带电粒子在复合场中的运动-江苏新海高级中学
- 格式:ppt
- 大小:1.30 MB
- 文档页数:26
带电粒子在复合场中的(类)平抛运动带电粒子在复合场中的(类)平抛运动,是指带电粒子在电磁场和重力场的共同作用下,做类似于平抛运动的运动轨迹。
这种运动在物理学中被广泛研究,对于了解电磁场和重力场的相互作用,以及带电粒子在这些场中的运动规律具有重要意义。
一、电磁场和重力场的基本概念电磁场是由电荷和电流所产生的物理场。
电磁场的基本量是电场和磁场,它们是相互作用的。
电磁场的作用可以通过麦克斯韦方程组来描述。
重力场是由物体所产生的物理场。
重力场的基本量是重力加速度,它是物体受到的重力作用的大小和方向。
重力场的作用可以通过牛顿万有引力定律来描述。
二、带电粒子在电磁场中的运动规律带电粒子在电磁场中的运动规律可以通过洛伦兹力公式来描述。
洛伦兹力公式表示带电粒子在电磁场中受到的力的大小和方向。
洛伦兹力公式为:F=q(E+v×B)其中,F是带电粒子所受的力,q是粒子的电荷量,E是电场强度,B是磁场强度,v是粒子的速度。
带电粒子在电磁场中的运动轨迹可以通过牛顿第二定律和洛伦兹力公式来描述。
牛顿第二定律表示物体所受的合力等于物体的质量乘以加速度。
带电粒子在电磁场中的加速度可以通过洛伦兹力公式来计算。
因此,带电粒子在电磁场中的运动轨迹可以通过解微分方程来求解。
三、带电粒子在重力场中的运动规律带电粒子在重力场中的运动规律可以通过牛顿第二定律和牛顿万有引力定律来描述。
牛顿万有引力定律表示两个物体之间的引力大小与它们的质量和距离的平方成正比,与它们之间的相对位置有关。
带电粒子在重力场中的运动可以看作是一个质点在重力场中的运动,因此可以应用牛顿第二定律来描述。
四、带电粒子在复合场中的运动规律带电粒子在复合场中的运动规律可以通过将电磁场和重力场的作用合并来描述。
带电粒子在复合场中的运动轨迹可以通过解微分方程来求解。
在复合场中,带电粒子所受的合力等于电磁力和重力的合力,因此可以应用牛顿第二定律来描述。
总之,带电粒子在复合场中的(类)平抛运动是一个复杂的物理过程,它涉及到电磁场和重力场的相互作用,以及带电粒子在这些场中的运动规律。
专题拓展课二带电粒子在复合场中的运动[学习目标要求] 1.知道复合场的概念。
2.能够运用运动组合的理念分析带电粒子在组合场中的运动。
3.能分析带电粒子在叠加场中的受力情况和运动情况,能够正确选择物理规律解答问题。
拓展点1带电粒子在组合场中的运动1.组合场:电场与磁场各位于一定的区域内,并不重叠,一般为两场相邻或在同一区域电场、磁场交替出现。
2.四种常见的运动模型(1)带电粒子先在电场中做匀加速直线运动,然后垂直进入磁场做圆周运动,如图所示。
(2)带电粒子先在电场中做类平抛运动,然后垂直进入磁场做圆周运动,如图所示。
(3)带电粒子先在磁场中做圆周运动,然后垂直进入电场做类平抛运动,如图所示。
(4)带电粒子先在磁场Ⅰ中做圆周运动,然后垂直进入磁场Ⅱ做圆周运动,如图所示。
3.三种常用的解题方法(1)带电粒子在电场中做加速运动,根据动能定理求速度。
(2)带电粒子在电场中做类平抛运动,需要用运动的合成和分解处理。
(3)带电粒子在磁场中的圆周运动,可以根据磁场边界条件,画出粒子轨迹,用几何知识确定半径,然后用洛伦兹力提供向心力和圆周运动知识求解。
4.要正确进行受力分析,确定带电粒子的运动状态。
(1)仅在电场中运动①若初速度v0与电场线平行,粒子做匀变速直线运动;②若初速度v0与电场线垂直,粒子做类平抛运动。
(2)仅在磁场中运动①若初速度v0与磁感线平行,粒子做匀速直线运动;②若初速度v0与磁感线垂直,粒子做匀速圆周运动。
5.分析带电粒子的运动过程,画出运动轨迹是解题的关键。
特别提醒从一个场射出的末速度是进入另一个场的初速度,因此两场界面处的速度(大小和方向)是联系两运动的桥梁,求解速度是重中之重。
【例1】(2021·广东深圳市高二期末)某些肿瘤可以用“质子疗法”进行治疗,在这种疗法中,质子先被加速到具有较高的能量,然后被引向轰击肿瘤,杀死细胞,如图甲。
图乙为某“质子疗法”仪器部分结构的简化图,Ⅰ是质子发生器,质子的质量m=1.6×10-27 kg,电量e=1.6×10-19 C,质子从A点进入Ⅱ;Ⅱ是加速装置,内有匀强电场,加速长度d1=4.0 cm;Ⅲ装置由平行金属板构成,板间有正交的匀强电场和匀强磁场,板间距d2=2.0 cm,上下极板电势差U2=1000 V;Ⅳ是偏转装置,以O为圆心、半径R=0.1 m的圆形区域内有垂直纸面向外的匀强磁场,质子从M进入、从N射出,A、M、O三点共线,通过磁场的强弱可以控制质子射出时的方向。
2022年高考物理【热点·重点·难点】专练(全国通用)重难点08 带电粒子在复合场中的运动【知识梳理】考点带电粒子在组合场中的运动1.带电粒子在组合场中的运动是力电综合的重点和高考热点.这类问题的特点是电场、磁场或重力场依次出现,包含空间上先后出现和时间上先后出现,磁场或电场与无场区交替出现相组合的场等.其运动形式包含匀速直线运动、匀变速直线运动、类平抛运动、圆周运动等,涉及牛顿运动定律、功能关系等知识的应用.复习指导:1.理解掌握带电粒子的电偏转和磁偏转的条件、运动性质,会应用牛顿运动定律进行分析研究,掌握研究带电粒子的电偏转和磁偏转的方法,能够熟练处理类平抛运动和圆周运动.2.学会按照时间先后或空间先后顺序对运动进行分析,分析运动速度的承前启后关联、空间位置的距离关系、运动时间的分配组合等信息将各个运动联系起来.2.解题时要弄清楚场的性质、场的方向、强弱、范围等.3.要进行正确的受力分析,确定带电粒子的运动状态.4.分析带电粒子的运动过程,画出运动轨迹是解题的关键【重点归纳】1、求解带电粒子在组合复合场中运动问题的分析方法(1)正确受力分析,除重力、弹力、摩擦力外要特别注意静电力和磁场力的分析.(2)确定带电粒子的运动状态,注意运动情况和受力情况的结合.(3)对于粒子连续通过几个不同区域、不同种类的场时,要分阶段进行处理.(4)画出粒子运动轨迹,灵活选择不同的运动规律.2、带电粒子在复合场中运动的应用实例(1)质谱仪(2)回旋加速器(3)速度选择器(4)磁流体发电机(5)电磁流量计工作原理【限时检测】(建议用时:30分钟)一、单选题1.如图所示,两个平行金属板水平放置,要使一个电荷量为-q、质量为m的微粒,以速度v沿两板中心轴线S1S2向右运动,可在两板间施加匀强电场或匀强磁场。
