当前位置:文档之家› 传感器实验指南

传感器实验指南

传感器实验指南
传感器实验指南

1

实验一 金属箔式应变片——单臂电桥性能实验

一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:

εK R R =?/

式中R R /?为电阻丝电阻的相对变化,K 为应变灵敏系数,l l /?=ε为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位的受力状态变化,电桥的作用是完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。单臂电桥输出电压U

O14/εEK =

三、需用器件与单元:应变式传感器实验模块、应变式传感器、砝码、数显表、±15V 电源、±4V 电源、万用表(自备)。

四、实验步骤:

1、根据图1-1应变式传感器已装于应变传感器模块上。传感器中各应变片已接入模块的左上方的R 1

、R 2、R 3、R 4。加热丝也接于模块上,可用万用表进行测量判别,R 1= R 2= R 3= R 4=350Ω,加热丝阻值为50Ω左右。

2、接入模块电源±15V (从主控箱引入),检查无误后,合上主控箱电源开关,将实验模块调节增益电位器Rw 3顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上的数显表电压输入端Vi 相连,调节实验模块上调零电位器Rw 4,使数显表显示为零(数显表的切换开关打到2V 档)。关闭主控箱电源。

图1-1 应变式传感器安装示意图

2 3、将应变式传感器的其中一个应变片R 1(即模块左上方的R 1)接入电桥作为一个桥臂与R 5、R 6、R 7接成直流电桥(R 5、R 6、R 7模块内已连接好),接好电桥调零电位器Rw 1,接上桥路电源±4V (从主控箱引入)如图1-2所示。检查接线无误后,合上主控箱电源开关。调节Rw 1,使数显表显示为零。

4、在电子秤上放置一只砝码,读取数显表数值,依次增加砝码和读取相应的数显表值,直到500g (或200g )砝码加完。记下实验结果填入表1-1,关闭电源。

表1-1 单臂电桥输出电压与加负载重量值

5、根据表1-1计算系统灵敏度S ,S=W u ??/(u ?输出电压变化量;W ?重量变

化量)计算线性误差:δf1=y m /? F ?S ×100%,式中m ?为输出值(多次测量时为平均值)与拟合直线的最大偏差:y F ?S 满量程输出平均值,此处为500g 或200g 。

五、思考题:

单臂电桥时,作为桥臂电阻应变片应选用:(1)正(受拉)应变片(2)负(受压)应变片(3)正、负应变片均可。

图1-2 应变式传感器单臂电桥实验接线图

3

实验二 金属箔式应变片——半桥性能实验

一、实验目的:比较半桥与单臂电桥的不同性能,了解其特点。

二、基本原理:不同受力方向的两片应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当两片应变片阻值和应变量相同时,其桥路输出电压Uo 2=2/εEK 。

三、需要器件与单元:同实验一。 四、实验步骤:

1、传感器安装同实验一。做实验(一)2的步骤,实验模块差动放大器调零。

2、根据图1-3接线。R 1、R 2为实验模块左上方的应变片,注意R 2应和R 1受力状态相反,即将传感器中两片受力相反(一片受拉、一片受压)的电阻应变片作为电桥的相邻边。接入桥路电源±4V ,调节电桥调零电位器Rw 1进行桥路调零,实验步骤

3、4同实验一中

4、5的步骤,将实验数据记入表1-2,计算灵敏度S=W u ??/,非线性误差δf2。若实验时无数值显示说明R 2与R 1为相同受力状态应变片,应更换另一个应变片。

接主控箱电源输出

接主控箱电源输出 接数显表

V i 地

图1-3 应变式传感器半桥实验接线图

4 表1-2 半桥测量时,输出电压与加负载重量值

五、思考题:

1、半桥测量时两片不同受力状态的电阻应变片接入电桥时,应放在:(1)对边

(2)邻边。

2、桥路(差动电桥)测量时存在非线性误差,是因为:(1)电桥测量原理上存在非线性(2)应变片应变效应是非线性的(3)调零值不是真正为零。

实验三金属箔式应变片——全桥性能实验

一、实验目的:了解全桥测量电路的优点。

二、基本原理:全桥测量电路中,将受力性质相同的两应变片接入电桥对边,不同的接入邻边,当应变片初始阻值:R1= R2= R3= R4,其变化值ΔR1=ΔR2=ΔR3=ΔR4时,其桥路输出电压U o3=

KE。其输出灵敏度比半桥又提高了一倍,非线性误差和温度误差均得到改善。

三、需用器件和单元:同实验一。

四、实验步骤:

1、传感器安装同实验一。

2、根据图1-4接线,实验方法与实验二相同。将实验结果填入表1-3;进行灵敏度和非线性误差计算。

表1-3全桥输出电压与加负载重量值

5

五、思考题:

1、全桥测量中,当两组对边(R1、R3为对边)电阻值R相同时,即R1= R3,R2= R4,而R1≠R2时,是否可以组成全桥:(1)可以(2)不可以。

2、某工程技术人员在进行材料拉力测试时在棒材上贴了两组应变片,如何利用这四片电阻应变片组成电桥,是否需要外加电阻?

图1-5 应变式传感器受拉时传感器圆周面展开图

图1-4

6 实验四 金属箔式应变片单臂、半桥、全桥性能比较

一、实验目的:比较单臂、半桥、全桥输出时的灵敏度和非线性度,得出相应的结论。

二、实验步骤:根据实验一、二、三所得的单臂、半桥和全桥输出时的灵敏度和非线性度,从理论上进行分析比较。阐述理由(注意:实验一、二、三中的放大器增益必须相同)。

实验五 金属箔式应变片的温度影响实验

一、实验目的:了解温度对应变片测试系统的影响。

二、基本原理:电阻应变片的温度影响,主要来自两个方面。敏感栅丝的温度系数,应变栅线膨胀系数与弹性体(或被测试件)的线膨胀系数不一致会产生附加应变。因此当温度变化时,在被测体受力状态不变时,输出会有变化。

三、需用器件与单元:应变传感器实验模块、数显表单元、直流源、加热器(已贴在应变片底部)

四、实验步骤:

1、保持实验三实验结果。

2、将200g 砝码加于砝码盘上,在数显表上读取某一整数U o1。

3、将5V 直流稳压电源(主控箱)接于实验模块的加热器插孔上,数分钟后待数显表电压显示基本稳定后,记下读数U ot ,U ot –U o1即为温度变化的影响。计算这一温度变化产生的相对误差%1001

?-=

ot

o ot U U U δ。 五、思考题:

1、金属箔式应变片温度影响有哪些消除方法?

2、应变式传感器可否用于测量温度?

7

实验六 直流全桥的应用——电子秤实验

一、实验目的:了解应变片直流全桥的应用及电路的标定。

二、基本原理:电子秤实验原理为实验三全桥测量原理,通过对电路调节使电路输出的电压值为重量对应值,电压量纲(V )改为重量量纲(g )即成为一台原始电子秤。

三、需用器件与单元:应变式传感器实验模块、应变式传感器、砝码、±15V 电源、±4V 电源。

四、实验步骤:

1、按实验一中2的步骤将差动放大器调零:按图1-4全桥接线,合上主控箱电源开关调节电桥平衡电位器Rw 1,使数显表显示0.00V 。

2、将10只砝码全部置于传感器的托盘上,调节电位器Rw 3(增益即满量程调节),使数显表显示为0.200V (2V 档测量)或-0.200V 。

3、拿去托盘上的所有砝码,调节电位器Rw 4

(零位调节),使数显表显示为0.000V 或-0.000V 。

4、重复2、3步骤的标定过程,一直到精确为止,把电压量纲V 改为重量量纲g ,就可称重,成为一台原始的电子秤。

5、把砝码依次放在托盘上,填入下表:

6、根据上表计算误差与非线性误差。

实验七 交流全桥的应用——振动测量实验

一、实验目的:了解利用交流电桥测量动态应变参数的原理与方法。

二、基本原理:对于交流应变信号用交流电桥测量时,桥路输出的波形为一调制波,不能直接显示其应变值,只有通过移相检波和滤波电路后才能得到变化的应变信号,此信号可以从示波器读得。

三、需用器件与单元:音频振荡器、低频振荡器、万用表(自备)、应变式传感

器实验模块、相敏检波器模块、振动源模块和应变输出双线示波器(自备)。

四、实验步骤:

