电动汽车再生制动系统介绍
- 格式:ppt
- 大小:1.51 MB
- 文档页数:36
电动汽车再生制动控制技术结构与工作原理1.电动汽车再生制动控制技术结构电动汽车制动能量回收系统主要由两部分组成(电机再生制动部分和传统液压摩擦制动部分),所以该制动系统可以视为机电复合制动系统。
虽然再生制动可以回收制动能量并向车轮提供部分制动力,但是它无法使车轮完全停止转动,制动效果受到电机、电池和车速等诸多条件的限制,在紧急制动和高强度制动条件下不能独立完成制动要求。
为了保证汽车的制动安全性,在采用电机再生制动的同时,必须使用传统的液压摩擦制动作为辅助,从而达到既保证了汽车的制动安全性,又回收可观的能量的目的。
电力驱动及控制系统是电动汽车的核心,也是区别于内燃机汽车的最大不同点。
电力驱动及控制系统由驱动电机、电源和电机的调速控制装置等组成。
在电动汽车上,再生制动是利用电机的电动机/发电机可逆性原理来实现的。
在电动汽车需要减速或者滑行时,可以利用驱动电机的控制电路实现电机的发电运行,使减速制动时的能量转换成对蓄电池充电的电流,从而得到再生利用。
由于摩擦制动一般采用液压形式,所以机电复合制动系统也可以称为再生一液压混合制动系统。
从保证制动安全和提高能量利用率的角度来考虑,再生一液压混合制动系统是最适合电动汽车的综合制动系统。
在制动过程中,制动控制器根据制动踏板的角度(实际为制动主缸压力),判断整车的制动强度,确定相应的摩擦制动和再生制动的分配关系。
前后轴的摩擦制动分配关系由液压系统对前后轮的分配关系实现;制动控制器根据制动强度和电池的SOC值确定,可以输出制动转矩并对前后轴进行分配,然后通过电机控制器控制电机进行再生制动。
在整个制动过程中,要保证电动汽车的制动稳定性、平稳性,并尽可能多地回收制动能量,延长汽车行驶里程。
电动汽车制动能量回收系统的结构原理。
电动汽车的制动过程是在液压摩擦制动与电机再生制动协调作用时完成的。
再生制动系统主要是由轮毂电机、电机控制器、逆变器、制动控制器和动力电池等主要部件组成。
■他山之石浅论电动汽车再生制动系统及其运用陆刚邓桂芳由于环境污染和能源短缺问题备受关注,电动汽车已成为全世界汽车工业领域研究的热点。
再生制动引入到传统液压制动系统中会改变原有车辆制动性能,需使再生制动与液压制动之间协调一致,确保车辆制动稳定性及驾驶平顺性,并最大化提高能量回收效率,延长电动汽车的续驶里程,值得业内人士的关注。
■制动能量回收对于提高电动汽车的能量利用率具有重要意义当今,汽车已经和我们的工作、生活密切相关,但传统汽车所带来的环保问题令人烦恼,再加上能源问题,使得人们不得不开始探索它的替代品。
电动汽车以其独有的特点受到人们的关注,从环保的角度来看,电动汽车是零排放的市区交通工具,即使加上发电厂增加的排气,总量上看,它也将使空气污染大大减少。
从能源角度来看,电动汽车将使能源的利用多元化(例如可使用各种再生能源)和高效化,达到能源的可靠、均衡和无污染利用的目的。
在改善交通安全和道路使用方面,电动汽车更容易实现智能化。
众所周知,汽车排放造成的大气污染和地球的温室效应,成为全人类的公害。
随着世界汽车产业的发展,人类社会日益增多的石油能源的消耗,将加快从能源短缺到能源枯竭的步伐。
人类社会和汽车产业的可持续发展受到极大的威胁,发展汽车新能源、开发汽车新动力,成为世界汽车产业面临的十分紧迫的任务。
当代融合多种高新技术而兴起的纯电动汽车、混合电动汽车、燃料电池汽车,尤其是立足于氢能基础上的燃料电池汽车正在引发世界汽车工业的一场革命,展现了汽车工业新能源、新动力发展的光明前景。
