菱形的性质与判定典型例题
- 格式:doc
- 大小:355.50 KB
- 文档页数:5
解题技巧专题:菱形中折叠、动点、旋转、最值、新定义型问题目录【考点一利用菱形的性质与判定解决折叠问题】 1【考点二利用菱形的性质与判定解决动点与函数图象问题】 5【考点三利用菱形的性质与判定解决旋转问题】 10【考点四利用菱形的性质与判定解决最值问题】 16【考点五利用菱形的性质与判定解决新定义型问题】 21【典型例题】【考点一利用菱形的性质与判定解决折叠问题】1.(2024九年级下·江苏南京·专题练习)如图,在菱形ABCD中,点E,F分别在AB,BC上,沿EF翻折后,点B落在边CD上的G处,若EG⊥CD,BE=4,DG=3,则AE的长为.【变式训练】2.(2024·广东东莞·二模)如图,将菱形纸片ABCD折叠,使点B落在AD边的点F处,折痕为CE,若∠D= 80°,则∠BCF的度数是.3.(23-24八年级下·江苏无锡·期中)如图,在菱形ABCD中,AB=8,∠A=120°,M是CD上,DM=3,N是点AB上一动点,四边形CMNB沿直线MN翻折,点C对应点为E,当AE最小时,AN=.4.(23-24八年级下·河北邢台·期中)如图,在菱形纸片ABCD中,∠A=60°.(1)∠C=°.(2)点E在BC边上,将菱形纸片ABCD沿DE折叠,点C对应点为点C ,且DC 是AB的垂直平分线,则∠DEC的大小为°.5.(2024·云南曲靖·二模)如图,已知在△ABC中,∠ACB=90°,过点C作CD⊥AB于点D,点E为AC上一点,连接BE,交CD于点G,△BFE是△BCE沿BE折叠所得,且点C的对应点F恰好落在AB上,连接FG.(1)求证:四边形CEFG为菱形;(2)若AC=8,BC=6,求DG的长.【考点二利用菱形的性质与判定解决动点与函数图象问题】6.(2024·北京朝阳·二模)如图1,在菱形ABCD 中,∠B =60°,P 是菱形内部一点,动点M 从顶点B 出发,沿线段BP 运动到点P ,再沿线段P A 运动到顶点A ,停止运动.设点M 运动的路程为x ,MA MC=y ,表示y 与x 的函数关系的图象如图2所示,则菱形ABCD 的边长是()A.43B.4C.23D.2【变式训练】7.(2024·广东深圳·三模)如图(1),点P 为菱形ABCD 对角线AC 上一动点,点E 为边CD 上一定点,连接PB ,PE ,BE .图(2)是点P 从点A 匀速运动到点C 时,△PBE 的面积y 随AP 的长度x 变化的关系图象(当点P 在BE 上时,令y =0),则菱形ABCD 的边长为()A.5B.6C.23D.258.(23-24九年级下·山东淄博·期中)如图1,点P 从菱形ABCD 的顶点A 出发,沿A →C →B 以1cm/s 的速度匀速运动到点B ,点P 运动时△P AD 的面积y cm 2 随时间x (s )变化的关系如图2,则a 的值为()A.254B.253C.9D.1929.(2024·甘肃·中考真题)如图1,动点P 从菱形ABCD 的点A 出发,沿边AB →BC 匀速运动,运动到点C 时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为()A.2B.3C.5D.2210.(23-24八年级下·江苏苏州·阶段练习)在菱形ABCD 中,∠ABC =60°,P 是直线BD 上一动点,以AP 为边向右侧作等边△APE ,(A 、P ,E 按逆时针排列),点E 的位置随点P 的位置变化而变化.(1)如图1,当点P 在线段BD 上,且点E 在菱形ABCD 内部或边上时,连接CE ,则BP 与CE 的数量关系是,BC 与CE 的位置关系是;(2)①如图2,当点P 在线段BD 上,且点E 在菱形ABCD 外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;②在①的条件下,连接BE ,若AB =2,∠APD =75°,直接写出BE 的长;(3)当点P 在直线BD 上时,其他条件不变,连接BE .若AB =23,BE =219,请直接写出△APE 的面积.【考点三利用菱形的性质与判定解决旋转问题】11.(2024·河南·三模)如图,菱形OABC 的顶点O (0,0),A (-1,0),∠B =60°,若菱形OABC 绕点O 顺时针旋转90°后得到菱形OA 1B 1C 1,依此方式,绕点O 连续旋转2024次得到菱形OA 2024B 2024C 2024,那么点C 2024的坐标是()A.32,12B.12,-32C.-32,-12D.-12,32【变式训练】12.(2024九年级·全国·竞赛)在菱形ABCD 中,∠ABC =120°,边长为2cm ,现将菱形ABCD 绕其外一点O影部分的面积为cm2.13.如图①,菱形ABCD和菱形AEFG有公共顶点A,点E,G分别落在边AB,AD上,连接DF,BF.(1)求证:DF=BF;(2)将菱形AEFG绕点A按逆时针方向旋转.设旋转角∠BAE=α0°≤α≤180°,且AB=6,AE= 3,∠DAB=∠GAE=60°.①如图②,当α=90°时,则线段DF的长度是多少?②连接BD,当△DFB为直角三角形时,则旋转角α的度数为多少度?14.(23-24八年级下·湖北武汉·期中)在菱形ABCD和菱形BEFG中,∠ABC=∠EBG=60°,AB=6,BE=2.(1)如图1,若点E、G分别在边AB、BC上,点F在菱形ABCD内部,连接DF,直接写出DF的长度为;(2)如图2,把菱形BEFG绕点B顺时针旋转α°(0<α<360),连接DF、CG,判断DF与CG的数量关系,并给出证明;(3)如图3,①把菱形BEFG继续绕点B顺时针旋转,连接GD,O为DG的中点,连接CO、EO,试探究CO与EO的关系;②直接写出菱形BEFG绕B点旋转过程中CO的取值范围.【考点四利用菱形的性质与判定解决最值问题】15.