设电场强度为E,磁感应强度为B,不计空气阻力,已知重力加速度为g。
下列选项可行的是()A.只施加垂直向里的磁场,且满足mg Bqv =B.同时施加竖直向下的电场和垂直纸面向里的磁场,且满足mg Bv Eq=+C.同时施加竖直向下的电场和水平向右的磁场,且满足mgq E=D.同时施加竖直向上的电场和垂直纸面向外的磁场,且满足mg E Bvq =+【答案】 C【解析】A.只施加垂直向里的磁场,根据左手定则,洛伦兹力竖直向下,无法跟重力平衡。
带电粒子在复合场中的运动一、知识梳理1.复合场的分类(1)叠加场:电场、磁场、重力场共存,或其中某两场共存.(2)组合场:电场与磁场各位于一定的区域内,并不重叠,或相邻或在同一区域电场、磁场交替出现.2.带电粒子在复合场中的运动形式当带电粒子在复合场中所受的合外力为0时,粒子将做匀速直线运动或静止。
当带电粒子所受的合外力与运动方向在同一条直线上时,粒子将做变速直线运动. 当带电粒子所受的合外力充当向心力时,粒子将做匀速圆周运动。
当带电粒子所受的合外力的大小、方向均是不断变化的时,粒子将做变加速运动,这类问题一般只能用能量关系处理。
3. 题型分析:带电粒子在匀强电场、匀强磁场中可能的运动性质在电场强度为E 的匀强电场中 在磁感应强度为B 的匀强磁场中 初速度为零做初速度为零的匀加速直线运动保持静止初速度垂直场线 做匀变速曲线运动(类平抛运动) 做匀速圆周运动 初速度平行场线 做匀变速直线运动 做匀速直线运动特点受恒力作用,做匀变速运动洛伦兹力不做功,动能不变“电偏转”和“磁偏转"的比较垂直进入匀强磁场(磁偏转)垂直进入匀强电场(电偏转)情景图受力 F B =qv 0B ,大小不变,方向总指向圆心,方向变化,F B 为变力F E =qE ,F E 大小、方向不变,为恒力运动规律 匀速圆周运动r =mv 0Bq,T =错误!类平抛运动v x =v 0,v y =Eqm tx =v 0t ,y =错误!t 2运动时间 t =错误!T =错误!t =错误!,具有等时性动能 不变变化4。
常见模型(1)从电场进入磁场电场中:加速直线运动⇓磁场中:匀速圆周运动电场中:类平抛运动⇓磁场中:匀速圆周运动(2)从磁场进入电场磁场中:匀速圆周运动⇓错误!电场中:匀变速直线运动磁场中:匀速圆周运动⇓错误!电场中:类平抛运动二、针对练习1.在某一空间同时存在相互正交的匀强电场和匀强磁场,匀强电场的方向竖直向上,磁场方向如图。
带电粒子在复合场中的运动基础知识归纳1.复合场复合场是指 电场 、 磁场 和 重力场 并存,或其中两场并存,或分区域存在,分析方法和力学问题的分析方法基本相同,不同之处是多了电场力和磁场力,分析方法除了力学三大观点(动力学、动量、能量)外,还应注意:(1) 洛伦兹力 永不做功.(2) 重力 和 电场力 做功与路径 无关 ,只由初末位置决定.还有因洛伦兹力随速度而变化,洛伦兹力的变化导致粒子所受 合力 变化,从而加速度变化,使粒子做 变加速 运动.2.带电粒子在复合场中无约束情况下的运动性质(1)当带电粒子所受合外力为零时,将 做匀速直线运动 或处于 静止 ,合外力恒定且与初速度同向时做匀变速直线运动,常见情况有:①洛伦兹力为零(v 与B 平行),重力与电场力平衡,做匀速直线运动,或重力与电场力合力恒定,做匀变速直线运动.②洛伦兹力与速度垂直,且与重力和电场力的合力平衡,做匀速直线运动.(2)当带电粒子所受合外力充当向心力,带电粒子做 匀速圆周运动 时,由于通常情况下,重力和电场力为恒力,故不能充当向心力,所以一般情况下是重力恰好与电场力相平衡,洛伦兹力充当向心力.(3)当带电粒子所受合外力的大小、方向均不断变化时,粒子将做非匀变速的 曲线运动 .3.带电粒子在复合场中有约束情况下的运动带电粒子所受约束,通常有面、杆、绳、圆轨道等,常见的运动形式有 直线运动 和圆周运动 ,此类问题应注意分析洛伦兹力所起的作用.4.带电粒子在交变场中的运动带电粒子在不同场中的运动性质可能不同,可分别进行讨论.粒子在不同场中的运动的联系点是速度,因为速度不能突变,在前一个场中运动的末速度,就是后一个场中运动的初速度.5.带电粒子在复合场中运动的实际应用(1)质谱仪①用途:质谱仪是一种测量带电粒子质量和分离同位素的仪器.②原理:如图所示,离子源S 产生质量为m ,电荷量为q 的正离子(重力不计),离子出来时速度很小(可忽略不计),经过电压为U 的电场加速后进入磁感应强度为B 的匀强磁场中做匀速圆周运动,经过半个周期而达到记录它的照相底片P 上,测得它在P 上的位置到入口处的距离为L ,则qU =21mv 2-0;q B v =m r v 2;L =2r 联立求解得m =UL qB 822,因此,只要知道q 、B 、L 与U ,就可计算出带电粒子的质量m ,若q 也未知,则228L B U m q 又因m ∝L 2,不同质量的同位素从不同处可得到分离,故质谱仪又是分离同位素的重要仪器.(2)回旋加速器①组成:两个D 形盒、大型电磁铁、高频振荡交变电压,D 型盒间可形成电压U .②作用:加速微观带电粒子.③原理:a .电场加速qU =ΔE kb .磁场约束偏转qBv =m rv 2,r =qB mv ∝v c .加速条件,高频电源的周期与带电粒子在D 形盒中运动的周期相同,即T 电场=T 回旋=qBm π2 带电粒子在D 形盒内沿螺旋线轨道逐渐趋于盒的边缘,达到预期的速率后,用特殊装置把它们引出.④要点深化a .将带电粒子在两盒狭缝之间的运动首尾相连起来可等效为一个初速度为零的匀加速直线运动.b .带电粒子每经电场加速一次,回旋半径就增大一次,所以各回旋半径之比为1∶2∶3∶…c .对于同一回旋加速器,其粒子回旋的最大半径是相同的.d .