电动汽车的关键部件之一是蓄电池,蓄电池储存能量的多少是决定电动汽车续驶里程的重要因素。
但是目前蓄电池技术仍然是发展电动汽车产业的瓶颈,未能取得突破性进展,电动汽车的续驶里程还不能满足用户的需求。
如果将车辆减速时的动能转化为电能,回收入蓄电池,而不是摩擦浪费掉,这无疑相当于增加了蓄电池的容量。
在现有的技术条件下,这样做对于提高电动汽车的续驶里程性能具有重要的意义。
电动汽车再生制动技术浅析【摘要】电动汽车再生制动技术是利用电动汽车行驶过程中的动能转换为电能存储起来,从而延长电池的使用寿命和提高能源利用效率的一种技术。
本文首先介绍了再生制动技术的原理,即通过逆向电动机将车辆运动时产生的惯性能量转化为电能储存至电池;其次探讨了再生制动技术在不同应用领域的具体实践,包括城市公交、私家车辆等;然后分析了再生制动技术的优点,如减少制动片磨损、提高车辆行驶里程等;最后展望了再生制动技术的发展趋势,指出其在未来将会得到更多的应用和进一步的优化。
结论部分强调了电动汽车再生制动技术对提升车辆能源利用效率和环境友好性的重要性,并展望了未来其在电动车行业的广泛应用前景。
【关键词】电动汽车、再生制动技术、原理、应用领域、优点、发展趋势、重要性、前景展望1. 引言1.1 电动汽车再生制动技术浅析电动汽车再生制动技术是一种通过将车辆减速时产生的动能转化为电能储存或利用的技术。
随着电动汽车的普及和发展,再生制动技术也变得越来越重要。
该技术通过减少能量的浪费,提高了电动汽车的能效和续航里程,同时也减少了对环境的影响。
再生制动技术的原理是通过将电动汽车的电动机转变成发电机,在减速或制动时将动能转化为电能,并存储在电池中。
这种技术主要应用于城市驾驶和停止-启动车辆,能够显著提升汽车的能效。
再生制动技术的优点包括节能减排、提高驾驶体验和延长电池寿命等。
随着科技的不断进步和电动汽车市场的不断壮大,再生制动技术将会迎来更多的创新和发展,成为推动电动汽车行业发展的重要因素。
在未来,随着对环保和节能的要求不断提高,电动汽车再生制动技术将会发挥更加重要的作用,为汽车行业的可持续发展做出贡献。
2. 正文2.1 再生制动技术的原理再生制动技术的原理是利用电动汽车在制动过程中动能的转化和回收。
在电动汽车行驶过程中,当车辆需要减速或停止时,驾驶员踩下制动踏板,启动再生制动系统。
再生制动系统会通过车辆的电动机将动能转化为电能,将车辆惯性转化为电能以回充电池。
浅谈纯电动汽车再生回收技术作者:吴敏来源:《科学与财富》2020年第24期摘要:再生制动是用来回收电动汽车制动能量的一种技术,可有效增加电动汽车的行驶里程,本文以电动汽车作为研究对象,从再生技术方面着手,对再生制动系统的结构及原理、再生制动力矩分配、再生制动过程中电池储能的需求分析、EV再生制动控制策略等问题进行了分析阐述。
关键词:纯电动汽车;再生;回收一、再生制动系统的结构及原理纯电动汽车再生制动的系统结构,包括机械制动系统和电制动系统。
机械制动系统由电泵、液压调压器、阀及制动踏板组成,电制动系统由电机、齿轮、电机控制系统、再生制动控制系统及蓄电池组成。
在再生制动过程中,电机由变频器一侧的励磁电流来建立内部磁场,即电机的转子电流里的励磁分量不发生改变,因此,制动功能的完成只能通过改变电机转子电流里的转矩分量来实现。
由电机原理可知,定子电流的转矩分量随着转子电流而改变,特征是电机定子电流与转矩反向,能量从系统交流侧回馈至直流侧,其机械特性曲线由坐标轴的第一象限的电动状态到达第二象限的能量回馈状态。
