解析核磁共振谱图
- 格式:ppt
- 大小:7.87 MB
- 文档页数:38
浅谈一维核磁共振谱图的解析方法核磁共振(NMR)是一项可以用来识别化合物结构的有力技术,其基本原理是检测分子中原子的磁性性质以及各原子之间的相互作用。
一维核磁共振(1D NMR)实验可以提供有关分子结构的重要信息,但是在众多1D NMR谱图中,如何解析一维核磁共振谱图却是一个重要的问题。
一般来说,一维核磁共振谱图的解析可以分为三个步骤:第一步是对NMR谱图中的峰进行归类,第二步是根据峰的宽度及峰面积大小,确定每个峰的原子种类;第三步是将每个峰标注成具体的原子,从而确定化合物的结构。
首先,在解析一维核磁共振谱图之前,需要对谱图中出现的各个峰进行归类。
常用的1D NMR实验有proton-decoupled carbon-13 NMR 和proton NMR,它们都各自对应一类峰,其中碳-13 NMR谱中包括alkyl, alkenyl, aryl, ketone, ester, nitrile,carboxylic acid, amide, alcohol等类型;而proton NMR谱则包括alkyl, alkenyl, aryl, ether, amine等类型。
虽然碳-13 NMR和proton NMR实验中的峰类型有所不同,但是每类峰都有其典型的宽度及峰面积,只要根据这些特征,就可以对谱图中各个峰进行分类。
其次,根据峰的宽度及峰面积大小,确定每个峰的原子种类。
碳-13 NMR谱图中,由于不同原子类型间存在着弛豫时间的差异,因此,峰的宽度也会不同,可以用宽度及峰面积来判断其原子类型。
例如,甲基峰的宽度一般比氢原子峰要大,而酯基的宽度则普遍比甲基峰要大。
而在proton NMR谱中,则可以通过排除法相对简单地确定每个峰的原子类型,即根据谱图中已经确认的原子种类以及谱图中其它峰的宽度及峰面积,就可以排除掉那些可能存在的原子类型,从而最终确定该峰的原子类型。
最后,将每个峰标注成具体的原子,以确定化合物的结构。
核磁共振氢谱图谱解析1. 引言核磁共振氢谱是一种利用核磁共振技术研究物质中氢原子的化学环境和结构的方法。
氢是最常见的元素之一,广泛存在于化学化工、生物医药等领域。
通过核磁共振氢谱图谱的解析,可以了解样品的分子结构、官能团和化学环境等信息,对于化学合成、物质性质研究、质量控制等具有重要意义。
本文将介绍核磁共振氢谱图谱的基本原理、谱峰解析步骤和谱峰解析的应用实例,帮助读者更好地理解和应用核磁共振氢谱图谱解析技术。
2. 核磁共振氢谱基本原理核磁共振(Nuclear Magnetic Resonance, NMR)基于原子核的磁性和电磁波的相互作用,通过施加磁场和射频脉冲来激发样品中的氢原子核,根据吸收或发射电磁波的频率差异来获得谱图信息。
核磁共振氢谱图谱的横坐标表示化学位移或称为化学位移标尺(Chemical Shift, δ),单位为ppm(parts per million)。
纵坐标表示吸收强度或强度积分。
3. 核磁共振氢谱图谱解析步骤3.1 样品准备样品是进行核磁共振氢谱图谱解析的基础,需要制备纯度高、浓度适宜的样品。
样品制备时要注意避免杂质的干扰,需选用适合的溶剂,并校正溶剂的化学位移标尺。
3.2 光谱仪参数设置在进行核磁共振实验前,需要根据样品的特点和要研究的问题来调整光谱仪的参数。
如调节磁场强度、扫描速度、脉冲宽度和接收增益等。
3.3 谱峰解析核磁共振谱峰的位置、形状和峰面积等参数与样品的结构和环境密切相关,通过分析谱峰的特征来推断样品的化学结构。
谱峰解析通常包括以下几个方面的内容:3.3.1 化学位移解析化学位移是谱图上谱峰的位置信息,表示了不同原子在化学环境中所受到的磁场强度的差异。
通过与参考物质的化学位移进行比较,可以推断样品中含有的官能团和化学结构。
3.3.2 耦合常数解析耦合常数是指谱图上峰之间的距离信息,用于描述不同耦合离子对之间的相互作用。
通过分析谱峰之间的相对位置和大小关系,可以预测样品中的化学键和官能团。
核磁共振图谱的解析(转)1.一般来说,分析核磁共振图谱需要按如下步骤进行:(1)看峰的位置,即化学位移。
确定该峰属于哪一个基团上的氢。
(2)看峰的大小。
可用核磁共振仪给出的积分图的台阶高度看出各峰下面所包围的面积之比,从而知道基团含氢的数目比。
例如,从图7.3-2的积分图可看出乙基苯三个基团的含氢数目为5∶2∶3。
(3)看峰的形状(包括峰的数目、宽窄情况等),以确定基团和基团之间的相互关系。
这一步较复杂,需应用n+1律、二级分裂和耦合常数等知识。
(4)如遇到二级分裂,解析时显然要比一级分析时困难得多,好在人们已经根据不同的二级分裂,将它们分成不同的自旋系统进行了相应的计算可供参阅,这里不再详述。
2.影响核磁共振谱的因数(1)旋转边峰为了提高核磁共振信号的分辨能力,样品管需要吹风推动它旋转,使样品所受到的磁场趋于均匀化。
但由于样品管旋转,核磁共振图谱上的主峰两旁便会对称地出现新峰,这就是旋转边峰。
旋转边峰离主峰的距离等于样品管的旋转速度。
旋转边峰不难判断,只要改变样品管的转速,观察其离主峰的距离是否相应改变。
如果距离随样品管转速增大而变大,便可断定是旋转边峰。
(2)13C同位素边峰若样品中同时含有13C和1H者可以发生耦合。
在图谱放大或者在非重氢溶剂的溶剂峰中可以观察到由于这种耦合产生的13C边峰。
它在共振图谱上出现的形式和旋转边峰类似,也是左右对称地出现在主峰两旁,但两者很易识别,因为同位素边峰不会因样品管转速的改变而改变其离开主峰的距离。
(3)杂质峰和溶剂峰在核磁共振图谱中,因样品含有杂质,经常可观察到杂质峰。
溶剂峰可包括结晶溶剂、样品中部分残留的合成或提取时所用的溶剂以及做核磁共振实验时所用溶剂的溶剂峰。
这两种附加峰都应根据具体情况作具体分析,然后判别之。
(4)活泼氢的影响在含氢化合物中,—OH基团中的氢是常见的一种活泼氢。
它的化学位移由于温度、浓度、氢键等因数的影响变化范围较大,从而会改变核磁共振图谱的形状。