若已知最大能量为E km ,则回旋次数n =qUE 2k m e .最大动能:E km =mr B q 22m 22 f .粒子在回旋加速器内的运动时间:t =UBr 2π2m (3)速度选择器①原理:如图所示,由于所受重力可忽略不计,运动方向相同而速率不同的正粒子组成的粒子束射入相互正交的匀强电场和匀强磁场所组成的场区中,已知电场强度为B ,方向垂直于纸面向里,若粒子运动轨迹不发生偏转(重力不计),必须满足平衡条件:qBv =qE ,故v =BE ,这样就把满足v =BE 的粒子从速度选择器中选择出来了. ②特点:a .速度选择器只选择速度(大小、方向)而不选择粒子的质量和电荷量,如上图中若从右侧入射则不能穿过场区.b .速度选择器B 、E 、v 三个物理量的大小、方向互相约束,以保证粒子受到的电场力和洛伦兹力等大、反向,如上图中只改变磁场B 的方向,粒子将向下偏转.c .v ′>v =B E 时,则qBv ′>qE ,粒子向上偏转;当v ′<v =BE 时,qBv ′<qE ,粒子向下偏转. ③要点深化a .从力的角度看,电场力和洛伦兹力平衡qE =qvB ;b .从速度角度看,v =BE ; c .从功能角度看,洛伦兹力永不做功.(4)电磁流量计①如图所示,一圆形导管直径为d ,用非磁性材料制成,其中有可以导电的液体流过导管.②原理:导电液体中的自由电荷(正、负离子)在洛伦兹力作用下横向偏转,a 、b 间出现电势差,形成电场.当自由电荷所受电场力和洛伦兹力平衡时,a 、b 间的电势差就保持稳定.由Bqv =Eq =dU q ,可得v =Bd U 液体流量Q =Sv =4π2d ·Bd U =BdU 4π (5)霍尔效应如图所示,高为h 、宽为d 的导体置于匀强磁场B 中,当电流通过导体时,在导体板的上表面A 和下表面A ′之间产生电势差,这种现象称为霍尔效应,此电压称为霍尔电压.设霍尔导体中自由电荷(载流子)是自由电子.图中电流方向向右,则电子受洛伦兹力 向上 ,在上表面A 积聚电子,则qvB =qE ,E =Bv ,电势差U =Eh =Bhv .又I =nqSv导体的横截面积S =hd得v =nqhdI 所以U =Bhv =dBI k nqd BI k=nq1,称霍尔系数.重点难点突破一、解决复合场类问题的基本思路1.正确的受力分析.除重力、弹力、摩擦力外,要特别注意电场力和磁场力的分析.2.正确分析物体的运动状态.找出物体的速度、位置及其变化特点,分析运动过程,如果出现临界状态,要分析临界条件.3.恰当灵活地运用动力学三大方法解决问题.(1)用动力学观点分析,包括牛顿运动定律与运动学公式.(2)用动量观点分析,包括动量定理与动量守恒定律.(3)用能量观点分析,包括动能定理和机械能(或能量)守恒定律.针对不同的问题灵活地选用,但必须弄清各种规律的成立条件与适用范围.二、复合场类问题中重力考虑与否分三种情况1.对于微观粒子,如电子、质子、离子等一般不做特殊交待就可以不计其重力,因为其重力一般情况下与电场力或磁场力相比太小,可以忽略;而对于一些实际物体,如带电小球、液滴、金属块等不做特殊交待时就应考虑其重力.2.在题目中有明确交待是否要考虑重力的,这种情况比较正规,也比较简单.3.直接看不出是否要考虑重力的,在进行受力分析与运动分析时,要由分析结果,先进行定性确定是否要考虑重力.典例精析1.带电粒子在复合场中做直线运动的处理方法【例1】如图所示,足够长的光滑绝缘斜面与水平面间的夹角为α(sin α=0.6),放在水平方向的匀强电场和匀强磁场中,电场强度E =50 V/m ,方向水平向左,磁场方向垂直纸面向外.一个电荷量q =+4.0×10-2 C 、质量m =0.40 kg 的光滑小球,以初速度v 0=20 m/s 从斜面底端向上滑,然后又下滑,共经过3 s 脱离斜面.求磁场的磁感应强度(g 取10 m/s 2).【解析】小球沿斜面向上运动的过程中受力分析如图所示.由牛顿第二定律,得qE cos α+mg sin α=ma 1,故a 1=g sin α+mqE α cos =10×0.6 m/s 2+40.08.050100.42⨯⨯⨯- m/s 2=10 m/s 2,向上运动时间t 1=100a v --=2 s 小球在下滑过程中的受力分析如图所示.小球在离开斜面前做匀加速直线运动,a 2=10 m/s 2运动时间t 2=t -t 1=1 s脱离斜面时的速度v =a 2t 2=10 m/s在垂直于斜面方向上有:qvB +qE sin α=mg cos α故B =T 106.050-T 10100.48.01040.0 sin cos 2⨯⨯⨯⨯⨯=--v E qv mg αα=5 T 【思维提升】(1)知道洛伦兹力是变力,其大小随速度变化而变化,其方向随运动方向的反向而反向.能从运动过程及受力分析入手,分析可能存在的最大速度、最大加速度、最大位移等.(2)明确小球脱离斜面的条件是F N =0.【拓展1】如图所示,套在足够长的绝缘粗糙直棒上的带正电小球,其质量为m ,带电荷量为q ,小球可在棒上滑动,现将此棒竖直放入沿水平方向且互相垂直的匀强磁场和匀强电场中.设小球电荷量不变,小球由静止下滑的过程中( BD )A.小球加速度一直增大B.小球速度一直增大,直到最后匀速C.杆对小球的弹力一直减小D.小球所受洛伦兹力一直增大,直到最后不变【解析】小球由静止加速下滑,f 洛=Bqv 在不断增大,开始一段,如图(a):f 洛<F 电,水平方向有f 洛+F N =F 电,加速度a =mf mg -,其中f =μF N ,随着速度的增大,f 洛增大,F N 减小,加速度也增大,当f 洛=F 电时,a 达到最大;以后如图(b):f 洛>F 电,水平方向有f 洛=F 电+F N ,随着速度的增大,F N 也增大,f 也增大,a =mf mg -减小,当f =mg 时,a =0,此后做匀速运动,故a 先增大后减小,A 错,B 对,弹力先减小后增大,C 错,由f 洛=Bqv 知D 对.2.灵活运用动力学方法解决带电粒子在复合场中的运动问题【例2】如图所示,水平放置的M 、N 两金属板之间,有水平向里的匀强磁场,磁感应强度B =0.5 T.