1、模块上的传感器不用,改为振动模块振动梁上的应变片(即模块上的应变输出)。

2、按振动台模块上的应变片顺序,用连接线插入应变传感器实验模块上。组成全桥。接线时应注意连接线上每个插头的意义,对角线的阻值为350Ω左右,若二组对角线阻值均为350Ω,则接法正确。

3、根据图1-6,接好交流电桥调平衡电路及系统,R8、Rw1、C、Rw2为交流电桥调平衡网络。检查接线无误后,合上主控箱电源开关,将音频振荡器的频率调节到5KHz左右,幅度调节到10V p-p。(频率可用数显表F in监测,幅度可用示波器监测)。将示波器接入相敏检波的输出端,观察示波器的波形,顺时针调节Rw3到最大,调节Rw1、Rw2、Rw4,使示波器显示的波形无高低且最小(示波器的Y轴为0.1V/div,X 轴为0.2ms/div),用手按下振动圆盘(且按住不放),调节移相器与相敏检波器的旋钮,使示波器显示的波形有检波趋向。

4、将低频振荡器输出接入振动模块低频输入插孔,调节低频振荡器输出幅度和频率使振动台(圆盘)明显振动。

5、调节示波器Y轴为50mv/div、X轴为20ms/div,用示波器观察差动放大器输出端(调幅波)和相敏检波器输出端(解调波)及低通滤波器输出端(包络线波形——传感器信号)波形,调节实验电路中各电位器旋钮,用示波器观察各环节波形,体会电路中各电位器的作用。调节电位器使各波形接近理论波形,并使低通滤波器输出波形不失真,并且峰-峰值最大。

6、固定低频振荡器幅度旋钮位置不变,低频输出端接入数显单元的F in,把数显表的切换开关打到频率档监测低频频率。调节低频输出频率,用示波器读出低通滤波器输出V O的电压峰-峰值,填入表1-5。

8

9

表1-5

从实验数据得振动梁的自振频率为 Hz 。

接主控箱

电源输出

示波器

接音频振荡器

接主控箱电源输出

图1-6 应变片振动测量实验接线图

10 五、思考题:

1、在交流电桥测量中,对音频振荡器频率和被测梁振动频率之间有什么要求?

2、请归纳直流电桥和交流电桥的特点。

3、移相器的电路原理,如图1-7,试分析其工作原理。

4、相敏检波器的电路原理如图1-8,试分析其工作原理。

小 结:

电阻应变式传感器从1938年开始使用到目前,仍然是当前称重测力的主要工具,电阻应变式传感器最高精度可达万分之一甚至更高,除电阻应变片、丝直接以测量机械、仪器及工程结构等的应变外,主要是与种种形式的弹性体相配合,组成各种传感器和测试系统。如称重、压力、扭矩、位移、加速度等传感器,常见的应用场合如各

图1-7 移相器的电路原理图

(3)

图1-8 相敏检波器的电路原理图

11

种商用电子秤、皮带秤、吊钩秤、高炉配料系统、汽车衡、轨道衡等。

实验八 压阻式压力传感器的压力测量实验

一、实验目的:了解扩散硅压阻式压力传感器测量压力的原理和方法。 二、基本原理:扩散硅压阻式压力传感器在单晶硅的基片上扩散出P 型或N 型电阻条,接成电桥。在压力作用下根据半导体的压阻效应,基片产生应力,电阻条的电阻率产生很大变化,引起电阻的变化,我们把这一变化引入测量电路,其输出电压的变化反映了所受到的压力变化。

三、需用器件与单元:压力源(已在主控箱)、压力表、压阻式压力传感器、压力传感器实验模块、流量计、三通连接导管、数显单元、直流稳压源±4V 、±15V 。

四、实验步骤:

1、根据图2-1连接管路和电路,主控箱内的气源部分,压缩泵、贮气箱、流量计

已接好。将硬管一端插入主控板上的气源快速插座中(注意管子拉出时请用手按住气源插座边缘往内压,则硬管可轻松拉出)。另一端软导管与压力传感器接通。这里选用的差压传感器两只气咀中,一只为高压咀,另一只为低压咀。本实验模块连接见图2-2,压力传感器有4端:3端接+2V 电源,1端接地线,2端为U o +,4端为U o - 。1

图2-1 压阻式压力传感器测量系统

12 2、3、4端顺序排列见图2-2。端接线颜色通过观察传感器引脚号码判别。

2、实验模块上Rw 2用于调节零位,Rw 1可调节放大倍数,按图2-2接线,模块的放大器输出V o2

引到主控箱数显表的V i 插座。将显示选择开关拨到20V 档,反复调节Rw 2(Rw 1旋到满度的1/3)使数显表显示为零。

3、先松开流量计下端进气口调气阀的旋钮,开通流量计。

4、合上主控箱上的气源开关,启动压缩泵,此时可看到流量计中的滚珠浮子向

上浮起悬于玻璃管中。

5、逐步关小流量计旋钮,使标准压力表指示某一刻度。

6、仔细地逐步由小到大调节流量计旋钮,使在5~20KP 之间每上升1KP 分别读取压力表读数,记下相应的数显表值列于表2-1。

表2-1 压力传感器输出电压与输入压力值

7、计算本系统的灵敏度和非线性误差。

8、如果本实验装置要成为一个压力计,则必须对电路进行标定,方法如下:输

入10KPa 气压,调节Rw 2(低限调节)使数显表显示1.00V ,当输入20KPa 气压,调节Rw 1(高限调节)使数显表显示2.00V ,这个过程反复调节直到足够的精度即可。

五、思考题:

利用本系统如何进行真空度测量?

接主控箱电源输出

V i

接主控箱数显表

图2-2 压力传感器压力实验接线图

实验九扩散硅压阻式压力传感器差压测量*

一、实验目的:了解利用压阻式压力传感器进行差压测量的方法。

二、基本原理:压阻式压力传感器的硅膜片受到两个压力P1和P2作用时,由于它们对膜片产生的应力正好相反,因此作用在压力膜片上是ΔP= P1-P2,从而可以进行差压测量。

三、需用器件与单元:实验八所用器件和单元、压力气囊。

四、实验步骤:

请学生自拟一个差压测量的方法。

实验十差动变压器的性能实验

一、实验目的:了解差动变压器的工作原理和特性。

二、基本原理:差动变压器由一只初级线圈和两只次级线圈及一个铁芯组成,根据内外层排列不同,有二段式和三段式,本实验采用三段式结构。当传感器随着被测体移动时,由于初级线圈和次级线圈之间的互感发生变化,促使次级线圈感应电势产生变化,一只次级感应电势增加,另一只感应电势则减少,将两只次级线圈反向串接(同名端连接),就引出差动输出。其输出电势反映出被测体的移动量。

三、需用器件与单元:差动变压器实验模块、测微头、双线示波器、差动变压器、音频信号源(音频振荡器)、直流电源、万用表。

四、实验步骤:

1、根据图3-1,将差动变压器装在差动变压器实验模块上。

2、在模块上按照图3-2接线,音频振荡器信号必须从主控箱中的L V端子输出,调节音频振荡器的频率,输出频率为4~5KHz(可用主控箱的数显表的频率档F in输入来监测)。调节幅度使输出幅度为峰-峰值V p-p=2V(可用示波器监测:X轴为0.2ms/div、Y轴CH1为1V/div、CH2为20mv/div)。判别初次级线圈及次级线圈同名端方法如下:设任一线圈为初级线圈,并设另外两个线圈的任一端为同名端,按图3-2接线。当铁芯左、右移动时,观察示波器中显示的初级线圈波形,次级线圈波形,当次级波形输出幅值变化很大,基本上能过零点,而且相位与初级线圈波形(L V音频信号V p-p=2V

13

14 波形)比较能同相和反相变化,说明已连接的初、次级线圈及同名端是正确的,否则继续改变连接再判断直到正确为止。图中(1)、(2)、(3)、(4)为模块中的实验插孔。)

3、旋动测微头,使示波器第二通道显示的波形峰-峰值V p-p 为最小。这时可以左右位移,假设其中一个方向为正位移,则另一个方向位移为负。从V p-p 最小开始旋动测微头,每隔0.2mm 从示波器上读出输出电压V p-p 值填入表3-1。再从V p-p 最小处反向位移做实验,在实验过程中,注意左、右位移时,初、次级波形的相位关系。

表3-1 差动变压器位移ΔX 值与输出电压V p-p 数据表

4、实验过程中注意差动变压器输出的最小值即为差动变压器的零点残余电压大小。根据表3-1画出V op-p -X 曲线,作出量程为±1mm 、±3mm 灵敏度和非线性误差。

接第一通道示波器 接

第二通道示波器

插座管脚编号

图3-2 双线示波器与差动变压器连接示意图

图3-1 差动变压器电容传感器安装示意图

15

五、思考题:

1、用差动变压器测量较高频率的振幅,例如1KHz 的振动幅值,可以吗?差动变压器测量频率的上限受什么影响?