(23-24八年级下·重庆沙坪坝·期中)如图,菱形ABCD的周长为8,∠DAC=30°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.【变式训练】16.(2024九年级下·全国·专题练习)如图,在菱形ABCD中,E,F分别是边CD,BC上的动点,连接AE,EF,G,H分别为AE,EF的中点,连接GH.若∠B=45°,BC=23,则GH的最小值是.17.(23-24八年级下·安徽合肥·期末)菱形ABCD中,∠B=60°,E是BC中点,连接AE,DE,点F是DE上一动点,G为AF中点,连接CG.(1)∠BAE=;(2)若AB=2,则CG的最小值为.18.(2024八年级下·全国·专题练习)如图,菱形ABCD中,AB=4,∠ABC=60°,点P为AD边上任意一点(不包括端点),连结AC,过点P作PQ∥AC,交边CD于点Q,点R线段AC上的一点.(1)若点R为菱形ABCD对角线的交点,PQ为△ACD的中位线,求PR+QR的值;(2)当PR+QR的值最小时,请确定点R的位置,并求出PR+QR的最小值;(3)当PR+QR的值最小,且PR+QR+PQ的值最小时,在备用图中作出此时点P,Q的位置,写作法并写出PR+QR+PQ的最小值.【考点五利用菱形的性质与判定解决新定义型问题】19.(22-23八年级下·江苏苏州·期末)定义:如果三角形有两个内角的差为90°,那么称这样的三角形为“准直角三角形”.(1)已知△ABC是“准直角三角形”,∠C>90°,若∠A=40°,则∠B=°.(2)如图,在菱形ABCD中,∠B>90°,AB=5,连接AC,若△ABC正好为一个准直角三角形,求菱形ABCD的面积.【变式训练】20.(23-24九年级下·山东威海·期中)【理解新定义】若一个四边形具备一组对角互补和一组邻边相等,则称该四边形为“补等四边形”.如正方形和筝形,它们都具备这样的特征,所以称为补等四边形.【解决新问题】(1)如图Ⅰ,点E,F分别在菱形ABCD的边CD,AD上,CE=DF,∠A=60°.四边形BEDF是否为补等四边形?(填“是”或“否”)(2)如图Ⅱ,在△ABC中,∠B>90°.∠ACB的平分线和边AB的中垂线交于点D,中垂线交边AC于点G,连接DA,DB.四边形ADBC是否为补等四边形?若是,进行证明;若不是,说明理由.21.(22-23八年级下·浙江宁波·期末)我们定义:以已知菱形的对角线为边且有一条边与已知菱形的一条边共线的新菱形称为已知菱形的伴随菱形.如图1,在菱形ABCD中,连接AC,在AD的延长线上取点E 使得AC=AE,以CA、AE为边作菱形CAEF,我们称菱形CAEF是菱形ABCD的“伴随菱形”.(1)如图2,在菱形ABCD中,连接AC,在BC的延长线上作CA=CF,作∠ACF的平分线CE交AD的延长线于点E,连接FE.求证:四边形AEPC为菱形ABCD的“伴随菱形”.(2)①如图3,菱形AEFC为菱形ABCD的“伴随菱形”,过C作CH垂直AE于点H,对角线AC、BD相交于点O.连接EO若EO=2CH,试判断ED与BD的数量关系并加以证明.②在①的条件下请直接写出CHED的值.22.(22-23八年级下·安徽合肥·期末)定义:在三角形中,若有两条中线互相垂直,则称该三角形为中垂三角形.(1)如图(a),△ABC是中垂三角形,BD,AE分别是AC,BC边上的中线,且BD⊥AE于点O,若∠BAE=45°,求证:△ABC是等腰三角形.(2)如图(b),在中垂三角形ABC中,AE,BD分别是边BC,AC上的中线,且AE⊥BD于点O,求证:AC2+BC2=5AB2.(3)如图(c),四边形ABCD是菱形,对角线AC,BD交于点O,点M,N分别是OA,OD的中点,连接BM,CN并延长,交于点E.求证:△BCE是中垂三角形;解题技巧专题:菱形中折叠、动点、旋转、最值、新定义型问题目录【考点一利用菱形的性质与判定解决折叠问题】 1【考点二利用菱形的性质与判定解决动点与函数图象问题】 5【考点三利用菱形的性质与判定解决旋转问题】 10【考点四利用菱形的性质与判定解决最值问题】 16【考点五利用菱形的性质与判定解决新定义型问题】 21【典型例题】【考点一利用菱形的性质与判定解决折叠问题】1.(2024九年级下·江苏南京·专题练习)如图,在菱形ABCD 中,点E ,F 分别在AB ,BC 上,沿EF 翻折后,点B 落在边CD 上的G 处,若EG ⊥CD ,BE =4,DG =3,则AE 的长为.【答案】914【分析】此题重点考查菱形的性质、轴对称的性质、平行四边形的判定与性质、勾股定理等知识,正确地作出所需要的辅助线是解题的关键.作BH ⊥CD 交DC 的延长线于点H ,因为EG ⊥CD ,所以BH ∥EG ,由四边形ABCD 是菱形,得AB ∥CD ,AB =BC =CD ,则四边形BEGH 是平行四边形,所以GH =BE =4,由折叠得GE =BE =4,则BH =GE =4,所以DH =DG +GH =3+4=7,由勾股定理得42+7-AB 2=AB 2,求得AB =6514,所以AE =AB -BE =6514-4=914,于是得到问题的答案.【详解】解:作BH ⊥CD 交DC 的延长线于点H ,则∠H =90°,∵EG ⊥CD ,∴BH ∥EG ,∵四边形ABCD 是菱形,∴AB ∥CD ,AB =BC =CD ,∴BE ∥GH ,∴四边形BEGH 是平行四边形,∴GH =BE =4,由折叠得GE =BE =4,∵DG =3,∴DH =DG +GH =3+4=7,∵BH 2+CH 2=BC 2,CH =7-CD =7-AB ,∴42+7-AB 2=AB 2,解得AB =6514,∴AE =AB -BE =6514-4=914,故答案为:914.【变式训练】2.(2024·广东东莞·二模)如图,将菱形纸片ABCD 折叠,使点B 落在AD 边的点F 处,折痕为CE ,若∠D =80°,则∠BCF 的度数是.【答案】80°/80度【分析】此题考查了菱形的性质,折叠的性质,等边对等角和平行线的性质,首先根据平行的性质得到BC =CD ,由折叠得BC =CF ,然后求出CF =CD ,然后根据等边对等角和平行线的性质求解即可.