是机械设备中常见的零部件之一,当轴承出现故障时,会导致传动系统产生高频振动。
轴承故障的振动特点包括高频率、小幅度的振动,振动信号中常含有谐波成分。
轴承是机械设备中常见的关键零部件之一,其故障会导致设备振动增大。
轴承的故障振动可以分为内圈故障、外圈故障和滚动体故障三种情况。
•内圈故障振动:内圈故障会导致轴承产生低频振动,其振动频率一般较低,并且振动幅值较大。
•外圈故障振动:外圈故障会导致轴承产生高频振动,其振动频率一般较高,并且振动幅值较小。
•滚动体故障振动:滚动体故障会导致轴承产生特定频率的振动,其频率与滚动体的旋转频率有关。
主轴是机械设备中常见的关键部件之一,其故障会导致设备振动增大。
主轴的故障振动特点与轴承的故障振动类似,包括低频振动、高频振动以及特定频率的振动。
航空发动机是结构紧凑的高速旋转机械,在运行过程中经常会出现振动方面的故障。
发展综合振动故障诊断技术,开展振动故障机理研究,是解决航空发动机振动故障的有效途径。
振动是航空发动机的一个重要监控参数,发动机在进行试验时,需要解决各种振动问题。
发动机振动之所以特别重要,是因为振动直接影响发动机的正常工作和寿命,如果发动机出现振动异常而不及时加以检查排除,就有可能造成严重的后果。
因此,航空发动机振动故障诊断一直都是航空发动机试验测试中的一个重要研究课题。
典型的发动机振动故障航空发动机的振动故障具有复杂性和随机性,引起发动机振动故障的原因多种多样,其振动故障现象各不相同,典型的航空发动机振动故障及其特征简要归纳见表1。
表1 典型航空发动机振动故障原因及振动特征发动机振动测量建立满足测试目的和要求的振动测量系统、选择相应的振动测量方法是开展振动故障诊断的重要基础。
振动测量系统振动测量系统包含测振托架、振动传感器、传输电缆、信号适调器、数据记录(存储)、分析仪和以计算机为中心的数据处理系统等部分。
测量时应合理布置振动监测点,选取并正确安装满足要求的振动传感器,选用符合要求的电缆并合理固定,确保绝缘性和屏蔽性,保证信号有效传输,避免干扰和失真。
目前,在航空发动机振动测量中,广泛采用的振动传感器是压电式加速度计,该类传感器具有频响范围较宽、体积较小、使用寿命较长等优点。
振动测量方法航空发动机振动测量分为静态和动态两种。
静态测量是在研制过程中为了获取发动机的静态振动特性和结构模型参数,采用加激励的方法进行测量。
动态测量是在发动机运转情况下进行的,用于实时监测发动机工作状态、诊断振动故障。
目前,航空发动机整机振动测量时,均采用振动位移、振动速度或振动加速度作为显示参数和限制参数。
一般说来,对于较低频率振动用振动位移进行显示和限制;对于中等频率振动用振动速度进行显示和限制;而较高频率振动则用振动加速度进行显示和限制。
从对发动机整机振动限制的基本要求和发展趋势看,选择用振动速度进行显示和限制相对较多。
旋转机械松动引起的振动故障特征与振动机理分析作者:刘文玲来源:《大东方》2016年第06期摘要:本文对旋转机械发生机械松动的形式进行了介绍,并重点对各类松动形式的故障特征及典型频谱图进行了分析,同时对机械松动产生的振动机理进行了分析。
关键词:机械松动;故障特征;振动机理在旋转设备运行过程中经常会出现机械松动现象,但在设备运行中机械松动只能通过进行状态检测进行分析才能发现,虽然松动本身不是纯粹的故障,不会产生振动,但会放大设备的其它故障,因此有必要对旋转设备关于松动引起的振动特征及振动机理进行分析。
机械松动有三种形式:结构框架或底座松动、结构或轴承座晃动或开裂引起的松动、轴承在轴承座内松动或部件配合松动。
一、振动特征分析1.结构框架或底座松动结构框架或底座松动包括支脚、底板、水泥底座松动或强度不够。
框架或底板变形,坚固螺丝松动等情况。
它的振动特征为:●类似不平衡或不对中,频谱主要以1X为主;●振动具有局部性,只表现在松动的转子上;●同轴承径向振动垂直,水平方向相位差0或180度;●如果轴承坚固是在轴向,也会引起类似不对中的轴向振动。
2.结构或轴承座晃动或开裂引起的松动结构或轴承座晃动或开裂引起的松动主要包括结构或轴承座开裂、支承件长度不同引起的晃动、部件间隙出现少量偏差时、坚固螺丝松动。
它的振动特征为:●主要以2X为特征(主要是径向2X超过1X的50%);●幅值有时不稳定;●振动只有伴随其它故障如不平衡或不对中时才有表现,此时要消除不平衡或不对中将很困难;●在间隙达到出现碰撞前,振动主要是1X和2X,出现碰撞后,振动将出现大量谐频。
3.轴承在轴承座内松动或部件配合松动轴承在轴承座内松动或部件配合松动包括轴承在轴承座内松动、滚动轴承轴承内圈间隙大、滚动轴承轴承保持架在轴承盖内松动、轴承松动或有相对转动。
它的振动特征为:●常常出现大量的高次谐频,有时10X,甚至20X,松动严重时还会出现半频及谐频(0.5X、1.5X……)成分;●半频及谐频往往随不平衡或不对是等故障现象;●振动幅值变化较大,相位有时也不稳定。
路漫漫其修远兮,吾将上下而求索•百度文库旋转机械振动的基本特性概述绝大多数机械都有旋转件,所谓旋转机械是指主要功能由旋转运动来完成的机械,尤苴是指主要部件作旋转运动的、转速较高的机械。