在电动汽车的再生制动过程中,感应电机再生发电时的特性曲线如图1 所示。
在车辆正常行驶过程中,电机处于电动运行状态,此时,电机的机械特性曲线处于坐标轴第一象限,即曲线的A点,对应的转速为,负载力矩为。
当车辆制动时,目标转速发生变化,控制变频器的输出电压与频率下降,此时,电机的运行特性曲线由fl曲线变为曲线,由于电机的转速不能发生突变,电机的工作点由第一象限的A点变到第二象限的B点。
由分析可以得到,此时的电磁转矩为负,电机转子的转速大于其同步转速,电机处于再生制动模式。
如果不继续减速,电机将仍按曲线运转,转速将沿曲线由(B点)减为(C点),最终电机变为电动状态,稳定运行于D点。
如果继续减速,则电机会继续保持发电机模式,特性曲线保持于第二象限内,由B 点运行到E点。
在频率由给定的值减小为零时,电机会沿曲线,从E点运行到O点停车。
电动汽车上的制动能量回收的约束条件电动汽车制动能量再生系统主要包括两个部分:电机再生制动部分和传统液压摩擦制动部分。
再生制动虽然可以回收制动能量并向车轮提供部分制动力,但是电机再生制动效果受电机特性、电池、车速等诸多条件的限制,在紧急制动和高强度制动时不能独立完成制动要求,为了保证整车制动的安全性,在采用再生制动的同时,还要采用传统的液压摩擦制动作为辅助。
从国内外研究现状可看出,汽车制动能量回收系统研究主要集中在回收制动能量方法、回收制动能量的效率、驱动电机与功率转换器的控制技术、再生制动控制策略、机电复合制动的协调等方面。
目前急需解决的制动能量回收系统关键技术问题主要有四个方面:制动稳定性问题、制动能量回收的充分性问题、制动踏板平稳性问题、复合制动协调兼容问题。
可回收制动能量是电动汽车最重要的特性之一,但是电动汽车对制动能量的回收要受诸多因素的制约。
电动汽车制动能量回收的约束条件主要包括以下五个方面。
(1)行驶工况。
行驶工况不同,汽车的制动频率不一样,从而可回收的制动能量多少不同。
(2)蓄电池。
蓄电池的充电效率要受到蓄电池的SOC值、蓄电池温度以及充电电流的限制。
蓄电池SOC值很高或者温度过高时都无法回收制动能量。
充电电流过大会使蓄电池温度快速升高,也不能回收制动能量。
(3)电机因素。
电机提供的制动转矩越大,能够回收的制动能量越多。
电机的再生制动转矩受到发电功率和转速的制约,当制动强度过大时,电机不能满足制动要求。
(4)控制策略。
为了保证在制动安全的条件下实现能量充分回收,需要合理地设计再生制动与机械制动的分配关系。
(5)驱动形式。
再生制动系统只能回收驱动轮上的制动能量。
再生制动系统名词解释
再生制动系统,也称为动能回收系统(KERS),是一种能够将车辆运动的动能转化为电能并进行储存的制动系统。
它广泛应用于电动汽车和混合动力车辆中,可以提高能源利用效率并延长车辆的续航里程。
这种系统通过电磁感应吸收动能,能够减慢车辆的速度,并将能量存储在飞轮、电池或电容器组中。
再生制动系统是摩擦制动器的补充,必须与摩擦制动组一起使用才能完全停止车辆,但可以提高效率并减少摩擦制动器产生的热量,从而大大延长其预期寿命。
再生制动系统简介1 再生制动的定义再生制动,是指车辆减速或制动时,将其一部分动能转化为其他形式的能量储存起来以备驱动时使用的过程。
制动能量再生系统先将车辆制动或减速时的一部分机械能(动能)经再生系统转换(或转移)成其他形式的能量(旋转动能,液压能,化学能等),并储存于储能器中,同时产生一定的负荷阻力使车辆减速制动;当车辆再次启动或加速时,再生系统又将储存在储能器中的能量转化为车辆行驶时需要的动能(驱动力)。