2、试分析差动变压器与一般电源变压器的异同。

实验十一 激励频率对差动变压器特性的影响实验

一、实验目的:了解初级线圈激励频率对差动变压器输出性能的影响。 二、基本原理:差动变压器输出电压的有效值可以近似用关系式:

22

221)(p

p

i

O L

R U M M U ωω+-=

表示,式中L P 、R P 为初级线圈电感和损耗电阻,U i 、ω为激励电

压和频率,M 1、M 2为初级与两次级间互感系数,由关系式可以看出,当初级线圈激

励频率太低时,若222

P P L R ω>>,则输出电压U o 受频率变动影响较大,且灵敏度较低,只有当2

22P P R L >>ω时输出U o 与ω无关,当然ω过高会使线圈寄生电容增大,对性能

稳定不利。

三、需用器件与单元:与实验十相同。 四、实验步骤:

1、差动变压器安装同实验十。接线图同实验十。

2、选择音频信号输出频率为1KHz 从L V 输出。(可用主控箱的数显表频率档显示频率)移动铁芯至中间位置即输出信号最小时的位置,调节Rw 1、Rw 2使输出变得更小。

3、旋动测微头,每间隔0.2mm 在示波器上读取一个V p-p 数据。

4、分别改变激励频率为3KHz 、5KHz 、7KHz 、9KHz ,重复实验步骤1、2将测试结果记入表3-2。

16

图3-3 零点残余电压补偿电路

表3-2 不同激励频率时输出电压(峰-峰值)与位移X的关系。

作出每一频率时的V-X曲线,并计算其灵敏度S i,作出灵敏度与激励频率的关系曲线。

实验十二差动变压器零点残余电压补偿实验

一、实验目的:了解差动变压器零点残余电压补偿方法。

二、基本原理:由于差动变压器两只次级线圈的等效参数不对称,初级线圈的纵向排列的不均匀性,二次级的不均匀、不一致,铁芯B-H特性的非线性等,因此在铁芯处于差动线圈中间位置时其输出电压并不为零。称其为零点残余电压。

三、需用器件与单元:音频振荡器、测微头、差动变压器、差动变压器实验模块、示波器。

四、实验步骤:

1、按图3-3接线,音频信号源从L V插口输出,实验模块R1、C1、Rw1、Rw2为电桥单元中调平衡网络。

17

2、用示波器调整音频振荡器输出为2V 峰-峰值。

3、调整测微头,使差动放大器输出电压最小。

4、依次调整Rw 1、Rw 2,使输出电压降至最小。

5、将第二通道的灵敏度提高,观察零点残余电压的波形,注意与激励电压比较。

6、从示波器上观察,差动变压器的零点残余电压值(峰-峰值)。(注:这时的零点残余电压经放大后的零点残余电压=V 零点P-P /K ,K 为放大倍数)

五、思考题:

1、请分析经过补偿后的零点残余电压波形。

2、本实验也可用图3-4所示线路,请分析原理。

实验十三 差动变压器的应用——振动测量实验

一、实验目的:了解差动变压器测量振动的方法。

二、基本原理:利用差动变压器测量动态参数与测位移量的原理相同。 三、需用器件与单元:音频振荡器、差动变压器模块、移相器/相敏检波器/低通滤波器模块、数显单元、低频振荡器、示波器、直流稳压电源、振动源模块。

四、实验步骤:

1、将差动变压器按图3-5,安装在振动源模块的振动源上。

图3-4 零点残余电压补偿电路之二

18 2、按图3-6接线,并调整好有关部分。调整如下:(1)检查接线无误后,合上主控台电源开关,用示波器观察L V 峰-峰值,调整音频振荡器幅度旋钮使V op-p =2V 。(2)利用示波器观察相敏检波器输出,调整传感器连接支架高度,使示波器显示的波形幅值为最小。(3)仔细调节Rw 1和Rw 2使示波器(相敏检波输出)显示的波形幅值更小,基本为零点。(4)用手按住振动平台(让传感器产生一个大位移)仔细调节移相器和相敏检波器的旋钮,使示波器显示的波形为一个接近全波整流波形。(5)松手,整流波形消失,变为一条接近零点线(否则再调节Rw 1和Rw 2)。低频振荡器输出引入振动源的低频输入,调节低频振荡器幅度旋钮和频率旋钮,使振动台振荡较为明显。用示波器观察放大器V o 、相敏检波器的V o 及低通滤波器的V o 波形。

3、保持低频振荡器的幅度不变,改变振荡频率用示波器观察低通滤波器的输出,读出峰-峰电压值,记下实验数据,填入下表3-3(频率与输出电压V p-p 的监测方法与实验十相同)。

差动变压器实验模块

图3-6 差动变压器振动测量实验接线图

图3-5 差动变压器振动测量安装示意图

19

表3-3

4、根据实验结果作出梁的f —V p-p 特性曲线,指出自振频率的大致值,并与用应变片测出的结果相比较。

5、保持低频振荡器频率不变,改变振荡幅度,同样实验,可得到振幅—V p-p 曲线(定性)。

注意事项:低频振荡器电压幅值不要过大,以免梁在自振频率附近振幅过大。 五、思考题:

1、如果用直流电压表来读数,需增加哪些测量单元,测量线路该如何?

2、利用差动变压器测量振动,在应用上有些什么限制?

实验十四 电容式传感器的位移特性实验

一、实验目的:了解电容式传感器结构及其特点。

二、基本原理:利用平板电容d A C /ε=和其他结构的关系式通过相应的结构和测量电路可以选择ε、A 、d 三个参数中,保持两个参数不变,而只改变其中一个参数,则可以有测谷物干燥度(ε变)、测微小位移(d 变)和测量也为(A 变)等多种电容传感器。

三、需用器件与单元:电容传感器、电容传感器实验模块、测微头、相敏检波、滤波模块、数显单元、直流稳压源。

四、实验步骤:

1、按图3-1安装示意图将电容传感器装于电容传感器实验模块上。

2、将电容传感器连线插入电容传感器实验模块,实验线路见图4-1。

3、将电容传感器实验模块的输出端V o1与数显表单元V i 相接(插入主控箱V i 孔),Rw 调节到中间位置。

20 4、接入±15V 电源,旋动测微头推进电容传感器动极板位置,每隔0.2mm 记下位移X 与输出电压值,填入表4-1。

表4-1 电容传感器位移与输出电压值

5、根据表4-1数据计算电容传感器的系统灵敏度S 和非线性误差δf 。 五、思考题:

试设计利用ε的变化测谷物湿度的传感器原理及结构。能否叙述一下在设计中应考虑哪些因素?

实验十五 电容传感器动态特性实验

一、实验目的:了解电容传感器的动态性能的测量原理和方法。

二、基本原理:利用电容传感器动态响应好,可以非接触测量等特点,进行动态位移测量。

三、需用器件与单元:电容传感器、电容传感器实验模块、低通滤波器模块、数显单元、直流稳压电源、双线示波器、振动源模块。

四、实验步骤:

1、传感器安装图同实验十三图3-5,按图4-1接线。实验模块输出端V o1接滤波器输入端,滤波器输出端V o 接示波器一个通道(示波器X 轴为20ms/div 、Y 轴视输出大小而变)。调节传感器连接支架高度,使V o1输出在零点附近。

接主控箱电源输出

接主控箱数显表

V i

图4-1 电容传感器位移实验接线图

最新传感器原理与应用实验指导书

传感器原理与应用实 验指导书

实验一压力测量实验 实验目的: 1.了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 2.比较半桥与单臂电桥的不同性能,了解其特点,了解全桥测量电路的优点。 3.了解应变片直流全桥的应用及电路标定。 二、基本原理: 1.电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: ΔR/R=Kε 式中ΔR/R为电阻丝的电阻相对变化值,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化。金属箔式应变片是通过光刻、腐蚀等工艺制成的应变敏感元件,用它来转换被测部位的受力大小及状态,通过电桥原理完成电阻到电压的比例变化,对单臂电桥而言,电桥输出电压,U01=EKε/4。(E为供桥电压)。 2.不同受力方向的两片应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改善。当两片应变片阻值和应变量相同时,其桥路输出电压 U02=EK/ε2,比单臂电桥灵敏度提高一倍。 3.全桥测量电路中,将受力状态相同的两片应变片接入电桥对边,不同的接入邻边,应变片初始阻值是R1= R2= R3=R4,当其变化值ΔR1=ΔR2=ΔR3=ΔR4