旋转机械种类繁多,有汽轮机、燃气轮机、离心式压缩机、发电机、水泵、水轮机、通风机以及电动机等。
这类设备的主要部件有转子、轴承系统、泄子和机组壳体、联轴器等组成,转速从每分钟几十到几万、几十万转。
故障是指机器的功能失效,即苴动态性能劣化,不符合技术要求。
例如,机器运行失稳,产生异常振动和噪声,工作转速、输出功率发生变化,以及介质的温度、压力、流量异常等。
机器发生故障的原因不同,所反映岀的信息也不一样,根据这些特有的信息,可以对故障进行诊断。
但是,机器发生故障的原因往往不是单一的因素,一般都是多种因素共同作用的结果,所以对设备进行故障诊断时,必须进行全而的综合分析研究。
由于旋转机械的结构及零部件设计加工、安装调试、维护检修等方而的原因和运行操作方而的失误,使得机器锂运行过程中会引起振动,英振动类型可分为径向振动、轴向振动和扭转振动三类,其中过大的径向振动往往是造成机器损坏的主要原因,也是状态监测的主要参数和进行故障诊断的主要依据。
从仿生学的角度来看,诊断设备的故障类似于确泄人的病因:医生需要向患者询问病情、病史、切脉(听诊)以及屋体温、验血相、测心电图等,根据获得的多种数据,进行综合分析才能得出诊断结果,提出治疗方案。
同样,对旋转机械的故障诊断,也应&获取机一番敢穩态一数据、瞬态数据以及过程参数和运程捉奄等值忌敢基础1-,通过信■}分析和数据处理提取机舉播直的故障症兆及故障敏感参数等」经过综合分析判断,才能确定故障原瓯做出符合实际的诊断结讼,提出迨理攬施。
根据故障原因和造成故障原因的不同阶段,可以将旋转机械的故障原因分为几个方而,见表1 °表1旋转机械故障原因分类故障分类主要原因①设计不当,动态特性不良•运行时发生强迫振动或自激振动②结构不合理•应力集中设计原因③设il•工作转速接近或落人临界转速区④热膨胀虽汁算不准.导致热态对中不良体修远兮.酉将上下而求索•百度文库制造原因①零部件加工制造不良••精度不够②零件材质不良,强度不够•制造缺陷③转子动平衡不符合技术要求安装、维修①机械安装不当,零部件错位,预负荷大②轴系对中不良③机器几何参数(如配合间隙.过盈址及相对位置)调整不、*1④管道应力大,机器在工作状态下改变了动态特性和安装精度⑤转子长期放宜不、y.改变了动平衡精度⑥未按规程检修.破坏「机器原有的配合性质和精度操作运行「①工艺参数(如介质的温度、压力.流虽、负荷等)偏离设计值,机器运行工况不正常②机器在超转速.超负荷下运行,改变J'机器的工作持性③运行点接近或落入临界转速区④润滑或冷却不良⑤转子局部损坏或结垢⑥启停机或升降速过程操作不暧机不够,热膨胀不均匀或在临界区停留时间过久机器劣化①长期运行,转子挠度増大或动平衡劣化②转子局部损坏.脱落或产生裂纹③零部件磨损、点蚀或腐蚀等④配合血受力劣化.产生过盈不足或松动等,破坏了配合性质和精度⑤机器基础沉降不均匀•机器壳体变形旋转机械振动的基本特性(1)旋转机械的主要功能是由旋转部件来完成的,转子是英最主要的部件。
机械系统的振动特性分析在日常生活中,机械系统的振动特性是一个非常重要的问题。
无论是汽车发动机的振动,还是楼房的结构振动,都直接影响着机械系统的运行和安全性。
因此,深入了解机械系统的振动特性对于提高其性能和稳定性至关重要。
首先,我们先来了解一下机械系统的振动是如何产生的。
简单来说,任何物体都有一定的弹性,当外力作用于物体时,物体会发生形变。
而当外力突然消失时,物体会恢复到原来的形态,这种复原的过程会使物体产生振动。
这种振动可以是单纯的正弦振动,也可以是复杂的周期或非周期振动。
机械系统的振动特性分析主要是研究振动的幅值、频率、相位等参数。
机械系统的振动特性分析涉及到许多重要的概念。
首先是自由振动和强迫振动。
自由振动是指系统在没有外力作用下自行振动的情况,而强迫振动则是指系统在受到外力作用下振动的情况。
自由振动一般是由系统本身的固有特性所决定,而强迫振动则是受到外力的大小和频率影响。
这两种振动都可以通过分析系统的振动特性来进行研究和控制。
其次,机械系统的振动还与系统的固有频率密切相关。
固有频率是指机械系统在没有外力干扰的情况下,自由振动的频率。
当外力的频率接近系统的固有频率时,系统会发生共振现象。
共振会导致系统的振幅急剧增大,甚至超过系统原有的强度和稳定性。
因此,在设计和使用机械系统时,需要特别注意避免共振现象的发生,这可以通过调整系统的固有频率或调整外力的频率来实现。
此外,机械系统的振动还与系统的材料和结构参数有关。
不同的材料和结构参数会影响到系统的刚度和阻尼,从而影响到系统的振动特性。
例如,对于悬吊在弹簧上的质点系统,弹簧的刚度和质点的质量会影响到系统的振动频率和振幅。
因此,在设计机械系统时,需要根据实际情况选择合适的材料和结构参数,以满足系统对振动特性的要求。
在实际应用中,机械系统的振动特性分析可以通过实验和数值模拟两种方式来进行。
实验方法一般采用传感器来测量系统的振动参数,通过对实验数据的处理和分析,可以得到系统的振动特性。