图1-1 能量再生系统原理简图在纯电动车或混合动力电动汽车上,只有驱动轴上的制动能量可以沿着与之相连接的驱动系统传送至储能装置,另一部分的制动能量将由非驱动轴上车轮通过摩擦制动而以热的形式散失掉。
即使是驱动轴上的制动能量也不能够被完全回收,进行制动能量回收时还受到很多因素的限制,例如电池充电功率的限制,回收功率不能超过电池当前的最大充电功率;电机发电能力的限制,电机制动产生的最大制动转矩不能超过当时转速和功率下电机发电能力,车速较高时电机再生制动扭矩就不能满足大强度制动要求;驱动系布置结构的限制,若电机位置在变速器前,汽车换挡时,从车轮到电机的动力传递被切断,电机不能进行再生制动。
2 国内外研究现状2.1 国外研究现状国外对混合动力汽车再生制动的研究已经开展了几十年,研究领域主要集中在以下几个方面:(1) 再生制动过程中整车制动综合建模与仿真;(2) 制动能量分配和再生制动、摩擦制动与ABS 的综合协调控制;(3) 再生制动过程中储能系统、电机/发电机和CVT 的性能及控制方法。
国外对再生制动领域的研究已具有了一定的基础,20 世纪90 年代全球掀起混合动力汽车研究热潮以后,国外在混合动力汽车再生制动系统的研究上取得了比较快的进展。
特别是各大汽车公司,已经在量产的混合动力汽车上普遍采用该系统,大大提高了整车的能量利用效率,降低了整车油耗,延长了整车续驶里程。
2.2 国内研究现状我国对于混合动力电动汽车的研究起步比较晚,对再生制动这一混合动力汽车所具有的重要节能功能的研究也显得比较薄弱,国内目前对混合动力汽车的再生制动的研究,在以下方面还有待深入研究:(1) 再生制动能量管理和控制策略;(2) 再生制动系统建模和车辆制动动力学建模;(3) 基于整车综合制动动力学仿真的综合优化;(4) 再生制动系统的实验模拟、匹配控制和综合评价。
592022/07·汽车维修与保养◆文/山东 房宏威 贾燕红 李臣华 胡克晓北京现代新能源汽车再生制动技术解析当前,新能源汽车发展迅猛,在其诸多先进技术中,再生制动相关技术也不断取得突破。
本文对北京现代汽车当前先进的AHB主动油压控制系统的工作原理进行分析,对其相关重要部件进行了介绍,详细总结了AHB系统的维护保养过程。
一、再生制动简介再生制动表示制动能量回收或反馈制动,指纯电动汽车或混合动力汽车在制动或减速时,使用牵引电机把动能转变成电能,以此给高压蓄电池充电。
通过动能到电能的转换,使得新能源汽车能量损失最小化,增加续航里程。
并且在经常需要二、AHB系统组成当前,各大车企对于制动能量回收的相关技术,不断取得突破。
北京现代汽车有限公司旗下的第九代索纳塔、领动混动等部分车型采用主动油压控制系统,又称“AHB”,其技术非常先进。
下面,我们对该技术做一下深度解析。
北京现代的AHB系统主要由制动踏板、2个制动踏板行程传感器、组合制动启动模块(又称iBAU)、2个横摆加速度传感器、压力源模块(又称PSU)、4个轮速传感器、制动钳和制动盘等组成。
如图4所示,系统总质量7.9kg,位置还是在发动机舱左后方,其将液压制动、再生制动和ESC功能集成在一起。
PSU模块由低压蓄电池供电,能产生180bar(1bar=100kPa)的高压制动力,并能在储能器进行存储。
iBAU模块集压力控制、踏板感觉模拟器、再生制动控制及制动时车辆具有的ABS、TCS、ESC或AVH等功能于一体,结构简单,性能稳定可靠。
1.iBAU模块iBAU位于汽车驾驶席座椅前方,在发动机前舱内。
它主要由ECU、电磁阀、停车的城市道路上行驶时,燃油效率特别高。