时,桥路输出电压U03=KEε,比半桥灵敏度又提高了一倍,非线性误差进一步得到改善。 4. 电子秤实验原理为实验三的全桥测量原理,通过对电路调节使电路输出的电压值为重量对应值,将电压量纲(V)改为重量量纲(g)即成为一台原始电子秤。 三、实验所需部件:应变式传感器实验模板、应变式传感器、砝码(每只约20g)、数显表、±15V电源、±4V电源、万用表(自备)、自备测试物。 四、实验步骤: 1、根据图(1-1),应变式传感器已装于应变传感器模板上。传感器中各应变片已接入模板左上方的R1、R 2、R 3、R4标志端。加热丝也接于模板上,可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值约为50Ω左右。 2、实验模板差动放大器调零,方法为:①接入模板电源±15V(从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板增益调节电位器Rw3顺时针调节到大致中间位置,②将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi相连,调节实验模板上调零电位器RW4,使数显表显示为零(数显表的切换开关打到2V档),完毕关闭主控箱电源。 3、参考图(1-2)接入传感器,将应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂,它与R5、R6、R7接成直流电桥(R5、 R6、R7在模块内已连接好),接好电桥调零电位器Rw1,接上桥路电源±4V(从主控箱引入),检查接线无误后,合上主控箱电源开关,先粗调节Rw1,再细调RW4使数显表显示为零。

传感器实验指导书(实际版).

实验一 金属箔式应变片性能实验 (一)金属箔式应变片——单臂电桥性能实验 一、实验目的:了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、基本原理:电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为: εK R R =? 式中R R ?为电阻丝电阻相对变化, K 为应变灵敏系数, l l ?=ε为电阻丝长度相对变化, 金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受 力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。对单臂电桥输出电压4 1ε EK U O =。 三、需用器件与单元:应变式传感器实验模板、应变式传感器、砝码、数显表、士15V 电源、土4V 电源、万用表(自备)。 四、实验步骤: 1.应变式传感器已装于应变传感器模板上。传感器中各应变片已接入模板的左上方的1R 、2R 、3R 、4R 。加热丝也接于模板上,可用万用表进行测量判别, Ω====3504321R R R R ,加热丝阻值为Ω50左右。 2.接入模板电源上15V (从主控箱引入),检查无误后,合上主控箱电源开关,将实验模板调节增益电位器3W R 顺时针调节大致到中间位置,再进行差动放大器调零,方法为将差放的正、负输入端与地短接,输出端与主控箱面板上数显表电压输入端i V 相连,调节实验模板上调零电位器4W R ,使数显表显示为零(数显表的切换开关打到2V 档)。关闭主控箱电源。 3.将应变式传感器的其中一个应变片1R (模板左上方的1R )接入电桥作为一个桥臂与5R 、6R 、7R 接成直流电桥(5R 、6R 、7R 模块内已连接好) ,接好电桥调零电位器4W R ,接上桥路电源上4V (从主控箱引入)如图1—2所示。检查接线无误后,合上主控箱电源

PH值传感器

pH 值传感器 (型号:PH-BTA或PH-DIN) 所有传统的pH 计的实验或示范都可以用我们的pH 值传感器。使用此传感器更 可以自动采集数据、作图表、数据分析等功能。它的典型应用是:研究家庭常见的 酸和碱、酸碱滴定、在化学反应、水族箱内光合作用过程中监测pH 的变化、研究 酸雨和缓冲液、河流和湖的水质分析等。 威尼尔(Vernier) 有多本实验手册都有各种使用pH 值传感器的实验。 化学使用威尼尔 水质使用威尼尔 生物使用威尼尔 物理科学威尼尔 初中科学使用威尼尔 科学使用掌上电脑 高级化学使用威尼尔 用pH 值传感器采集数据 以下是使用pH 值传感器的一般操作流程: 数据采集软件 此传感器可以与一个界面以及以下的数据采集软件一起使用。 ?Logger Pro 3 这个计算机程序可配合LabQuest、LabPro、或威尼尔动手做!连接使用。?Logger Pro 2 这个计算机程序可配合ULI 或Serial Box Interface 使用。 ?Logger Lite 这个计算机程序可配合LabQuest、LabPro、或威尼尔动手做!连接使用。?LabQuest App 这个程序是当单独使用LabQuest 时配合使用的。 ?EasyData App 这个TI-83+ 和TI-84+ 计算器应用可配合CBL 2、LabPro、和威尼尔EasyLink 一起使用。我们建议使用2.0 或更新的版本,您可以从威尼尔的网站, https://www.doczj.com/doc/924936321.html,/easy/easydata.html,下载,然后转移到计算器上。查看威尼尔的网站,https://www.doczj.com/doc/924936321.html,/calc/software/index.html,可得到更多有关应用与程序转移指南的信息。?DataMate 程序采用DataMate 配合LabPro 或CBL 2 与以下计算器使用:TI-73、TI-83、TI-86、TI-89、和Voyage 200。在LabPro 和CBL 2 的使用说明书中可看到将程序转移到计算器的指示。 1如果你是配合ULI 或SBI 使用Logger Pro 2,pH 值传感器是不能自动识别的。在探头与传感器文件夹中打开一个pH 值传感器的实验文件。

现代传感器检测技术实验-实验指导书doc

现代(传感器)检测技术实验 实验指导书 目录 1、THSRZ-2型传感器系统综合实验装置简介 2、实验一金属箔式应变片——电子秤实验 3、实验二交流全桥振幅测量实验 4、实验三霍尔传感器转速测量实验 5、实验四光电传感器转速测量实验 6、实验五 E型热电偶测温实验 7、实验六 E型热电偶冷端温度补偿实验 西安交通大学自动化系 2008.11

THSRZ-2型传感器系统综合实验装置简介 一、概述 “THSRZ-2 型传感器系统综合实验装置”是将传感器、检测技术及计算机控制技术有机的结合,开发成功的新一代传感器系统实验设备。 实验装置由主控台、检测源模块、传感器及调理(模块)、数据采集卡组成。 1.主控台 (1)信号发生器:1k~10kHz 音频信号,Vp-p=0~17V连续可调; (2)1~30Hz低频信号,Vp-p=0~17V连续可调,有短路保护功能; (3)四组直流稳压电源:+24V,±15V、+5V、±2~±10V分五档输出、0~5V可调,有短路保护功能; (4)恒流源:0~20mA连续可调,最大输出电压12V; (5)数字式电压表:量程0~20V,分为200mV、2V、20V三档、精度0.5级; (6)数字式毫安表:量程0~20mA,三位半数字显示、精度0.5级,有内侧外测功能; (7)频率/转速表:频率测量范围1~9999Hz,转速测量范围1~9999rpm; (8)计时器:0~9999s,精确到0.1s; (9)高精度温度调节仪:多种输入输出规格,人工智能调节以及参数自整定功能,先进控制算法,温度控制精度±0.50C。 2.检测源 加热源:0~220V交流电源加热,温度可控制在室温~1200C; 转动源:0~24V直流电源驱动,转速可调在0~3000rpm; 振动源:振动频率1Hz~30Hz(可调),共振频率12Hz左右。 3.各种传感器 包括应变传感器:金属应变传感器、差动变压器、差动电容传感器、霍尔位移传感器、扩散硅压力传感器、光纤位移传感器、电涡流传感器、压电加速度传感器、磁电传感器、PT100、AD590、K型热电偶、E型热电偶、Cu50、PN结温度传感器、NTC、PTC、气敏传感器(酒精敏感,可燃气体敏感)、湿敏传感器、光敏电阻、光敏二极管、红外传感器、磁阻传感器、光电开关传感器、霍尔开关传感器。包括扭矩传感器、光纤压力传感器、超声位移传感器、PSD位移传感器、CCD电荷耦合传感器:、圆光栅传感器、长光栅传感器、液位传感器、涡轮式流量传感器。 4.处理电路 包括电桥、电压放大器、差动放大器、电荷放大器、电容放大器、低通滤波器、涡流变换器、相敏检波器、移相器、V/I、F/V转换电路、直流电机驱动等 5.数据采集 高速USB数据采集卡:含4路模拟量输入,2路模拟量输出,8路开关量输入输出,14位A/D 转换,A/D采样速率最大400kHz。 上位机软件:本软件配合USB数据采集卡使用,实时采集实验数据,对数据进行动态或静态处理和分析,双通道虚拟示波器、虚拟函数信号发生器、脚本编辑器功能。