【详解】∵四边形ABCD 是菱形∴BC =CD由折叠可得,BC =CF∴CF =CD∴∠CFD =∠D =80°∵四边形ABCD 是菱形∴AD ∥BC∴∠BCF =∠DFC =80°.故答案为:80°.3.(23-24八年级下·江苏无锡·期中)如图,在菱形ABCD 中,AB =8,∠A =120°,M 是CD 上,DM =3,N 是点AB 上一动点,四边形CMNB 沿直线MN 翻折,点C 对应点为E ,当AE 最小时,AN =.【答案】7【分析】本题考查了菱形的性质,折叠的性质,勾股定理等知识,解决本题的关键是确定点E在AM上时,AE的值最小.作AH⊥CD于H,如图,根据菱形的性质可求得AH=32AD=83,DH=CH=8,在Rt△AHM中,利用勾股定理计算出AM=7,再根据两点间线段最短得到当点E在AM上时,AE的值最小,然后证明AN=AM即可.【详解】解:作AH⊥CD于H,如图,∵菱形ABCD的边AB=8,∠A=120°,∴AD=AB=CD=8,AB∥CD,∴∠D=180°-∠BAD=60°,∴∠DAH=30°,∴DH=12AD=4,AH=AD2-DH2=43,∵DM=3,∴HM=1,MC=CD-DM=5,在Rt△AHM中,AM=AH2+HM2=7,∵四边形CMNB沿直线MN翻折,点C对应点为E,,∴ME=MC=10,∵AE+ME≥AM,∴AE≥AM-ME,∴当点E在AM上时,AE的值最小,由折叠的性质得∠AMN=∠CMN,而AB∥CD,∴∠ANM=∠CMN,∴∠AMN=∠ANM,∴AN=AM=7.故答案为:7.4.(23-24八年级下·河北邢台·期中)如图,在菱形纸片ABCD中,∠A=60°.(1)∠C=°.(2)点E在BC边上,将菱形纸片ABCD沿DE折叠,点C对应点为点C ,且DC 是AB的垂直平分线,则∠DEC的大小为°.【答案】6075【分析】本题考查菱形的性质,垂直平分线的定义.(1)直接根据菱形的对角相等即可求解;(2)如图,由垂直平分线的定义得到∠1=90°,从而∠ADC =30°,由菱形的性质得到∠CDC =∠1=90°,从而由折叠有∠CDE=∠C DE=12∠CDC =45°,因此∠ADE=75°,再根据菱形的对边平行即可求解.【详解】解:(1)∵四边形ABCD是菱形,∴∠C=∠A=60°.故答案为:60(2)如图,∵C D 是AB 的垂直平分线,∴∠1=90°,∴∠ADC =90°-∠A =90°-60°=30°,∵在菱形ABCD 中,AB ∥CD ,∴∠CDC =∠1=90°,由折叠可得∠CDE =∠C DE =12∠CDC =12×90°=45°,∴∠ADE =∠ADC +∠C DE =30°+45°=75°,∵在菱形ABCD 中,AD ∥BC ,∴∠DEC =∠ADE =75°.故答案为:755.(2024·云南曲靖·二模)如图,已知在△ABC 中,∠ACB =90°,过点C 作CD ⊥AB 于点D ,点E 为AC 上一点,连接BE ,交CD 于点G ,△BFE 是△BCE 沿BE 折叠所得,且点C 的对应点F 恰好落在AB 上,连接FG .(1)求证:四边形CEFG 为菱形;(2)若AC =8,BC =6,求DG 的长.【答案】(1)见解析(2)GD =1.8.【分析】(1)推出CG =EF ,CG ∥EF ,进而推出四边形CEFG 是平行四边形,并根据EC =EF 证得四边形CEFG 是菱形;(2)首先利用勾股定理求出AB ,设CG =x ,然后用x 表示出AE 和EF ,再在Rt △AEF 中,利用勾股定理构建方程,求出x ,进一步计算即可求解.【详解】(1)证明:∵CD ⊥AB ,△BFE 是△BCE 沿BE 折叠所得,∴∠BFE =∠BCE =90°,∠CEG =∠FEG ,EC =EF ,∴CD ∥EF ,∴∠CGE =∠FEG ,∴∠CGE =∠CEG ,∴CE =CG ,∴CG =EF ,∵CG ∥EF ,∴四边形CEFG 是平行四边形,∵EC =EF ,∴平行四边形CEFG 是菱形;(2)解:∵AC =8,BC =6,∠ACB =90°,22∵四边形CEFG 是菱形,∴EF =FG =CE =CG =x ,∴AE =8-x ,∵△BFE 是△BCE 沿BE 折叠所得,∴BF =BC =6,∴AF =AB -BF =10-6=4,∵在Rt △AEF 中,EF 2+AF 2=AE 2,∴x 2+42=8-x 2,解得:x =3,即CG =3.∵CD ⊥AB ,∴S △ABC =12AC ×BC =12AB ×CD ,∴CD =4.8,∴GD =4.8-3=1.8.【点睛】本题考查了平行线的性质,角平分线的性质,等腰三角形的判定,平行四边形的判定,菱形的判定和性质以及勾股定理的应用,灵活运用各性质进行推理论证是解题的关键.【考点二利用菱形的性质与判定解决动点与函数图象问题】6.(2024·北京朝阳·二模)如图1,在菱形ABCD 中,∠B =60°,P 是菱形内部一点,动点M 从顶点B 出发,沿线段BP 运动到点P ,再沿线段P A 运动到顶点A ,停止运动.设点M 运动的路程为x ,MA MC=y ,表示y 与x 的函数关系的图象如图2所示,则菱形ABCD 的边长是()A.43B.4C.23D.2【答案】C【分析】首先根据题意作图,然后由图象判断出点P 在对角线BD 上,BP =4,BP +AP =6,设AO =x ,则AB =2AO =2x ,利用勾股定理求解即可.【详解】如图所示,由图象可得,当x 从0到4时,MA MC=y =1∴MA =MC∵四边形ABCD 是菱形∴点P 在对角线BD 上∴由图象可得,BP =4,BP +AP =6∵在菱形ABCD 中,∠B =60°,∴∠ABD =30°,AC ⊥BD∴设AO =x ,则AB =2AO =2x∴PO =BP -BO =4-3x∴BO =AB 2-AO 2=3x∴在Rt △APO 中,AP 2=AO 2+PO 2∴22=x 2+4-3x 2解得x =3,负值舍去∴AB =2x =23∴菱形ABCD 的边长是23.