图1、图2展示了纯电动汽车和混合动力汽车在制动过程中的能量流动示意图。
再生制动的能量取决于车速和蓄电池的电量。
如图3所示,制动过程中,驾驶员的需求由液压制动和再生制动两部分组成。
车辆从行驶到停止可以分为五个阶段。
简述再生制动的基本原理再生制动是一种利用动力系统的能量来增加车辆制动效果的技术。
它通过回收制动能量并将其转化为电能储存起来,以供以后使用。
再生制动的基本原理是将制动过程中产生的动能转化为电能,以减少能源浪费和环境污染。
再生制动的实现主要依靠电动机和电池。
在制动过程中,当车辆需要减速或停车时,驾驶员踩下制动踏板,制动系统开始工作。
传统的制动系统通过摩擦来减速,将车辆的动能转化为热能散失。
而再生制动系统则将这部分动能转化为电能。
具体来说,当制动踏板被踩下时,车辆的动力系统会将电动机切换为发电机模式。
发电机会利用车辆的动能产生电流,这些电流会被传输到电池中进行储存。
电池可以将这些电能储存起来,以供之后的行驶过程中使用。
同时,电池也可以为车辆的其他电气设备提供电能。
再生制动系统的优点之一是节约能源。
传统的制动系统通过摩擦来减速,会导致能量的大量浪费。
而再生制动系统可以将这些浪费的能量回收利用,减少能源的浪费和对环境的影响。
再生制动系统的另一个优点是提高了制动效果。
由于再生制动可以实时地将动能转化为电能,因此它可以提供更快、更灵敏的制动响应,提高了车辆的制动效果和安全性。
再生制动系统的应用范围广泛。
目前,许多电动汽车和混合动力汽车都采用了再生制动系统。
这些车辆的电动机可以通过回收制动能量来延长续航里程,提高能源利用率。
同时,再生制动系统也可以用于其他类型的车辆,如公交车、电动自行车等。
再生制动系统的应用可以减少对传统燃料的依赖,降低运营成本,对环境友好。
然而,再生制动系统也存在一些挑战。
首先,再生制动系统的效率受到车辆行驶速度和状态的影响。
在低速行驶或停车状态下,再生制动系统的效果会受到限制。
其次,再生制动系统需要配备高效的电池储能装置,以便储存和释放大量的电能。
电池技术的发展将对再生制动系统的性能和成本产生重要影响。
此外,再生制动系统的设计和安装也需要考虑到车辆的结构和动力系统的特点,以确保其正常运行和安全性。
电动汽车的再生制动能量回收系统的组成
电动汽车的再生制动能量回收系统通常由以下组成部分构成:
1. 发电机/发电机:这是再生制动系统的核心组成部分。
它通常安装在车轮附近,通过车轮的运动来驱动发电机/发电机工作。
2. 能量转换装置:这是将机械能转化为电能的装置。
它利用发电机/发电机产生的机械能,并将其转换为电能,储存在电池或超级电容器中。
3. 电池/超级电容器:这是能量存储装置,用于储存再生制动系统产生的电能。
电池通常用于长期储存,而超级电容器则更适合短期储存,能够快速充电和放电。
4. 控制器:这是控制再生制动系统的电子设备。
它负责监测车轮的运动状态,并根据需要实时控制发电机/发电机的输出功率。
它还负责将发电机产生的电能供给电池/超级电容器,并将其转化为适合电动汽车使用的电压和电流。
5. 制动力管理系统:这是负责管理再生制动系统与传统制动系统之间的切换和协调的系统。
它可以根据驾驶员的需求和道路条件,自动调整再生制动和传统制动之间的分配比例,以实现最佳的能量回收和制动性能。
需要注意的是,不同的电动汽车制造商可能会采用略有不同的再生制动能量回收系统配置。
此外,未来还可能出现更加先进
的技术和组件来提高再生制动效率,并进一步提升电动汽车的能源利用率。