传感器实验指导书11

实验平台介绍 传感器教学实验系列nextsense是针对传感器教学,虚拟仪器教学等基础课程设计的教学实验模块。nextsense系列配合泛华通用工程教学实验平台nextboard使用,可以完成热电偶、热敏电阻、RTD热电阻、光敏电阻、霍尔元件等传感器的课程教学。课程提供传感器以及调理电路,内容涵盖传感器特性描绘、电路模拟以及实际测量等。 图1 nextboard实验平台 nextboard具有6个实验模块插槽;提供两块标准尺寸的面包板,用户可自搭实验电路;为NI 数据采集卡提供信号路由,可完全替代NI数据采集卡接线盒功能,轻松使用数据采集卡资源;还为实验模块和自搭电路提供电源,既可用于有源电路供电,也可作为外接设备供电。 实验模块区共有6个插槽,分别为4个模拟插槽Analog Slot 1-4,2个数字插槽Digital Slot 1-2。数据采集卡的模拟通道和数字通道分配到实验模块区的Analog Slot 和Digital Slot 上。Analog Slot 模拟插槽用于那些需要使用模拟信号的实验模块。Digital Slot 数字插槽用于那些需要同时使用多个数字信号或脉冲信号的实验模块。 图2 模拟插槽和数字插槽

特别需要注意的是: (1)在使用所有模块之前,都要先区分模块的类型:带有正弦波标记的为模拟实验模块,需要插在Analog Slot 上使用;带有方波标记的为数字模块,需要查在Digital Slot 上使用。如果插错插槽,会导致模块工作不正常,甚至损坏模块。 (2)插拔实验模块前关闭nextboard电源。 (3)开始实验前,认真检查模块跳线连接,避免连接错误而导致的输出电压超量程,否则会损坏数据采集卡。 Nextboard的连线: (1)电源线,把220V的电源通过一个15V的直流变压器,送到实验台上。 (2)数据采集卡,将数据采集卡的插头与实验台可靠连接。

传感器实验指导书

传 感 器 实 验 指 导 书 实验一电位器传感器的负载特性的测试 一、实验目的: 1、了解电桥的工作原理及零点的补偿; 2、了解电位器传感器的负载特性; 3、利用电桥设计电位器传感器负载特性的测试电路,并验证其功能。 二、实验仪器与元件: 1、直流稳压电源、高频毫伏表、示波器、信号源、数字万用表; 2、电阻若干(1k, 100K);电位器(10k)传感器(多圈线绕); 3、运算放大器LM358;

4、电子工具一批(面包板、斜口钳、一字螺丝刀、导线)。 三、基本原理: ?电位器的转换原理 ?电位器的电压转换原理如图所示,设电阻体长度为L,触点滑动位移量为x,两端输入电压为U i,则滑动端输出电压为 电位器输出端接有负载电阻时,其特性称为负载特性。当电位器的负载系数发生变化时,其负载特性曲线也发生相应变化。 ?电位器输出端接有负载电阻时,其特性称为负载特性。 四、实验步骤: 1、在面包板上设计负载电路。 3、改进电路的负载电阻RL,用以测量的电位器的负载特性。 4、分别选用1k电阻和100k电阻,测试电位器的负载特性,要求每个负载至少有5个测试点,并计入所设计的表格1,如下表。 序号 1 2 3 4 5 6 7 8

五、实验报告 1、 画出电路图,并说明设计原理。 2、 列出数据测试表并画出负载特性曲线。电源电压5V ,测试表格1. 曲线图:画图说明,x 坐标是滑动电阻器不带负载时电压;y 坐标是对应1000欧姆(负载两端电压)或100k 欧姆(负载两端电压),100欧和100K 欧两电阻可以得到两条曲线。 O 1 2 3 4 5 UK UR1UR2 3、 说明本次设计的电路的不足之处,提出改进思路,并总结本次实验中遇到困 难及解决方法。

温度传感器实验设计概要

成都理工大学工程 技术学院 单片机课程设计报告 数字温度计设计

摘要 在这个信息化高速发展的时代,单片机作为一种最经典的微控制器,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,作为自动化专业的学生,我们学习了单片机,就应该把它熟练应用到生活之中来。本文将介绍一种基于单片机控制的数字温度计,本温度计属于多功能温度计,可以设置上下报警温度,当温度不在设置范围内时,可以报警。本文设计的数字温度计具有读数方便,测温范围广,测温精确,数字显示,适用范围宽等特点。 关键词:单片机,数字控制,数码管显示,温度计,DS18B20,AT89S52。

目录 1概述 (4) 1.1设计目的 (4) 1.2设计原理 (4) 1.3设计难点 (4) 2 系统总体方案及硬件设计...................................................... 错误!未定义书签。 2.1数字温度计设计方案论证 (4) 2.2.1 主控制器 (5) 2.4 系统整体硬件电路设计 (7) 3系统软件设计 (8) 3.1初始化程序 (8) 3.2读出温度子程序 (9) 3.3读、写时序子程序 (10) 3.4 温度处理子程序 (11) 3.5 显示程序 (12) 4 Proteus软件仿真 (13) 5硬件实物 (14) 6课程设计体会 (15) 附录1: (14) 附录2: (21)

1概述 1.1设计目的 随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。 本设计所介绍的数字温度计与传统的温度计相比,具有读数方便,测温范围广,测温准确,其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,可广泛用于食品库、冷库、粮库、温室大棚等需要控制温度的地方。目前,该产品已在温控系统中得到广泛的应用。 1.2设计原理 本系统是一个基于单片机AT89S52的数字温度计的设计,用来测量环境温度,测量范围为-50℃—110℃度。整个设计系统分为4部分:单片机控制、温度传感器、数码显示以及键盘控制电路。整个设计是以AT89S52为核心,通过数字温度传感器DS18B20来实现环境温度的采集和A/D转换,同时因其输出为数字形式,且为串行输出,这就方便了单片机进行数据处理,但同时也对编程提出了更高的要求。单片机把采集到的温度进行相应的转换后,使之能够方便地在数码管上输出。LED采用三位一体共阳的数码管。 1.3设计难点此设计的重点在于编程,程序要实现温度的采集、转换、显示和上下限温度报警,其外围电路所用器件较少,相对简单,实现容易。 2 系统总体方案及硬件设计 2.1数字温度计设计方案论证 由于本设计是测温电路,可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来,这种设计需要用到A/D 转换电路,感温电路比较麻烦。进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,所以这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。 2.2总体设计框图 温度计电路设计总体设计方框图如图1所示,控制器采用单片机AT89S52,温度传感器采用DS18B20,用3位共阴LED数码管以串口传送数据实现温度显示。

物联网实验指导书

物联网 实验指导书 四川理工学院通信教研室 2014年11月

目录 前言 (1) 实验一走马灯IAR工程建立实验 (5) 实验二串口通信实验 (14) 实验三点对点通信实验 (18) 实验四 Mesh自动组网实验 (21) 附录 (25) 实验一代码 (25) 实验二代码 (26) 实验三代码 (28) 实验四代码 (29)

前言 1、ZigBee基础创新套件概述 无线传感器网络技术被评为是未来四大高科技产业之一,可以预见无线传感器网络将会是继互联网之后一个巨大的新兴产业,同时由于无线传感网络的广泛应用,必然会对传统行业起到巨大的拉动作用。 无线传感器网络技术,主要是针对短距离、低功耗、低速的数据传输。数据节点之间的数据传输强调网络特性。数据节点之间通过特有无线传输芯片进行连接和转发形成大范围的覆盖容纳大量的节点。传感器节点之间的网络能够自由和智能的组成,网络具有自组织的特征,即网络的节点可以智能的形成网络连接,连接根据不同的需要采用不同的拓扑结构。网络具有自维护特征,即当某些节点发生问题的时候,不影响网络的其它传感器节点的数据传输。正是因为有了如此高级灵活的网络特征,传感器网络设备的安装和维护非常简便,可以在不增加单个节点成本同时进行大规模的布设。 无线传感器网络技术在节能、环境监测、工业控制等领域拥有非常巨大的潜力。目前无线传感器网络技术尚属一个新兴技术,正在高速发展,学习和掌握新技术发展方向和技术理念是现代化高等教育的核心理念。 “ZigBee基础创新套件”产品正是针对这一新技术的发展需要,使这种新技术能够得到快速的推广,让高校师生能够学习和了解这项潜力巨大的新技术。“ZigBee基础创新套件”是由多个传感器节点组成的无线传感器网络。该套件综合了传感器技术、嵌入式计算技术、现代网络及无线通信技术、分布式信息处理技术等多种技术领域,用户可以根据所需的应用在该套件上进行自由开发。 2、ZigBee基础创新套件的组成 CITE 创新型无线节点(CITE-N01 )4个 物联网创新型超声波传感器(CITE-S063)1个 物联网创新型红外传感器(CITE-S073)1个 物联网便携型加速度传感器(CITE-S082)1个 物联网便携型温湿度传感器(CITE-S121 )1个 电源6个 天线8根 CC Debugger 1套(调试器,带MINI USB接口的USB线,10PIN排线)物联网实验软件一套