质量为m 1=9.995×10-7 kg 、电荷量为q =-1.0×10-8 C 的带电微粒,静止在N 板附近.在M 、N 两板间突然加上电压(M 板电势高于N 板电势)时,微粒开始运动,经一段时间后,该微粒水平匀速地碰撞原来静止的质量为m 2的中性微粒,并粘合在一起,然后共同沿一段圆弧做匀速圆周运动,最终落在N 板上.若两板间的电场强度E =1.0×103 V/m ,求:(1)两微粒碰撞前,质量为m 1的微粒的速度大小;(2)被碰撞微粒的质量m 2;(3)两微粒粘合后沿圆弧运动的轨道半径.【解析】(1)碰撞前,质量为m 1的微粒已沿水平方向做匀速运动,根据平衡条件有m 1g +qvB =qE解得碰撞前质量m 1的微粒的速度大小为v =5.0100.11010995.9100.1100.187381⨯⨯⨯⨯-⨯⨯⨯=----qB g m qE m/s =1 m/s (2)由于两微粒碰撞后一起做匀速圆周运动,说明两微粒所受的电场力与它们的重力相平衡,洛伦兹力提供做匀速圆周运动的向心力,故有(m 1+m 2)g =qE解得m 2=g qE 1m -=)10995.910100.1100.1(738--⨯-⨯⨯⨯ kg =5×10-10 kg (3)设两微粒一起做匀速圆周运动的速度大小为v ′,轨道半径为R ,根据牛顿第二定律有qv ′B =(m 1+m 2)Rv 2' 研究两微粒的碰撞过程,根据动量守恒定律有m 1v =(m 1+m 2)v ′以上两式联立解得R =5.0100.1110995.9)(87121⨯⨯⨯⨯=='+--qB v m qB v m m m≈200 m 【思维提升】(1)全面正确地进行受力分析和运动状态分析,f洛随速度的变化而变化导致运动状态发生新的变化.(2)若mg 、f 洛、F 电三力合力为零,粒子做匀速直线运动.(3)若F 电与重力平衡,则f 洛提供向心力,粒子做匀速圆周运动.(4)根据受力特点与运动特点,选择牛顿第二定律、动量定理、动能定理及动量守恒定律列方程求解.【拓展2】如图所示,在相互垂直的匀强磁场和匀强电场中,有一倾角为θ的足够长的光滑绝缘斜面.磁感应强度为B ,方向水平向外;电场强度为E ,方向竖直向上.有一质量为m 、带电荷量为+q 的小滑块静止在斜面顶端时对斜面的正压力恰好为零.(1)如果迅速把电场方向转为竖直向下,求小滑块能在斜面上连续滑行的最远距离L 和所用时间t ;(2)如果在距A 端L /4处的C 点放入一个质量与滑块相同但不带电的小物体,当滑块从A点静止下滑到C 点时两物体相碰并黏在一起.求此黏合体在斜面上还能再滑行多长时间和距离?【解析】(1)由题意知qE =mg场强转为竖直向下时,设滑块要离开斜面时的速度为v ,由动能定理有(mg +qE )L sin θ=221mv ,即2mgL sin θ=221mv 当滑块刚要离开斜面时由平衡条件有qvB =(mg +qE )cos θ,即v =qBmg θ cos 2 由以上两式解得L =θθ sin cos 2222B q g m 根据动量定理有t =θθ cot sin 2qBm mg mv = (2)两物体先后运动,设在C 点处碰撞前滑块的速度为v C ,则2mg ·4L sin θ=21mv 2 设碰后两物体速度为u ,碰撞前后由动量守恒有mv C =2mu设黏合体将要离开斜面时的速度为v ′,由平衡条件有qv ′B =(2mg +qE )cos θ=3mg cos θ由动能定理知,碰后两物体共同下滑的过程中有3mg sin θ·s =21·2mv ′2-21·2mu 2 联立以上几式解得s =12sin cos 32222L B q g m -θθ 将L 结果代入上式得s =θθ sin 12cos 352222B q g m 碰后两物体在斜面上还能滑行的时间可由动量定理求得t ′=qBm mg mu v m 35 sin 322=-'θcot θ【例3】在平面直角坐标系xOy 中,第Ⅰ象限存在沿y 轴负方向的匀强电场,第Ⅳ象限存在垂直于坐标平面向外的匀强磁场,磁感应强度为B .一质量为m 、电荷量为q 的带正电粒子从y 轴正半轴上的M 点以速度v 0垂直于y 轴射入电场,经x 轴上的N 点与x 轴正方向成θ=60°角射入磁场,最后从y 轴负半轴上的P 点垂直于y 轴射出磁场,如图所示.不计重力,求:(1)M 、N 两点间的电势差U MN ;(2)粒子在磁场中运动的轨道半径r ;(3)粒子从M 点运动到P 点的总时间t .【解析】(1)设粒子过N 点时的速度为v ,有v v 0=cos θ ① v =2v 0 ②粒子从M 点运动到N 点的过程,有qU MN =2022121mv mv - ③ U MN =3mv 20/2q ④(2)粒子在磁场中以O ′为圆心做匀速圆周运动,半径为O ′N ,有qvB =rmv 2⑤ r =qBmv 02 ⑥ (3)由几何关系得ON =r sin θ⑦ 设粒子在电场中运动的时间为t 1,有ON =v 0t 1 ⑧ t 1=qB m 3 ⑨粒子在磁场中做匀速圆周运动的周期T =qB m π2 ⑩设粒子在磁场中运动的时间为t 2,有t 2=2ππθ-T ⑪ t 2=qB m 32π ⑫t =t 1+t 2=qBm 3π)233(+ 【思维提升】注重受力分析,尤其是运动过程分析以及圆心的确定,画好示意图,根据运动学规律及动能观点求解.【拓展3】如图所示,真空室内存在宽度为s =8 cm的匀强磁场区域,磁感应强度B =0.332 T ,磁场方向垂直于纸面向里.紧靠边界ab 放一点状α粒子放射源S ,可沿纸面向各个方向放射速率相同的α粒子.α粒子质量为m=6.64×10-27 kg ,电荷量为q =+3.2×10-19 C ,速率为v=3.2×106 m/s.磁场边界ab 、cd 足够长,cd 为厚度不计的金箔,金箔右侧cd 与MN 之间有一宽度为L =12.8 cm 的无场区域.MN 右侧为固定在O 点的电荷量为Q =-2.0×10-6 C 的点电荷形成的电场区域(点电荷左侧的电场分布以MN 为边界).