故选:C .【点睛】此题考查了动点函数图象问题,菱形的性质,勾股定理,含30°角直角三角形的性质等知识,解题的关键是根据图象正确分析出点P 在对角线BD 上.【变式训练】7.(2024·广东深圳·三模)如图(1),点P 为菱形ABCD 对角线AC 上一动点,点E 为边CD 上一定点,连接PB ,PE ,BE .图(2)是点P 从点A 匀速运动到点C 时,△PBE 的面积y 随AP 的长度x 变化的关系图象(当点P 在BE 上时,令y =0),则菱形ABCD 的边长为()A.5B.6C.23D.25【答案】A 【分析】根据图象可知,当x =0时,即点P 与点A 重合,此时S △ABE =12,进而求出菱形的面积,当x =8时,此时点P 与点C 重合,即AC =8,连接BD ,利用菱形的性质,求出边长,即可得出结果.本题考查菱形的性质和动点的函数图象.熟练掌握菱形的性质,从函数图象中有效的获取信息,是解题的关键.【详解】解:由图象可知:当x =0时,即点P 与点A 重合,此时S △ABE =12,∴S 菱形ABCD =2S △ABE =24,当x =8时,此时点P 与点C 重合,即AC =8,连接BD ,交AC 于点O ,则:BD ⊥AC ,OA =OC =4,OB =OD ,∴S 菱形ABCD =12AC ⋅BD =24,∴BD =6,∴OB =OD =3,∴AB =OA 2+OB 2=5,∴菱形ABCD 的边长为5;故选A .8.(23-24九年级下·山东淄博·期中)如图1,点P 从菱形ABCD 的顶点A 出发,沿A →C →B 以1cm/s 的速度匀速运动到点B ,点P 运动时△P AD 的面积y cm 2 随时间x (s )变化的关系如图2,则a 的值为()A.254B.253C.9D.192【答案】B【分析】本题主要考查了菱形的性质,勾股定理,动点问题的函数图象,过点C 作CE ⊥AD ,根据函数图象求出菱形的边长为a ,再根据图像的三角形的面积可得CE =8,再利用菱形的性质和勾股定理列方程可求a 即可.【详解】解:如图所示,过点C 作CE ⊥AD 于E ,∵在菱形ABCD 中,AD ∥BC ,AD =BC ,∴当点P 在边BC 上运动时,y 的值不变,∴AD =BC =10+a -10=a ,即菱形的边长是a ,∴12⋅AD ⋅CE =4a ,即CE =8.当点P 在AC 上运动时,y 逐渐增大,∴AC =10,∴AE =AC 2-CE 2=102-82=6.在Rt △DCE 中,DC =a ,DE =a -6,CE =8,∴a 2=82+a -6 2,解得a =253.故选:B .9.(2024·甘肃·中考真题)如图1,动点P 从菱形ABCD 的点A 出发,沿边AB →BC 匀速运动,运动到点C 时停止.设点P 的运动路程为x ,PO 的长为y ,y 与x 的函数图象如图2所示,当点P 运动到BC 中点时,PO 的长为()A.2B.3C.5D.22【答案】C 【分析】结合图象,得到当x =0时,PO =AO =4,当点P 运动到点B 时,PO =BO =2,根据菱形的性质,得∠AOB =∠BOC =90°,继而得到AB =BC =OA 2+OB 2=25,当点P 运动到BC 中点时,PO 的长为12BC=5,解得即可.本题考查了菱形的性质,图象信息题,勾股定理,直角三角形的性质,熟练掌握菱形的性质,勾股定理,直角三角形的性质是解题的关键.【详解】结合图象,得到当x=0时,PO=AO=4,当点P运动到点B时,PO=BO=2,根据菱形的性质,得∠AOB=∠BOC=90°,故AB=BC=OA2+OB2=25,当点P运动到BC中点时,PO的长为12BC=5,故选C.10.(23-24八年级下·江苏苏州·阶段练习)在菱形ABCD中,∠ABC=60°,P是直线BD上一动点,以AP为边向右侧作等边△APE,(A、P,E按逆时针排列),点E的位置随点P的位置变化而变化.(1)如图1,当点P在线段BD上,且点E在菱形ABCD内部或边上时,连接CE,则BP与CE的数量关系是,BC与CE的位置关系是;(2)①如图2,当点P在线段BD上,且点E在菱形ABCD外部时,(1)中的结论是否还成立?若成立,请予以证明;若不成立,请说明理由;②在①的条件下,连接BE,若AB=2,∠APD=75°,直接写出BE的长;(3)当点P在直线BD上时,其他条件不变,连接BE.若AB=23,BE=219,请直接写出△APE的面积.【答案】(1)BP=CE,CE⊥BC;(2)①仍然成立,见解析;②20-83(3)73或313【分析】(1)连接AC,根据菱形的性质和等边三角形的性质证明△BAP≌△CAE即可证得结论;(2)①(1)中的结论成立,用(1)中的方法证明△BAP≌△CAE即可;②根据已知得出DP=AD,进而根据①可得BP=CE,根据CE⊥BC,勾股定理,即可求解;(3)分两种情形:当点P在BD的延长线上时或点P在线段DB的延长线上时,连接AC交BD于点O,由∠BCE=90°,根据勾股定理求出CE的长即得到BP的长,再求AO、PO、PD的长及等边三角形APE的边长可得结论.