传感器实验指南

《传感器与检测技术》实验指南 传感器与检测技术实验室 实验指导老师:徐华结 适用班级:12电气工程及其自动化

目录 实验一压阻式压力传感器的特性测试实验 (2) 实验二电容传感器的位移特性实验 (5) 实验三直流激励线性霍尔传感器的位移特性实验 (9) 实验四电涡流传感器材料分拣的应用实验 (12) 实验五光纤传感器位移测量实验 (14)

实验一压阻式压力传感器的特性测试实验 一、实验目的 了解扩散硅压阻式压力传感器测量压力的原理和标定方法。 二、实验内容 掌握压力传感器的压力计设计。 三、实验仪器 传感器检测技术综合实验台、压力传感器实验模块、压力传感器、导线。 四、实验原理 扩散硅压阻式压力传感器的工作机理是半导体应变片的压阻效应,在半导体受到力变形时会暂时改变晶体结构的对称性,因而改变了半导体的导电机理,使得它的电阻率发生变化,这种物理现象称之为半导体的压阻效应。一般半导体应变采用N型单晶硅为传感器的弹性元件,在它上面直接蒸镀扩散出多个半导体电阻应变薄膜(扩散出敏感栅)组成电桥。在压力(压强)作用下弹性元件产生应力,半导体电阻应变薄膜的电阻率产生很大变化,引起电阻的变化,经电桥转换成电压输出,则其输出电压的变化反映了所受到的压力变化。图13-1为压阻式压力传感器压力测量实验原理图。 + - 放大单元主台体上电压表 +4V 压阻式压力传感器Vo+ VS+ Vo- Vs- 图1-1 压阻式压力传感器压力测量实验原理 五、实验注意事项 1、严禁将信号源输出对地短接。 2、实验过程中不要带电拔插导线。 3、严禁电源对地短路。 六、实验步骤 1、将引压胶管连接到压力传感器上,其他接线按图1-2进行连接,确认连线无误且打开主台体电源、压力传感器实验模块电源。

物联网传感器实验系统软件使用说明书

ATOS物联网传感器实验系统 使用说明书 上海讯连电子科技发展有限公司 2011年10月

目录 1概述 (4) 1.1背景 (4) 1.2应用领域与使用对象 (4) 1.4参考方案 (4) 1.5术语与缩写解释 (4) 2系统综述 (5) 2.1传感器分类 (5) 2.2软件系统功能简介 (5) 2.3性能 (6) 2.4版权声明 (6) 3运行环境 (6) 3.1硬件设备要求 (6) 3.2支持软件 (6) 4软件操作说明 (7) 4.1安装以及使用前的准备 (7) 4.2 软件启动与登陆 (7) 4.2.1功能描述 (7) 4.2.2界面字段解释 (7) 4.2.3操作说明 (8) A)串口配置功能Serial (8) B)进入实验按钮功能Experiment (10) B1:实验一温湿度传感器实验 (11) B2:实验二光强传感器实验 (14) B3:实验三流量传感器实验 (17) B4:实验四霍尔传感器实验 (20) B5:实验五压力传感器实验 (23) B6:实验六气体压力传感器实验 (26) B7:实验七雨滴传感器实验 (29) B8:实验八火焰传感器实验 (32) B9:实验九震动传感器实验 (35) B10:实验十噪声传感器实验 (38) C)进入图书资源按钮功能Library (41) C1:资料一TINYOS开发环境 (42) C2:资料二WINCE平台 (43) C3:资料三Zigbee开发环境 (43) C4:资料四辅助工具 (44) C5:资料五驱动程序 (44) C6:资料六芯片和传感器手册 (45)

C7:资料七演示中心 (45) C8:资料八应用软件源码 (46) D)退出程序按钮 (46) 4.3 LabVIEW函数库 (47) 4.3.1函数库介绍 (47) 4.3.2如何编写一个应用程序 (49) 4.3.3 应用范例 (49) 5.0出错处理和恢复 (49)

传感器实验指导书修订稿

传感器实验指导书 WEIHUA system office room 【WEIHUA 16H-WEIHUA WEIHUA8Q8-

传感器与检测技术实验 指导教师:陈劲松

实验一 金属箔式应变片——单臂电桥性能实验 一、 实验目的: 了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、 基本原理: 金属丝在外力作用下发生机械形变时,其电阻值会发生变化,这就是金属的电阻应变效应。 金属的电阻表达式为: S l R ρ = (1) 当金属电阻丝受到轴向拉力F 作用时,将伸长l ?,横截面积相应减小S ?,电阻率因晶格变化等因素的影响而改变ρ?,故引起电阻值变化R ?。对式(1)全微分,并用相对变化量来表示,则有: ρ ρ ?+?-?=?S S l l R R (2) 式中的l l ?为电阻丝的轴向应变,用ε表示, 常用单位με(1με=1×mm mm 610-)。若径向应变为r r ?,电阻丝的纵向伸长和横 向收缩的关系用泊松比μ表示为)(l l r r ?-=?μ,因为S S ?=2(r r ?),则(2)式可以写成: l l k l l l l l l R R ?=???++=?++?=?02121)()(ρρμρρμ (3) 式(3)为“应变效应”的表达式。0k 称金属电阻的灵敏系数,从式(3)可见,0k 受两个因素影响,一个是(1+μ2),它是材料的几何尺寸变化引起的,另一个是 ) (ρερ?,是材料的电阻率ρ随应变引起的(称“压阻效应”)。对于金属材料而言,以前者为主,则μ210+≈k ,对半导体,0k 值主要是由电阻率相对变化所决定。实验也表明,在金属丝拉伸比例极限内,电阻相对变化与轴向应变成比例。通常金属丝的灵敏系数0k =2左右。

传感器与检测技术实验指导书

传感器与检测技术 实 验 指 导 书 机械电子工程教研室 2011-10-10 HCX-2000系列传感器与检测技术实验台

HCX-2000型传感器与检测技术实验台 说明书 一、实验台的组成 HCX-2000型传感器与检测技术实验台由主机箱、传感器、实验电路(实验模板)、转动源、振动源、温度源、数据采集卡及处理软件、实验桌等组成。 1、主机箱:提供高稳定的±15V、±5V、+5V、±2V~±10V(步进可调)、+2V~+24V (连续可调)直流稳压电源;音频信号源(音频振荡器)1KHz~10KHz(连续可调);低频信号源(低频振荡器)1Hz~30Hz(连续可调);传感器信号调理电路;智能调节仪;计算机通信口;主机箱上装有电压、气压等相关数显表。其中,直流稳压电源、音频振荡器、低频振荡器都具有过载保护功能,在排除接线错误后重新开机恢复正常工作。主机箱右侧面装有供电电源插板及漏电保护开关。 2、振动源(动态应变振动梁与振动台):振动频率3Hz~30Hz可调(谐振频率9Hz~12 Hz左右); 3、转动源:手动控制0转/分~2400转/分、自动控制300~2200转/分。 4、温度源:常温~200℃。 5、气压源:0~20Kpa(连续可调)。 6、传感器:基本型有箔式应变片(350Ω)传感器(秤重200g)、扩散硅压力传感器(20Kpa)、差动变压器(±4mm)、电容式位移传感器(±2.5mm)、霍尔式位移传感器(±1mm)、霍尔式转速传感器(2400转/分)、磁电转速传感器(250转/分~2400转/分)、压电式传感器、电涡流传感器(1mm)、光纤位移传感器(1mm)、光电转速传感器(2400转/分)、集成温度(AD590)传感器(室温~120℃)、K热电偶(室温~150℃)、E热电偶(室温~150℃)、Pt100铂电阻(室温~150℃)、Cu50铜电阻(室温~100℃)、湿敏传感器(10~95%RH)、气敏传感器(50~99VJppm)等。 增强型:基本型基础上可选配扭矩传感器(25N·m)、超声位移传感器(200~1500mm)、PSD位置传感器(±2mm)、CCD电荷耦合器件、光栅位移传感器(25mm)、红外热释电传感器、指纹传感器(演示)等。 7、调理电路(实验模板):基本型有电桥及调平衡网络、差动放大器、电压放大器、电荷放大器、电容变换器、电涡流变换器、光电变换器、温度变换器、移相器、相敏检波器、低通滤波器。增强型增加与选配传感器配套的实验模板。