不计α粒子的重力,静电力常量k =9.0×109 N·m 2/C 2,(取sin 37°=0.6,cos 37°=0.8)求:(1)金箔cd 被α粒子射中区域的长度y ;(2)打在金箔d 端离cd 中心最远的粒子沿直线穿出金箔,经过无场区进入电场就开始以O 点为圆心做匀速圆周运动,垂直打在放置于中心线上的荧光屏FH 上的E 点(未画出),计算OE 的长度;(3)计算此α粒子从金箔上穿出时损失的动能.【解析】(1)粒子在匀强磁场中做匀速圆周运动,洛伦兹力提供向心力,有qvB =m Rv 2,得R =Bqmv =0.2 m如图所示,当α粒子运动的圆轨迹与cd 相切时,上端偏离O ′最远,由几何关系得O ′P =22)(s R R --=0.16 m 当α粒子沿Sb 方向射入时,下端偏离O ′最远,由几何关系得O ′Q =)(2s R R --=0.16 m故金箔cd 被α粒子射中区域的长度为y =O ′Q +O ′P =0.32 m(2)如上图所示,OE 即为α粒子绕O 点做圆周运动的半径r .α粒子在无场区域做匀速直线运动与MN 相交,下偏距离为y ′,则 tan 37°=43,y ′=L tan 37°=0.096 m 所以,圆周运动的半径为r =︒'+'37 cos Q O y =0.32 m (3)设α粒子穿出金箔时的速度为v ′,由牛顿第二定律有k r v m rQq 22'= α粒子从金箔上穿出时损失的动能为ΔE k =21mv 2-21mv ′2=2.5×10-14 J3.带电体在变力作用下的运动【例4】竖直的平行金属平板A 、B 相距为d ,板长为L ,板间的电压为U ,垂直于纸面向里、磁感应强度为B 的磁场只分布在两板之间,如图所示.带电荷量为+q 、质量为m 的油滴从正上方下落并在两板中央进入板内空间.已知刚进入时电场力大小等于磁场力大小,最后油滴从板的下端点离开,求油滴离开场区时速度的大小.【错解】由题设条件有Bqv =qE =qdU ,v =Bd U ;油滴离开场区时,水平方向有Bqv +qE =ma ,v 2x =2a ·mqU d 22= 竖直方向有v 2y =v 2+2gL 离开时的速度v ′=m qU dB U gL v v y x 2222222++=+ 【错因】洛伦兹力会随速度的改变而改变,对全程而言,带电体是在变力作用下的一个较为复杂的运动,对这样的运动不能用牛顿第二定律求解,只能用其他方法求解.【正解】由动能定理有mgL +qE 212122-'=v m d mv 2 由题设条件油滴进入磁场区域时有Bqv =qE ,E =U /d由此可以得到离开磁场区域时的速度v ′=m qU dB U gL ++2222 【思维提升】解题时应该注意物理过程和物理情景的把握,时刻注意情况的变化,然后结合物理过程中的受力特点和运动特点,利用适当的解题规律解决问题,遇到变力问题,特别要注意与能量有关规律的运用.【例5】回旋加速器是用来加速带电粒子的装置,如图所示。
高中物理带电粒子在复合场中的运动习题综合题附答案一、带电粒子在复合场中的运动压轴题1.扭摆器是同步辐射装置中的插入件,能使粒子的运动轨迹发生扭摆.其简化模型如图:Ⅰ、Ⅱ两处的条形匀强磁场区边界竖直,相距为L ,磁场方向相反且垂直纸面.一质量为m ,电量为-q ,重力不计的粒子,从靠近平行板电容器MN 板处由静止释放,极板间电压为U ,粒子经电场加速后平行于纸面射入Ⅰ区,射入时速度与水平和方向夹角30θ=︒(1)当Ⅰ区宽度1L L =、磁感应强度大小10B B =时,粒子从Ⅰ区右边界射出时速度与水平方向夹角也为30︒,求B 0及粒子在Ⅰ区运动的时间t 0(2)若Ⅱ区宽度21L L L ==磁感应强度大小210B B B ==,求粒子在Ⅰ区的最高点与Ⅱ区的最低点之间的高度差h(3)若21L L L ==、10B B =,为使粒子能返回Ⅰ区,求B 2应满足的条件(4)若12B B ≠,12L L ≠,且已保证了粒子能从Ⅱ区右边界射出.为使粒子从Ⅱ区右边界射出的方向与从Ⅰ区左边界射出的方向总相同,求B 1、B 2、L 1、、L 2、之间应满足的关系式.【来源】2011年普通高等学校招生全国统一考试物理卷(山东) 【答案】(1)32lm t qU π=(2)2233h L ⎛⎫=- ⎪⎝⎭(3)232mU B L q >(或232mUB L q≥)(4)1122B L B L =【解析】图1(1)如图1所示,设粒子射入磁场Ⅰ区的速度为v ,在磁场Ⅰ区中做圆周运动的半径为1R ,由动能定理和牛顿第二定律得212qU mv =①211v qvB m R = ②由几何知识得12sin L R θ= ③联立①②③,带入数据得012mUB L q=④设粒子在磁场Ⅰ区中做圆周运动的周期为T ,运动的时间为t12R T vπ= ⑤ 22t T θπ=⑥ 联立②④⑤⑥式,带入数据得32Lmt qUπ=⑦ (2)设粒子在磁场Ⅱ区做圆周运动的半径为2R ,有牛顿第二定律得222v qvB m R = ⑧由几何知识得()()121cos tan h R R L θθ=+-+ ⑨联立②③⑧⑨式,带入数据得2233h L ⎛⎫=- ⎪⎝⎭⑩图2(3)如图2所示,为时粒子能再次回到Ⅰ区,应满足()21sin R L θ+<[或()21sin R L θ+≤] ⑾联立①⑧⑾式,带入数据得232mU B L q >(或232mUB L q≥) ⑿图3图4(4)如图3(或图4)所示,设粒子射出磁场Ⅰ区时速度与水平方向得夹角为α,有几何知识得()11sin sin L R θα=+ ⒀ [或()11sin sin L R θα=-]()22sin sin L R θα=+ ⒁[或]()22sin sin L R θα=- 联立②⑧式得1122B R B R = ⒂联立⒀⒁⒂式得1122B L B L = ⒃【点睛】(1)加速电场中,由动能定理求出粒子获得的速度.画出轨迹,由几何知识求出半径,根据牛顿定律求出B 0.