Constant
f(tk,tl) < tf(k,l)
Decreasing
f(tk,tl) > tf(k,l)
Increasing
35
注意
• 函数在某个投入水平上显示规模报酬不变 ,在其他投入水平上显示规模报酬递增( 递减),在理论上是可行的。
• 经济学家谈及某一生产函数的规模报酬时 ,隐含地只考虑投入使用量的小范围变化 及随之相关的产出水平
11
例题:一个两种投入的生产函数
• Suppose the production function for flyswatters can be represented by
q = f(k,l) = 600k 2l2 - k 3l3
• To construct MPl and APl, we must assume a value for k
• 直观地看,fkl = flk 为正是合乎情理的
• 比如:若工人拥有更多的机器设备,他们 的生产会更富效率。
• 但是也有一些生产函数,在某种要素的使 用达到一定数量后,继续投入该要素,会 有fkl < 0 ,降低另一种要素的使用效率。
28
• 当我们假定RTS递减时,我们假定边际 生产力MPl 或 MPk递减的足够快,能够 抵消掉负的交叉生产力效果。
25
• 为证明RTS递减(等产量线是凸性的), 需证明d(RTS)/dl < 0
• Since RTS = fl/fk
dRTS d(fl / fk )
dl
dl
dRTS dl
[fk
(fll
flk
dk
/
dl) fl (fkl (fk )2
fkk