传感器原理实验指导书

《传感器原理及应用》实验指导书闻福三郭芸君编著 电子技术省级实验教学示范中心

实验一 金属箔式应变片——单臂电桥性能实验 一、 实验目的 了解金属箔式应变片的应变效应,单臂电桥工作原理和性能。 二、 实验仪器 1、传感器特性综合实验仪 THQC-1型 1台 2、万用表 MY60 1个 三、 实验原理 金属丝在外力作用下发生机械形变时,其电阻值会发生变化,这就是金属的电阻应变效应。 金属的电阻表达式为: S l R ρ = (1) 当金属电阻丝受到轴向拉力F 作用时,将伸长l ?,横截面积相应减小S ?,电阻率因晶格变化等因素的影响而改变ρ?,故引起电阻值变化R ?。 用应变片测量受力时,将应变片粘贴于被测对象表面上。在外力作用下,被测对象表面产生微小机械变形时,应变片敏感栅也随同变形,其电阻值发生相应变化。通过转换电路转换为相应的电压或电流的变化,可以得到被测对象的应变值ε,而根据应力应变关系 εσE = (2) 式中:ζ——测试的应力; E ——材料弹性模量。 可以测得应力值ζ。通过弹性敏感元件,将位移、力、力矩、加速度、压力等物理量转换为应变,因此可以用应变片测量上述各量,从而做成各种应变式传感器。电阻应变片可分为金属丝式应变片,金属箔式应变片,金属薄膜应变片。 四、 实验内容与步骤 1、应变式传感器已装到应变传感器模块上。用万用表测量传感器中各应变片R1、R 2、R 3、R4,R1=R2=R3=R4=350Ω。 2、将主控箱与模板电源±15V 相对应连接,无误后,合上主控箱电源开关,按图1-1顺时针调节Rw2使之中间位置,再进行放大器调零,方法为:将差放的正、负输入端与地短接,输出端与主控箱面板上数显电压表输入端Vi 相连,调节实验模板上调零电位器Rw3,使数显表显示为零,(数显表的切换开关打到2V 档)。关闭主控箱电源。(注意:当Rw2的位置一旦确定,就不能改变。) 3、应变式传感器的其中一个应变片R1(即模板左上方的R1)接入电桥作为一个桥臂与R5、R6、R7接成直流电桥,(如四根粗实线),把电桥调零电位器Rw1,电源±5V ,此时应将±5V 地与±15V 地短接(因为不共地)如图1-1所示。检查接线无误后,合上主控箱电源开关。调节Rw1,使数显表显示为零。 4、按表1-1中给出的砝码重量值,读取数显表数值填入表1-1中。

传感器与自动检测技术实验指导书.

传感器与自动检测技术验 指导书 张毅李学勤编著 重庆邮电学院自动化学院 2004年9月

目录 C S Y-2000型传感器系统实验仪介绍 (1) 实验一金属箔式应变片测力实验(单臂单桥) (3) 实验二金属箔式应变片测力实验(交流全桥) (6) 实验三差动式电容传感器实验 (9) 实验四热敏电阻测温实验 (12) 实验五差动变压器性能测试 (14) 实验六霍尔传感器的特性研究 (17) 实验七光纤位移传感器实验 (21)

CSY-2000型传感器系统实验仪介绍 本仪器是专为《传感器与自动检测技术》课程的实验而设计的,系统包括差动变压器、电涡流位移传感器、霍尔式传感器、热电偶、电容式传感器、热敏电阻、光纤传感器、压阻式压力传感器、压电加速度计、压变式传感器、PN结温度传感器、磁电式传感器等传感器件,以及低频振荡器、音频震荡器、差动放大器、相敏检波器、移相器、低通滤波器、涡流变换器等信号和变换器件,可根据需要自行组织大量的相关实验。 为了更好地使用本仪器,必须对实验中使用涉及到的传感器、处理电路、激励源有一定了解,并对仪器本身结构、功能有明确认识,做到心中有数。 在仪器使用过程中有以下注意事项: 1、必须在确保接线正确无误后才能开启电源。 2、迭插式插头使用中应注意避免拉扯,防止插头折断。 3、对从各电源、振荡器引出的线应特别注意,防止它们通过机壳造成短路,并 禁止将这些引出线到处乱插,否则很可能引起一起损坏。 4、使用激振器时注意低频振荡器的激励信号不要开得太大,尤其是在梁的自振 频率附近,以免梁振幅过大或发生共振,引起损坏。 5、尽管各电路单元都有保护措施,但也应避免长时间的短路。 6、仪器使用完毕后,应将双平行梁用附件支撑好,并将实验台上不用的附件撤 去。 7、本仪器如作为稳压电源使用时,±15V和0~±10V两组电源的输出电流之和 不能超过1.5A,否则内部保护电路将起作用,电源将不再稳定。 8、音频振荡器接小于100Ω的低阻负载时,应从LV插口输出,不能从另外两个 电压输出插口输出。

无线传感器网络实验指导书

无线传感器网络 实验指导书 信息工程学院

实验一 质心算法 一、实验目的 掌握合并质心算法的基本思想; 学会利用MATLAB 实现质心算法; 学会利用数学计算软件解决实际问题。 二、实验内容和原理 无需测距的定位技术不需要直接测量距离和角度信息。定位精度相对较低,不过可以满足某些应用的需要。 在计算几何学里多边形的几何中心称为质心,多边形顶点坐标的平均值就是质心节点的坐标。 假设多边形定点位置的坐标向量表示为p i = (x i ,y i )T ,则这个多边形的质心坐标为: 例如,如果四边形 ABCD 的顶点坐标分别为 (x 1, y 1),(x 2, y 2), (x 3, y 3) 和(x 4,y 4),则它的质心坐标计算如下: 这种方法的计算与实现都非常简单,根据网络的连通性确定出目标节点周围的信标参考节点,直接求解信标参考节点构成的多边形的质心。 锚点周期性地向临近节点广播分组信息,该信息包含了锚点的标识和位置。当未知结点接收到来自不同锚点的分组信息数量超过某一门限或在一定接收时间之后,就可以计算这些锚点所组成的多边形的质心,作为确定出自身位置。由于质心算法完全基于网络连通性,无需锚点和未知结点之间的协作和交互式通信协调,因而易于实现。 三、实验内容及步骤 该程序在Matlab 环境下完成无线传感器中的质心算法的实现。在长为100米的正方形区域,信标节点(锚点)为90个,随机生成50个网络节点。节点的通信距离为30米。 需完成: 分别画出不同通信半径,不同未知节点数目下的误差图,并讨论得到的结果 所用到的函数: 1. M = min(A)返回A 最小的元素. 如果A 是一个向量,然后min(A)返回A 的最小元素. 如果A 是一个矩阵,然后min(A)是一个包含每一列的最小值的行向量。 2. rand X = rand 返回一个单一均匀分布随机数在区间 (0,1)。 X = rand(n)返回n--n 矩阵的随机数字。 ()1234 1234,,44x x x x y y y y x y ++++++?? = ? ??