找出轨迹的圆心角,求出时间;(2)由几何知识求出高度差;(3)当粒子在区域Ⅱ中轨迹恰好与右侧边界相切时,粒子恰能返回Ⅰ区,由几何知识求出半径,由牛顿定律求出B 2满足的条件;(4)由几何知识分析L 1、L 2与半径的关系,再牛顿定律研究关系式.2.如图,M 、N 是电压U =10V 的平行板电容器两极板,与绝缘水平轨道CF 相接,其中CD 段光滑,DF 段粗糙、长度x =1.0m .F 点紧邻半径为R 的绝缘圆筒(图示为圆筒的横截面),圆筒上开一小孔与圆心O 在同一水平面上,圆筒内存在磁感应强度B =0.5T 、方向垂直纸面向里的匀强磁场和方向竖直向下的匀强电场E .一质量m =0.01kg 、电荷量q =-0.02C 的小球a 从C 点静止释放,运动到F 点时与质量为2m 、不带电的静止小球b 发生碰撞,碰撞后a 球恰好返回D 点,b 球进入圆筒后在竖直面内做圆周运动.不计空气阻力,小球a 、b 均视为质点,碰时两球电量平分,小球a 在DF 段与轨道的动摩因数μ=0.2,重力加速度大小g=10m/s 2.求(1)圆筒内电场强度的大小; (2)两球碰撞时损失的能量;(3)若b 球进入圆筒后,与筒壁发生弹性碰撞,并从N 点射出,则圆筒的半径.【来源】福建省宁德市2019届普通高中毕业班质量检查理科综合物理试题 【答案】(1)20N/C ;(2)0J ;(3) 16tanR nπ=(n≥3的整数)【解析】 【详解】(1)小球b 要在圆筒内做圆周运动,应满足:12Eq =2mg 解得:E =20 N/C(2)小球a 到达F 点的速度为v 1,根据动能定理得:Uq -μmgx =12mv 12 小球a 从F 点的返回的速度为v 2,根据功能关系得:μmgx =12mv 22 两球碰撞后,b 球的速度为v ,根据动量守恒定律得:mv 1=-mv 2+2mv 则两球碰撞损失的能量为:ΔE =12mv 12-12mv 22-12mv 2联立解得:ΔE=0(3)小球b进入圆筒后,与筒壁发生n-1次碰撞后从N点射出,轨迹图如图所示:每段圆弧对应圆筒的圆心角为2nπ,则在磁场中做圆周运动的轨迹半径:r1=Rtannπ粒子在磁场中做圆周运动:21122vqvB mr=联立解得:16tanRnπ=(n≥3的整数)3.如图,区域I内有与水平方向成45°角的匀强电场1E,区域宽度为1d,区域Ⅱ内有正交的有界匀强磁场B和匀强电场2E,区域宽度为2d,磁场方向垂直纸面向里,电场方向竖直向下.一质量为m、电量大小为q的微粒在区域I左边界的P点,由静止释放后水平向右做直线运动,进入区域Ⅱ后做匀速圆周运动,从区域Ⅱ右边界上的Q点穿出,其速度方向改变了30,重力加速度为g,求:(1)区域I和区域Ⅱ内匀强电场的电场强度12E E、的大小.(2)区域Ⅱ内匀强磁场的磁感应强度B的大小.(3)微粒从P运动到Q的时间有多长.【来源】【市级联考】陕西省咸阳市2019届高三模拟检测(三)理综物理试题【答案】(1)12mgEq=,2mgEq=122m gd121626d dgdgdπ+【解析】【详解】(1)微粒在区域I内水平向右做直线运动,则在竖直方向上有:1sin45qE mg︒=求得:12mgEq=微粒在区域II内做匀速圆周运动,则重力和电场力平衡,有:2mg qE=求得:2mgE q=(2)粒子进入磁场区域时满足:2111cos452qE d mv ︒=2v qvB m R=根据几何关系,分析可知:222sin30d R d ==︒整理得:122m gd B =(3)微粒从P 到Q 的时间包括在区域I 内的运动时间t 1和在区域II 内的运动时间t 2,并满足:211112a t d = 1tan45mg ma ︒=2302360Rt vπ︒=⨯︒ 经整理得:112121222612126gd d d d t t t gd g gd ππ+=+=+⨯=4.在平面直角坐标系xOy 中,第Ⅱ、Ⅲ象限y 轴到直线PQ 范围内存在沿x 轴正方向的匀强电场,电场强度大小500N/C E =,第I 、Ⅳ象限以()0.4,0为圆心,半径为的圆形范围内,存在垂直于坐标平面向外的匀强磁场,磁感应强度0.5T B =.大量质量为10110kg m -=⨯,电荷量6110C q -=⨯的带正电的粒子从PQ 上任意位置由静止进入电场.已知直线PQ 到y 轴的距离也等于R .不计粒子重力,求:(1)粒子进入磁场时的速度大小;(2)若某个粒子出磁场时速度偏转了120,则该粒子进入电场时到y 轴的距离h 多大? (3)粒子在磁场中运动的最长时间.【来源】天津市耀华中学2019届高三高考二模物理试题 【答案】(1)2000m/s (2)0.2m (3)4210s π-⨯ 【解析】 【详解】(1)粒子在电场中加速,则有:212EqR mv = 解得:2000m/s v =(2)在磁场中,有:2v qvB m r=解得: 0.4m r R ==即正好等于磁场半径,如图,轨迹圆半径与磁场圆半径正好组成一个菱形由此可得sin 300.2h R m =︒=(3)无论粒子从何处进入磁场,(2)中菱形特点均成立,所有粒子均从同一位置射出磁场,故4max 210s 2T m t Bqππ-===⨯5.如图,平面直角坐标系中,在,y >0及y <-32L 区域存在场强大小相同,方向相反均平行于y 轴的匀强电场,在-32L <y <0区域存在方向垂直于xOy 平面纸面向外的匀强磁场,一质量为m ,电荷量为q 的带正电粒子,经过y 轴上的点P 1(0,L )时的速率为v 0,方向沿x 轴正方向,然后经过x 轴上的点P 2(32L ,0)进入磁场.在磁场中的运转半径R =52L (不计粒子重力),求:(1)粒子到达P2点时的速度大小和方向;(2)EB;(3)粒子第一次从磁场下边界穿出位置的横坐标;(4)粒子从P1点出发后做周期性运动的周期.【来源】2019年内蒙古呼和浩特市高三物理二模试题【答案】(1)53v0,与x成53°角;(2)043v;(3)2L;(4)()4053760Lvπ+.