【详解】(1)解:如图1,连接AC,延长CE交AD于点H,∵四边形ABCD是菱形,∴AB=BC,∵∠ABC=60°,∴△ABC是等边三角形,∴AB=AC,∠BAC=60°;∴AP=AE,∠P AE=60°,∴∠BAP=∠CAE=60°-∠P AC,∴△BAP≌△CAE SAS,∴BP=CE;∵四边形ABCD是菱形,∴∠ABP=1∠ABC=30°,2∴∠ABP=∠ACE=30°,∵∠ACB=60°,∴∠BCE=60°+30°=90°,∴CE⊥BC;故答案为:BP=CE,CE⊥BC;(2)(1)中的结论:BP=CE,CE⊥AD仍然成立,理由如下:如图2中,连接AC,设CE与AD交于H,∵菱形ABCD,∠ABC=60°,∴△ABC和△ACD都是等边三角形,∴AB=AC,∠BAD=120°,∠BAP=120°+∠DAP,∵△APE是等边三角形,∴AP=AE,∠P AE=60°,∴∠CAE=60°+60°+∠DAP=120°+∠DAP,∴∠BAP=∠CAE,∴△ABP≌△ACE SAS,∴BP=CE,∠ACE=∠ABD=30°,∴∠DCE=30°,∵∠ADC=60°,∴∠DCE+∠ADC=90°,∴∠CHD=90°,∴CE⊥AD;∴(1)中的结论:BP=CE,CE⊥AD仍然成立;②如图所示,∵△ABP≌△ACE SAS,∴CE=BP,∵∠APD=75°,∠ADB=30°∴∠DAP=75°=∠APD,∴DA=DP=2,∵BD=2BO=23AO=3AB=23∴BP=CE=BD-DP=23-2∵CE⊥AD,AD∥BC∴CE⊥BC∴BE=BC2+CE2=22+23-22=20-83故答案为:20-83.(3)如图3中,当点P在BD的延长线上时,连接AC交BD于点O,连接CE,BE,作EF⊥AP于F,∵四边形ABCD是菱形,∵∠ABC =60°,AB =23,∴∠ABO =30°,∴AO =12AB =3,OB =3AO =3,∴BD =6,由(2)知CE ⊥AD ,∵AD ∥BC ,∴CE ⊥BC ,∵BE =219,BC =AB =23,∴CE =(219)2-(23)2=8,由(2)知BP =CE =8,∴DP =2,∴OP =5,∴AP =OA 2+OP 2=(3)2+52=27,∵△APE 是等边三角形,∴S △AEP =34×27 2=73,如图4中,当点P 在DB 的延长线上时,同法可得AP =OA 2+OP 2=(3)2+112=231,∴S △AEP =34×231 2=313.【点睛】此题考查菱形的性质、等边三角形的性质、全等三角形的判定与性质、勾股定理等知识点,解题的关键是正确地作出解题所需要的辅助线,将菱形的性质与三角形全等的条件联系起来.【考点三利用菱形的性质与判定解决旋转问题】11.(2024·河南·三模)如图,菱形OABC 的顶点O (0,0),A (-1,0),∠B =60°,若菱形OABC 绕点O 顺时针旋转90°后得到菱形OA 1B 1C 1,依此方式,绕点O 连续旋转2024次得到菱形OA 2024B 2024C 2024,那么点C 2024的坐标是()A.32,12B.12,-32C.-32,-12D.-12,32【答案】D 【分析】本题考查了旋转的性质、菱形的性质,含30°直角三角形的性质,勾股定理,坐标与图形,根据题意得到旋转的规律是解题的关键.根据题意得到点C 2024与点C 重合,在菱形中算出C 点坐标,即可解答.【详解】解:作CD ⊥OA 于D ,则∠CDO =90°,∵四边形OABC 是菱形,O 0,0 ,A -1,0 ,∴∠AOC =∠B =60°,OC =OA =1∴∠OCD =30°∴OD =12OC =12,CD =3OD =32∴点C 的坐标为-12,32,若菱形绕点O 顺时针旋转90°后得到菱形OA 1B 1C 1,依此方式,绕点O 连续旋转2024次得到菱形OA 2024B 2024C 2024,则菱形OABC 绕点O 连续旋转2024次,旋转4次为一周,旋转2024次为2024÷4=506(周),∴绕点O 连续旋转2024次得到菱形OA 2024B 2024C 2024与菱形OABC 重合,∴点C 2024与C 重合,∴点C 2024的坐标为-12,32,故选:D .【变式训练】12.(2024九年级·全国·竞赛)在菱形ABCD 中,∠ABC =120°,边长为2cm ,现将菱形ABCD 绕其外一点O按顺时针方向分别旋转90°、180°、270°后,得到如图的图形,每相邻两个菱形有一个顶点重合,则图中阴影部分的面积为cm 2.【答案】12-43【分析】连接AC 、OB ,交点为点E ,则OB 为AC 的中垂线,S △AOD =12×AE ×OD =12×3×3-1 =3-32cm 2 ,计算即可.【详解】如图,连接AC 、OB ,交点为点E ,则OB 为AC 的中垂线,∴点D 在OB 上,由已知条件易得BE =DE =12AB =1cm ,AE =OE =3cm ,∴OD =3-1cm ,∴S =1×AE ×OD =1×3×3-1 =3-3cm 2 ,∴所求面积为8×3-32=12-43cm2.故答案为:12-43.13.如图①,菱形ABCD和菱形AEFG有公共顶点A,点E,G分别落在边AB,AD上,连接DF,BF.(1)求证:DF=BF;(2)将菱形AEFG绕点A按逆时针方向旋转.设旋转角∠BAE=α0°≤α≤180°,且AB=6,AE= 3,∠DAB=∠GAE=60°.①如图②,当α=90°时,则线段DF的长度是多少?②连接BD,当△DFB为直角三角形时,则旋转角α的度数为多少度?【答案】(1)证明见解析(2)①33;②30°或90°【分析】(1)连接AF,根据菱形的性质,可得到△GAF≅△EAF,从而得到∠GAF=∠EAF,进而得到△DAF ≅△BAF,即可求证;(2)①连接AF,EG,BD,AC,BD与AC交于点O,AF交EG于点P,根据旋转的性质和菱形的性质可得AF∥OD,△ABD和△AEG是等边三角形,从而得到AF=OD,进而得到四边形AODF是平行四边形,即可求解;②分两种情况讨论:∠BDF=90°和∠BFD=90°,利用矩形的性质、等边三角形的判定与性质求解即可得.【详解】(1)证明:连接AF,∵四边形AEFG是菱形,∴AE=EF=FG=GA,在△GAF和△EAF中,AG=AEGF=EFAF=AF,∴△GAF≅△EAF SSS,∵四边形ABCD 是菱形,∴AD =AB ,在△DAF 和△BAF 中,AD =AB∠DAF =∠BAF AF =AF,∴△DAF ≅△BAF SAS ,∴DF =BF .