传感器技术实验指导书

《传感器技术》实验指导书 权义萍 南京工业大学自动化学院

目录 实验一金属箔式应变片单臂、半桥、全桥性能比较实验 (3) 实验二直流全桥的应用――电子秤实验 (7) 实验三电容式传感器的位移特性实验 (9) 实验四压电式传感器振动实验 (11) 实验五直流激励时霍尔式传感器位移特性实验 (13) 实验六电涡流传感器综合实验 (15) 实验七光纤传感器的位移特性实验 (18)

实验一金属箔式应变片单臂、半桥性能比较实验 一、实验目的: 了解金属箔式应变片的应变效应,电桥工作原理和性能。 二、基本原理: 电阻丝在外力作用下发生机械变形时,其电阻值发生变化,这就是电阻应变效应,描述电阻应变效应的关系式为:ΔR/R=Kε式中ΔR/R为电阻丝电阻相对变化,K为应变灵敏系数,ε=Δl/l为电阻丝长度相对变化,金属箔式应变片就是通过光刻、腐蚀等工艺制成的应变敏感元件,通过它转换被测部位受力状态变化、电桥的作用完成电阻到电压的比例变化,电桥的输出电压反映了相应的受力状态。,对单臂电桥输出电压U o1= EKε/4。 不同受力方向的两只应变片接入电桥作为邻边,电桥输出灵敏度提高,非线性得到改 善。当应变片阻值和应变量相同时,其桥路输出电压U O2=EKε/2。 三、需用器件与单元: 应变式传感器实验模板、应变式传感器-电子秤、砝码、数显表、±15V电源、±4V电源、万用表(自备)。 四、实验步骤: 1、根据图(1-1)应变式传感器(电子秤)已装于应变传感器模板上。传感器中各应变片已 接入模板的左上方的R1、R2、R3、R4。可用万用表进行测量判别,R1=R2=R3=R4=350Ω,加热丝阻值为50Ω左右 图1-1 应变式传感器安装示意图

《智能传感器技术及应用》实验指导书

《智能传感器技术及应用》 实验指导书 万振武编写 武汉理工大学华夏学院 2014年7月

实验一 扩散反射式光电开关应用实验 一、实验目的 1.熟悉软件开发环境,熟练运用下载软件下载程序,熟练运用串口调试软件进行串口调试。 2.了解本实验中扩散反射式光电开关的结构; 3.会应用串口调试软件测试光电开关。 4.掌握舵机的控制方法 5.搭建光电循线机器人并编程实现机器人走直线。 二、实验原理 1. 光电开关的检测原理 图 1-1 光电开关原理图 光电开关原理如图1-1所示。当图中光电探头前面为浅色物体时,发光二极管发出的光被反射回探头,光电三极管导通,信号端S 输出低电平;当光电探头前面为深色物体时,发光二极管发出的光被吸收,没有光线反射回探头,光电三极管截止,信号端S 输出高电平。 2.舵机的控制原理 舵机是一种位置伺服的驱动器,适用于角度需要不断变化并可以保持的 控制系统。其工作原理是:控制信号进入信号调制芯片,这时会获得直流偏置电压。舵机内部本身有一个基准电路,产生脉宽为1.5ms ,周期为20ms 的基准信号,直流偏置电压与电位器的电压比较,获得电压差输出。该电压差的正负输出到电机驱动芯片,决定电机的正反转。当电机转速一定时,通过级联减速齿轮带动电位器旋转,一直到电压差为0,电机停止转动。 如图所示高电平持续1.5ms ,低电平持续20ms ,然后不断重复的控制脉冲序列。如果将该脉冲序列发给经过零点标定后的伺服电机,伺服电机不会

旋转如图1-2所示。如果此时电机旋转,表明电机需要进行零点标定。从图1-3、图1-4可知,控制电机运转速度是高电平持续的时间,当高电平持续的时间为1.3ms时,电机按图中顺时针方向旋转;当高电平持续的时间为1.7ms 时,电机按图中逆时针方向旋转。 图1-2 1.5ms控制脉冲系列电机转速为零的控制信号时序图 图1-3 1.3 ms的控制脉冲系列使电机全速顺时针旋转的时序图 图1-4 1.7 ms的控制脉冲系列使电机全速逆时针旋转的时序图 三、实验设备 1.实验开发板、不锈钢车体 2.万用表、工具箱 3.光电开关三个 四、实验内容 1.利用串口调试软件测试光电开关

光电传感器实验报告

实验报告2 ――光电传感器测距功能测试 1.实验目的: 了解光电传感器测距的特性曲线; 掌握LEGO基本模型的搭建; 熟练掌握ROBOLAB软件; 2.实验要求: 能够用LEGO积木搭建小车模式,并在车头安置光电传感器。能在光电传感器紧贴红板,以垂直红板的方向作匀速直线倒车运动过程中进行光强值采集,绘制出时间-光强曲线,然后推导出位移-光强曲线及方程。 3.程序设计: 编写程序流程图并写出程序,如下所示:

ROBOLAB程序设计: 4.实验步骤: 1)搭建小车模型,参考附录步骤或自行设计(创新可加分)。 2)用ROBOLAB编写上述程序。 3)将小车与电脑用USB数据线连接,并打开NXT的电源。点击ROBOLAB 的RUN按钮,传送程序。 4)取一红颜色的纸板(或其他红板)竖直摆放,并在桌面平面与纸板垂直 方向放置直尺,用于记录小车行走的位移。 5)将小车的光电传感器紧贴红板放置,用电脑或NXT的红色按钮启动小 车,进行光强信号的采样。从直尺上读取小车的位移。 6)待小车发出音乐后,点击ROBOLAB的数据采集按钮,进行数据采集, 将数据放入红色容器。共进行四次数据采集。 7)点击ROBOLAB的计算按钮,分别对四次采集的数据进行同时显示、平 均线及拟和线处理。 8)利用数据处理结果及图表,得出时间同光强的对应关系。再利用小车位 移同时间的关系(近似为匀速直线运动),推导出小车位移同光强的关 系表达式。 5.调试与分析 a)采样次数设为24,采样间隔为0.05s,共运行1.2s。采得数据如下所示。

b)在ROBOLAB的数据计算工具中得到平均后的光电传感器特性曲线,如图所示: c)对上述平均值曲线进行线性拟合,得到的光强与时间的线性拟合函数:

传感器实验指导书

传感器实验指导书 Revised at 2 pm on December 25, 2020.

传 感 器 实 验 指 导 书 实验一电位器传感器的负载特性的测试 一、实验目的: 1、了解电桥的工作原理及零点的补偿; 2、了解电位器传感器的负载特性; 3、利用电桥设计电位器传感器负载特性的测试电路,并验证其功能。 二、实验仪器与元件: 1、直流稳压电源、高频毫伏表、示波器、信号源、数字万用表; 2、电阻若干(1k, 100K);电位器(10k)传感器(多圈线绕); 3、运算放大器LM358; 4、电子工具一批(面包板、斜口钳、一字螺丝刀、导线)。 三、基本原理: ?电位器的转换原理 ?电位器的电压转换原理如图所示,设电阻体长度为L,触点滑动位移量为x,两端输入电压为U i,则滑动端输出电压为

电位器输出端接有负载电阻时,其特性称为负载特性。当电位器的负载系数发生变化时,其负载特性曲线也发生相应变化。 ?电位器输出端接有负载电阻时,其特性称为负载特性。 四、实验步骤: 1、在面包板上设计负载电路。 3、改进电路的负载电阻RL,用以测量的电位器的负载特性。 4、分别选用1k电阻和100k电阻,测试电位器的负载特性,要求每个负载至少有5个测试点,并计入所设计的表格1,如下表。 五、实验报告 1、画出电路图,并说明设计原理。 2、列出数据测试表并画出负载特性曲线。电源电压5V,测试表格1.

曲线图:画图说明,x坐标是滑动电阻器不带负载时电压;y坐标是对应1000欧姆(负载两端电压)或100k欧姆(负载两端电压),100欧和100K欧两电阻可以得到两条曲线。 3、说明本次设计的电路的不足之处,提出改进思路,并总结本次实验中遇到困难及 解决方法。 实验二声音传感器应用实验-声控LED旋律灯 一、实验目的: 1、了解声音传感器的工作原理及应用; 2、掌握声音传感器与三极管的组合电路调试。 二、实验仪器与元件: 1、直流稳压电源、数字万用表、电烙铁等; 2、电子元件有: 声音传感器(带脚咪头)1个;弯座1个;线1个;5MM白发蓝LED 5个;9014三极管 2个1M电阻 1个;10K电阻 1个;电阻 1个;1UF电解电容 1个;47UF电解电容1个;万能电路板一块。 三、基本原理: 声控LED旋律灯工作电压。其功能为:本电路制作成功后5只LED会随着音乐或是其它声音的节奏闪动起来,可放置于音响附近,让灯光为音乐伴舞!电路原理图如图1所示。 图1 声控LED旋律灯 当发出声音时,声音波传入声音传感器,声音传感器把声音波转换成电压波动。 这个电压波动可以通过电容C2,传到Q1三极管的基极。然后这个电压波变Q1和Q2两级放大之后,输出较大的电压波。最后这个电压波使得5只LED闪动起来。

相关主题
文本预览
相关文档 最新文档