【解析】【详解】(1)如图,粒子从P1到P2做类平抛运动,设到达P2时的y方向的速度为v y,由运动学规律知32L=v0t1,L=2yvt1可得t1=32Lv,v y=43v0故粒子在P2的速度为v220yv v+53v0设v与x成β角,则tanβ=yvv=43,即β=53°;(2)粒子从P1到P2,根据动能定理知qEL=12mv2-12mv02可得E=289mvqL粒子在磁场中做匀速圆周运动,根据qvB =m 2v R解得:B =mv qR =05352m v q L ⨯⨯=023mv qL解得:43v E B =; (3)粒子在磁场中做圆周运动的圆心为O ′,在图中,过P 2做v 的垂线交y =-32L 直线与Q ′点,可得: P 2O ′=3253L cos =52L =r故粒子在磁场中做圆周运动的圆心为O ′,因粒子在磁场中的轨迹所对圆心角α=37°,故粒子将垂直于y =-32L 直线从M 点穿出磁场,由几何关系知M 的坐标x =32L +(r -r cos37°)=2L ; (4)粒子运动一个周期的轨迹如上图,粒子从P 1到P 2做类平抛运动:t 1=032Lv在磁场中由P 2到M 动时间:t 2=372360r v π︒⨯=037120Lv π 从M 运动到N ,a =qE m =289v L则t 3=v a =0158Lv 则一个周期的时间T =2(t 1+t 2+t 3)=()04053760Lv π+.6.如图所示,在平面直角坐标系xOy 平面内,直角三角形abc 的直角边ab 长为6d ,与y 轴重合,∠bac=30°,中位线OM 与x 轴重合,三角形内有垂直纸面向里的匀强磁场.在笫一象限内,有方向沿y 轴正向的匀强电场,场强大小E 与匀强磁场磁感应强度B 的大小间满足E=v 0B .在x=3d 的N 点处,垂直于x 轴放置一平面荧光屏.电子束以相同的初速度v 0从y 轴上-3d≤y≤0的范围内垂直于y 轴向左射入磁场,其中从y 轴上y=-2d 处射入的电子,经磁场偏转后,恰好经过O 点.电子质量为m,电量为e,电子间的相互作用及重力不计.求 (1)匀强磁杨的磁感应强度B(2)电子束从y 轴正半轴上射入电场时的纵坐标y 的范围; (3)荧光屏上发光点距N 点的最远距离L【来源】四川省乐山市2018届高三第二次调查研究考试理综物理试题 【答案】(1)0mv ed ; (2)02y d ≤≤;(3)94d ; 【解析】(1)设电子在磁场中做圆周运动的半径为r ; 由几何关系可得r =d电子在磁场中做匀速圆周运动洛伦兹力提供向心力,由牛顿第二定律得:200v ev B m r=解得:0mv B ed=(2)当电子在磁场中运动的圆轨迹与ac 边相切时,电子从+ y 轴射入电场的位置距O 点最远,如图甲所示.设此时的圆心位置为O ',有:sin 30rO a '=︒3OO d O a ='-'解得OO d '=即从O 点进入磁场的电子射出磁场时的位置距O 点最远 所以22m y r d ==电子束从y 轴正半轴上射入电场时的纵坐标y 的范围为02y d ≤≤设电子从02y d ≤≤范围内某一位置射入电场时的纵坐标为y ,从ON 间射出电场时的位置横坐标为x ,速度方向与x 轴间夹角为θ,在电场中运动的时间为t ,电子打到荧光屏上产生的发光点距N 点的距离为L ,如图乙所示:根据运动学公式有:0x v t =212eE y t m=⋅ y eE v t m= 0tan y v v θ= tan 3L d xθ=- 解得:(32)2L d y y =即98y d =时,L 有最大值 解得:94L d =当322d y y【点睛】本题属于带电粒子在组合场中的运动,粒子在磁场中做匀速圆周运动,要求能正确的画出运动轨迹,并根据几何关系确定某些物理量之间的关系;粒子在电场中的偏转经常用化曲为直的方法,求极值的问题一定要先找出临界的轨迹,注重数学方法在物理中的应用.7.如图所示,A 、B 两水平放置的金属板板间电压为U(U 的大小、板间的场强方向均可调节),在靠近A 板的S 点处有一粒子源能释放初速度为零的不同种带电粒子,这些粒子经A 、B 板间的电场加速后从B 板上的小孔竖直向上飞出,进入竖直放置的C 、D 板间,C 、D 板间存在正交的匀强电场和匀强磁场,匀强电场的方向水平向右,大小为E ,匀强磁场的方向水平向里,大小为B 1。
带电粒子在复合场中的运动例题引言本文将围绕带电粒子在复合场中的运动进行详细的探讨和解析。
我们将通过一个具体的运动例题,展示带电粒子在电磁场和重力场共同作用下的运动规律,帮助读者更好地理解这一过程。
问题描述考虑一个带电质量为m的粒子,在匀强电场和重力作用下,其运动方程如下:$$F=qE+m g$$其中,F表示粒子所受的合外力,q表示粒子的电荷量,E表示电场强度,g表示重力加速度。
在给定初速度v0的情况下,我们的目标是确定带电粒子在复合场中的运动轨迹。
解析为了解决这个问题,我们将采取以下步骤:步骤一:分析受力情况带电粒子所受的合外力由电场力和重力构成,因此可以将合外力表示为:$$F=qE+m g$$步骤二:列出运动方程根据牛顿第二定律,粒子的加速度与合外力成正比,因此可以得到运动方程为:$$a=\f ra c{F}{m}=\f ra c{qE}{m}+g$$将加速度与速度的关系带入上式,得到:$$\f ra c{dv}{dt}=\f ra c{qE}{m}+g$$步骤三:解微分方程对上式进行积分,可以得到粒子的速度与时间的关系:$$v=\f ra c{qE}{m}t+gt+v_0$$其中,v0为初始速度。
步骤四:求解轨迹方程将速度与时间的关系带入运动方程中,即可得到带电粒子在复合场中的运动轨迹:$$x=\f ra c{1}{2}\l e ft(\fr ac{q E}{m}t^2+g t^2+v_0t\ri g ht)+x _0$$其中,x0为初始位置。
结论通过以上的推导和计算,我们得到了带电粒子在复合场中的运动轨迹方程。
这个运动方程将帮助我们更好地理解带电粒子在电场和重力场中的相互作用情况,并能够准确地描述其运动过程。
希望读者通过本文的学习,能够加深对带电粒子在复合场中运动的理解,并能够应用相关原理解决类似的问题。
*注意:本文所使用的公式和推导过程纯属示例,实际问题中需要根据具体情况进行适当的调整。