(2)解:①如图,连接AF ,EG ,BD ,AC ,BD 与AC 交于点O ,AF 交EG 于点P ,由(1)得当菱形AEFG 没有旋转时,AC 平分∠BAD ,AF 平分∠EAG ,∴此时点A 、F 、C 三点共线,∴当菱形AEFG 绕点A 按逆时针方向旋转时,∠FAC =α,∴当α=90°时,∠FAC =∠BAE =90°,在菱形ABCD 中,AB =AD ,OD =12BD ,OA =12AC ,BD ⊥AC ,∠DAO =12∠BAD =30°,∴∠AOD =90°∴∠DOA +∠FAC =180°,∴AF ∥OD ,在菱形AEFG 中,∠EAF =12∠EAG =30°,AE =AG ,AP =12AF ,PE =12EG ,∵∠DAB =∠GAE =60°.∴△ABD 和△AEG 是等边三角形,∴BD =AB =6,EG =AE =3,∴OD =3,EP =32,∴AP =AE 2-EP 2=32,OA =AD 2-OD 2=33∴AF =3,∴AF =OD ,∴四边形AODF 是平行四边形,∴DF =OA =33;②由①得四边形AODF 是平行四边形,∵∠FAC =90°,∴四边形AODF 是矩形,∴∠BDF =90°,即△DFB 为直角三角形,∴此时旋转角α的度数为90°;如图,当点F 在AD 上时,由①得AF =3,∴AF=DF,∵△ABD为等边三角形,∴BF⊥AD,即∠BFD=90°,∴此时△DFB为直角三角形,∵∠EAF=1∠EAG=30°,2∴∠BAE=∠BAD-∠EAF=30°,即此时旋转角α的度数为30°;综上所述,当△DFB为直角三角形时,旋转角α的度数为30°或90°.【点睛】本题主要考查了菱形的性质,图形旋转的性质,等边三角形的判定和性质,勾股定理等知识,熟练掌握菱形的性质,图形旋转的性质,等边三角形的判定和性质,勾股定理等知识,并利用分类讨论思想解答是解题的关键.14.(23-24八年级下·湖北武汉·期中)在菱形ABCD和菱形BEFG中,∠ABC=∠EBG=60°,AB=6,BE=2.(1)如图1,若点E、G分别在边AB、BC上,点F在菱形ABCD内部,连接DF,直接写出DF的长度为;(2)如图2,把菱形BEFG绕点B顺时针旋转α°(0<α<360),连接DF、CG,判断DF与CG的数量关系,并给出证明;(3)如图3,①把菱形BEFG继续绕点B顺时针旋转,连接GD,O为DG的中点,连接CO、EO,试探究CO与EO的关系;②直接写出菱形BEFG绕B点旋转过程中CO的取值范围.【答案】(1)43(2)FD=3CG,证明见解析(3)OE=3OC,2≤OC≤4【分析】(1)连接AC,EG,BF,DB,AC,BD交于点O,EG,BF交于点H,根据菱形的性质,证明B,F,D三点共线,求出BD,BF的长,用BD-BF即可求出DF的长度;(2)过点D作DM∥FG,过点G作GM∥DF,过点C作CN⊥MG,得到四边形DMGF为平行四边形,证明△CDM≌△CBG,得到CM=CG,∠DCM=∠BCG,进而求出∠MCG=∠BCG+∠BCM=∠DCM+∠BCM=∠DCB=120°,利用等腰三角形的性质结合30度角的直角三角形的性质,即可得出结论;(3)①延长CO至点H,使OC=OH,连接AC,AH,HE,HG,延长BA,交CH于点Q,先证明△DOC≌△GOH,推出四边形AHGB为平行四边形,再证明△HAC≌△EBC,推出△CHE为等边三角形,利用等边三角形的性质和含30度角的直角三角形的性质,即可得出结论;②三角形的三边关系,求出CE的范围,进而求出OC的范围即可.【详解】(1)解:连接AC,EG,BF,DB,AC,BD交于点O,EG,BF交于点H,∵菱形ABCD ,菱形EBGF ,∴∠ABD =∠CBF =12∠ABC =30°,∠EBF =∠GBF =12∠EBG =30°,AC ⊥BD ,EG ⊥BF ,BD =2OB ,BF =2HB ,∵点E 、G 分别在边AB 、BC 上,∴∠ABD =∠ABF =30°,∴B ,F ,D 三点共线,∵BE =2,∠EBF =30°,∴HE =12BE =1,BH =3HE =3,∴BF =2BH =23,同理:BD =2OB =23OA =2×32AB =63,∴DF =BD -BF =43;故答案为:43;(2)FD =3CG ,证明如下:过点D 作DM ∥FG ,过点G 作GM ∥DF ,过点C 作CN ⊥MG ,则:四边形DMGF 为平行四边形,∴DF =MG ,DM =GF ,∵菱形ABCD ,菱形EBGF ,∠ABC =∠EBG =60°,∴AD ∥BC ,BE ∥GF ,∠ADB =∠ABC =∠EBG =60°,CD =BC ,BG =GF =DM∴BE ∥DM ,∠1=∠2,∠DCB =180°-∠ADC =120°,∴∠3=∠DMN ,∵∠1=∠ADM +∠DMN ,∠2=∠3+∠CBE∴∠ADM =∠CBE ,∴∠CDA +∠ADM =∠CBE +∠EBG ,即:∠CDM =∠CBG ,又∵CD =BC ,BG =DM ,∴△CDM ≌△CBG ,∴CM =CG ,∠DCM =∠BCG ,∴∠MCG =∠BCG +∠BCM =∠DCM +∠BCM =∠DCB =120°,∴∠CMG =∠CGM =12180°-120° =30°,∵CN ⊥MG ,∴DF =MG =2NG ,CN =12CG ,∴NG=CG2-CN2=3CG,2∴DF=3CG;(3)①延长CO至点H,使OC=OH,连接AC,AH,HE,HG,延长BA,交CH于点Q,∵O是DG的中点,∴OD=OG,又∵∠DOC=∠HOG,∴△DOC≌△GOH,∴GH=CD,∠OCD=∠OHG,∴CD∥HG,∵菱形ABCD,∴AB∥CD,AD∥BC,AB=BC=CD=DA,∠ADC=∠ABC=60°,∴AB∥HG,GH=CD=AB,△ABC为等边三角形,∴四边形AHGB为平行四边形,∠BAC=∠ACB=60°,AC=AB=BC,∴AH∥BG,AH=BG,∠CAQ=180°-∠CAB=120°,∴∠HAQ=∠ABG,∵BG=BE,∴AH=BE,∵∠CBE=∠ABC+∠ABG+∠EBG=120°+∠ABG,∠HAC=∠HAQ+∠CAQ=∠HAQ+120°,∴∠CBE=∠HAC,又∵AH=BE,AC=BC,∴△HAC≌△EBC,∴CH=CE,∠HCA=∠ECB,∴∠HCE=∠HCA+∠ACE=∠BCE+∠ACE=∠ACB=60°,∴△CHE为等边三角形,∵OC=OH,∠HEC=60°,∴OE⊥OC,∠CEO=30°,∴OC=1CE,2∴OE=3OC;②∵BC=AB=6,BE=2,∴BC-BE≤CE≤BC+BE,即:4≤CE≤8,∵OC=1CE,2∴2≤OC≤4.