带电粒子在复合场中的运动发表时间:2011-08-19T16:29:23.780Z 来源:《学习方法报》教研周刊 作者: 马敬卫[导读] 带电粒子在复合场中的运动一般有两种情况:直线运动和圆周运动。
山东省郓城第一中学 马敬卫复合场是指电场、磁场、重力场中三者或任意两者共存的场。
虽然带电粒子在复合场中的运动情况一般较为复杂,但它作为一个力学问题,同样遵循联系力和运动的基本规律。
带电粒子在复合场中的运动一般有两种情况:直线运动和圆周运动。
(1)若带电粒子在电场力、重力和洛伦兹力共同作用下做直线运动,由于电场力和重力为恒力,洛伦兹力方向和速度方向垂直且大小随速度大小而改变,所以只要带电粒子速度大小发生变化,垂直于速度方向的合力就要发生变化,该方向带电粒子的运动状态就会发生变化,带电粒子就会脱离原来的直线轨道而沿曲线运动。
可见,只有带电粒子速度大小不变,才可能做直线运动,也就是说,带电粒子在电场力、重力和洛伦兹力共同作用下做直线运动时,一定是做匀速直线运动。
(2)若带电粒子在电场力、重力和洛伦兹力共同作用下做匀速圆周运动时,由于物体做匀速圆周运动的条件是所受合外力大小恒定、方向时刻和速度方向垂直,这是任何几个恒力或恒力和某一变力无法合成实现的,只有洛伦兹力可满足该条件。
也就是说,带电粒子在上述复合场中如果做匀速圆周运动,只能是除洛伦兹力以外的所有恒力的合力为零才能实现。
总之,处理此类问题,一定要牢牢把握隐含条件。
在解决实际问题时,要做到以下三点:①正确分析受力情况;②充分理解和掌握不同场对带电粒子作用的特点和差异;③认真分析带电粒子运动的详细过程,充分发掘题目中的隐含条件,建立清晰的物理情景,最终把物理模型转化为数学表达式。
下面以两个例子来说明处理此类问题的方法。
1. 带电微粒在电场力、重力和洛伦兹力共同作用下做匀速圆周运动。
必然是电场力和重力平衡,而洛伦兹力充当向心力。
例1 一个带电微粒在图示的正交匀强电场和匀强磁场中在竖直平面内做匀速圆周运动。
带电粒子在复合场中的运动一、带电粒子....(通常不计重力)在混合场中的运动 1.速度选择器正交的匀强磁场和匀强电场组成速度选择器。
带电粒子必须以唯一确定的速度(包括大小、方向)才能匀速(或者说沿直线)通过速度选择器。
否则将发生偏转。
这个速度的大小可以由洛伦兹力和电场力的平衡得出:qvB=Eq ,BE v =。
在本图中,速度方向必须向右。
(1)这个结论与离子带何种电荷、电荷多少都无关。
(2)若速度小于这一速度,电场力将大于洛伦兹力,带电粒子向电场力方向偏转,电场力做正功,动能将增大,洛伦兹力也将增大,粒子的轨迹既不是抛物线,也不是圆,而是一条复杂曲线;若大于这一速度,将向洛伦兹力方向偏转,电场力将做负功,动能将减小,洛伦兹力也将减小,轨迹是一条复杂曲线。
【例1】 某带电粒子从图中速度选择器左端由中点O 以速度v 0向右射去,从右端中心a 下方的b 点以速度v 1射出;若增大磁感应强度B ,该粒子将打到a 点上方的c 点,且有ac =ab ,则该粒子带___电;第二次射出时的速度为_____。
【例2】 如图所示,一个带电粒子两次以同样的垂直于场线的初速度v 0分别穿越匀强电场区和匀强磁场区, 场区的宽度均为L 偏转角度均为α,求E ∶B2.回旋加速器(1)有关物理学史知识和回旋加速器的基本结构和原理1932年美国物理学家应用了带电粒子在磁场中运动的特点发明了回旋加速器,其原理如图所示。
A 0处带正电的粒子源发出带正电的粒子以速度v 0垂直进入匀强磁场,在磁场中匀速转动半个周期,到达A 1时,在A 1 A 1/处造成向上的电场,粒子被加速,速率由v 0增加到v 1,然后粒子以v 1在磁场中匀速转动半个周期,到达A 2/时,在A 2/ A 2处造成向下的电场,粒子又一次被加速,速率由v 1增加到v 2,如此继续下去,每当粒子经过A A /的交界面时都是它被加速,从而速度不断地增加。
带电粒子在磁场中作匀速圆周运动的周期为qBT mπ2=,为达到不断加速的目的,只要在A A /上加上周期也为T 的交变电压就可以了。
带电粒子在复合场中的运动1、 如图,在平面直角坐标系xOy 内,第1象限存在沿y 轴负方向的匀强电场,第Ⅳ象限以ON 为直径的半圆形区域内,存在垂直于坐标平面向外的匀强磁场,磁感应强度为B .一质量为m 、电荷量为q 的带正电的粒子,从y 轴正半轴上y =h 处的M 点,以速度v 0垂直于y 轴射入电场,经x 轴上x =2h 处的P 点进入磁场,最后以速度v 垂直于y 轴射出磁场。
不计粒子重力。
求:(1)电场强度大小E ;(2)粒子在磁场中运动的轨道半径; (3)粒子离开磁场时的位置坐标。
2、 如图所示,在xoy 平面的第一象限内,分布有沿x 轴负方向的场强4410/3E N C =⨯的匀强电场,第四象限内分布有垂直纸面向里的磁感应强度10.2B T =的匀强磁场,第二、三象限内分布有垂直纸面向里的磁感应强度2B 的匀强磁场。
在x 轴上有一个垂直于y 轴的挡板OM ,挡板上开有一个小孔P ,P 处连接有一段长度2110d m -=⨯内径不计的准直管,管内由于静电屏蔽没有电场。
y 轴负方向上距O 点210h m -的粒子源S 可以向第四象限平面内各个方向发射带正电的粒子,粒子速度大小均为50210/v m s =⨯,粒子的比荷7510/qC kg m=⨯,不计粒子重力和粒子间的相互作用,求:(1)粒子在第四象限的磁场中运动时的轨道半径r ; (2)粒子第一次到达y 轴的位置与O 点的距离H ;(3)要使离开电场的粒子只经过第二、三象限回到S 处,磁感应强度2B 应为多大。
3、 如图所示,空间存在方向与xoy 平面垂直,范围足够大的匀强磁场。
在0x ≥区域,磁感应强度大小为B 0,方向向里;x <0区域,磁感应强度大小为2B 0,方向向外。
某时刻,一个质量为m 、电荷量为q (q >0)的带电粒子从x 轴上P (L ,0)点以速度02qB Lv m=垂直x 轴射入第一象限磁场,不计粒子的重力。
求:(1)粒子在两个磁场中运动的轨道半径;(2)粒子离开P 点后经过多长时间第二次到达y 轴。