【点睛】本题考查菱形的性质,平行四边形的判定和性质,等腰三角形的判定和性质,等边三角形的判定和性质,含30度角的直角三角形,勾股定理,三角形的三边关系等知识点,综合性强,难度大,属于压轴题,熟练掌握相关知识点,添加辅助线构造特殊图形和全等三角形,是解题的关键.【考点四利用菱形的性质与判定解决最值问题】15.(23-24八年级下·重庆沙坪坝·期中)如图,菱形ABCD的周长为8,∠DAC=30°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是.【答案】3【分析】此题考查轴对称确定最短路线问题,菱形的性质,等边三角形的判定与性质连接BD ,DE ,根据菱形的性质可得,△ABD 是等边三角形,再证明△ADP ≌△ABP ,可得PD =PB ,从而得到PE +PB 的最小值为DE 的长,再由E 是AB 的中点,可得DE ⊥AB ,AE =12AB =1,然后根据勾股定理可得DE =3,即可求解.【详解】解:如图,连接BD ,DE ,∵四边形ABCD 是菱形,周长为8,∠DAC =30°,∴∠DAB =2∠DAC =60°,∠DAP =∠BAP ,AB =AD =2,∴△ABD 是等边三角形,在△ADP 和△ABP 中,∵AP =AP ,∠DAP =∠BAP ,AB =AD ,∴△ADP ≌△ABP ,∴PD =PB ,∴PE +PB =PE +PD ≥DE ,即PE +PB 的最小值为DE 的长,∵E 是AB 的中点,∴DE ⊥AB ,AE =12AB =1,∴DE =AD 2-AE 2=3,即PE +PB 的最小值为3.故答案为:3.【变式训练】16.(2024九年级下·全国·专题练习)如图,在菱形ABCD 中,E ,F 分别是边CD ,BC 上的动点,连接AE ,EF ,G ,H 分别为AE ,EF 的中点,连接GH .若∠B =45°,BC =23,则GH 的最小值是.【答案】62【分析】连接AF ,利用三角形中位线定理,可知GH =12AF ,当AF ⊥BC 时,AF 最小,求出AF 最小值即可求出.【详解】解:连接AF ,如图,∵四边形ABCD 是菱形,∵G ,H 分别为AE ,EF 的中点,∴GH 是△AEF 的中位线,∴GH =12AF ,当AF ⊥BC 时,则∠AFB =90°,AF 最小,GH 得到最小值,∵∠B =45°,∴△ABF 是等腰直角三角形,∴AF 2+BF 2=AB 2,即2AF 2=AB 2,∴AF =6,∴GH =62,故答案为:62.【点睛】本题考查了菱形的性质、三角形的中位线定理、等腰直角三角形的判定与性质、垂线段最短等知识,解题的关键是学会添加常用辅助线,属于中考常考题型.17.(23-24八年级下·安徽合肥·期末)菱形ABCD 中,∠B =60°,E 是BC 中点,连接AE ,DE ,点F 是DE 上一动点,G 为AF 中点,连接CG .(1)∠BAE =;(2)若AB =2,则CG 的最小值为.【答案】30°2217【分析】(1)连接AC ,证明△ABC 为等边三角形,三线合一,即可得出结果;(2)取AD 的中点I ,AE 的中点H ,连接HG ,IG ,CH ,CI ,根据三角形的中位线定理,推出点G 在IH 上运动,当CG ⊥HG 时,CG 最小,进行求解即可.【详解】解:(1)连接AC ,∵菱形ABCD ,∴AB =BC ,∵∠B =60°,∴△ABC 为等边三角形,∴∠BAC =60°,∵E 是BC 中点,∴AE 平分∠BAC ,∴∠BAE =12∠BAC =30°;故答案为:30°;(2)取AD 的中点I ,AE 的中点H ,连接HG ,IG ,CH ,CI则:IG ∥DF ,HG ∥DF ,∴I ,G ,H 三点共线,。
菱形(基础)责编:康红梅【学习目标】1. 理解菱形的概念.2. 掌握菱形的性质定理及判定定理.【要点梳理】要点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.要点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.要点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心.要点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积由两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.要点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.要点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.【典型例题】类型一、菱形的性质1、(2016•广安)如图,四边形ABCD是菱形,CE⊥AB交AB的延长线于点E,CF ⊥AD交AD的延长线于点F,求证:DF=BE.【思路点拨】连接AC,根据菱形的性质可得AC平分∠DAE,CD=BC,再根据角平分线的性质可得CE=FC,然后利用HL证明Rt△CDF≌Rt△CBE,即可得出DF=BE.【答案与解析】证明:连接AC,∵四边形ABCD是菱形,∴AC平分∠DAE,CD=BC,∵CE⊥AB,CF⊥AD,∴CE=FC,∠CFD=∠CEB=90°.在Rt△CDF与Rt△CBE中,,∴Rt△CDF≌Rt△CBE(HL),∴DF=BE.【总结升华】此题考查了菱形的性质,角平分线的性质,关键是掌握菱形的两条对角线互相垂直,并且每一条对角线平分一组对角;角平分线的性质:角的平分线上的点到角的两边的距离相等.同时考查了全等三角形的判定与性质.举一反三:【变式1】(2015•温州模拟)如图,在菱形ABCD中,点E是AB上的一点,连接DE交AC于点O,连接BO,且∠AED=50°,则∠CBO=度.【答案】50;解:在菱形ABCD中,AB∥CD,∴∠CDO=∠AED=50°,CD=CB,∠BCO=∠DCO,∴在△BCO和△DCO中,,∴△BCO≌△DCO(SAS),∴∠CBO=∠CDO=50°.【高清课堂特殊的平行四边形(菱形)例1】【变式2】菱形ABCD 中,∠A ∶∠B =1∶5,若周长为8,则此菱形的高等于( ). A.21 B.4 C.1 D.2【答案】C ;提示:由题意,∠A =30°,边长为2,菱形的高等于12×2=1. 类型二、菱形的判定2、如图所示,在△ABC 中,CD 是∠ACB 的平分线,DE ∥AC ,DF ∥BC ,四边形DECF 是菱形吗?试说明理由.【思路点拨】由菱形的定义去判定图形,由DE ∥AC ,DF ∥BC 知四边形DECF 是平行四边形,再由∠1=∠2=∠3得到邻边相等即可.【答案与解析】解:四边形DECF 是菱形,理由如下:∵ DE ∥AC ,DF ∥BC∴ 四边形DECF 是平行四边形.∵ CD 平分∠ACB ,∴ ∠1=∠2∵ DF ∥BC ,∴ ∠2=∠3,∴ ∠1=∠3.∴ CF =DF ,∴ 四边形DECF 是菱形.【总结升华】在用菱形的定义判定一个四边形是菱形时,首先判定这个四边形是平行四边形,再由一对邻边相等来判定它是菱形.举一反三:【变式】如图所示,AD 是△ABC 的角平分线,EF 垂直平分AD ,分别交AB 于E ,交AC 于F ,则四边形AEDF 是菱形吗?请说明理由.【答案】解:四边形AEDF 是菱形,理由如下:∵ EF 垂直平分AD ,∴ △AOF 与△DOF 关于直线EF 成轴对称.∴ ∠ODF =∠OAF ,又∵ AD平分∠BAC,即∠OAF=∠OAE,∴∠ODF=∠OAE.∴ AE∥DF,同理可得:DE∥AF.∴四边形AEDF是平行四边形,∴ EO=OF又∵AEDF的对角线AD、EF互相垂直平分.∴AEDF是菱形.3、如图所示,在△ABC中,∠BAC=90°,AD⊥BC于点D,CE平分∠ACD,交AD于点G,交AB于点E,EF⊥BC于点F.求证:四边形AEFG是菱形.【思路点拨】由角平分线性质易知AE=EF,欲证四边形AEFG是菱形,只要再证四边形AEFG是平行四边形或AG=GF=AE即可.【答案与解析】证明:方法一:∵ CE平分∠ACB,∠BAC=90°,EF⊥BC,∴ AE=EF,∠1+∠3=90°,∠4+∠2=90°.∵∠1=∠2,∴∠3=∠4.∵ EF⊥BC,AD⊥BC,∴ EF∥AD.∴∠4=∠5.∴∠3=∠5.∴ AE=AG.∴ EF AG.∴四边形AEFG是平行四边形.又∵ AE=AG,∴四边形AEFG是菱形.方法二:∵ CE平分∠ACB,∠BAC=90°,EF⊥BC,∴ AE=EF,∠1+∠3=90°,∠4+∠2=90°.∴∠3=∠4.∵ EF⊥BC,AD⊥BC,∴ EF∥AD.∴∠4=∠5.∴∠3=∠5.∴ AE=AG.在△AEG和△FEG中,AE=EF,∠3=∠4,EG=EG,∴△AEG≌△FEG.∴ AG=FG.∴ AE=EF=FG=AG.∴四边形AEFG是菱形.【总结升华】判定一个四边形是菱形,关键是把已知条件转化成判定方法所需要的条件.举一反三:【变式】如图所示,在ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过A点作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证四边形DEBF是菱形.【答案】证明:(1)ABCD 中,AB ∥CD ,AB =CD∵ E 、F 分别为AB 、CD 的中点∴ DF =12DC ,BE =12AB ∴ DF ∥BE .DF =BE∴ 四边形DEBF 为平行四边形∴ DE ∥BF(2)证明:∵ AG ∥BD∴ ∠G =∠DBC =90°∴ △DBC 为直角三角形又∵ F 为边CD 的中点.∴ BF =12DC =DF 又∵ 四边形DEBF 为平行四边形∴ 四边形DEBF 是菱形类型三、菱形的应用4、如图所示,是一种长0.3m ,宽0.2m 的矩形瓷砖,E 、F 、G 、H 分别为矩形四边BC 、CD 、DA 、AB 的中点,阴影部分为淡黄色花纹,中间部分为白色,现有一面长4.2 m ,宽2.8m 的墙壁准备贴如图所示规格的瓷砖.试问:(1)这面墙最少要贴这种瓷砖多少块?(2)全部贴满后,这面墙壁会出现多少个面积相同的菱形?【答案与解析】解:墙壁长4.2m ,宽2.8m ,矩形瓷砖长0.3m ,宽0.2m ,4.2÷0.3=14,2.8÷0.2=14,则可知矩形瓷砖横排14块,竖排14块可毫无空隙地贴满墙面.(1)则至少需要这种瓷砖14×14=196(块).(2)每块瓷砖中间有一个白色菱形,则共有196个白色的菱形,它的面积等于瓷砖面积的一半.另外在同一个顶点处的瓷砖能够拼成一个淡黄色花纹的菱形,它的面积也等于瓷砖面积的一半,有花纹的菱形横排有13个,竖排也有13个,则一共有淡黄色花纹菱形13×13=169个,面积相等的菱形一共有196+169=365(个).【总结升华】菱形可以看作是由直角三角形组成的,因而铺满墙面后,要计算空白菱形的个数和阴影菱形的个数.将相同的图形拼在一起,在顶点周围的几个图形也能拼成一定的图案,不要忽略周围图形的拼接.。
菱形练习题及答案一.菱形的定义:有一组邻边相等的平行四边形叫做菱形.二.菱形的性质:菱形具有平行四边形一切性质,此外,它还具有如下特殊性质:1.菱形的四条边相等。
.菱形的两条对角线互相垂直,且每一条对角线平分一组对角。
3.菱形是轴对称图形也是中心对称图形,两条对角线所在的直线是它的两条对称轴。
三.菱形的判定办法:1.用菱形的定义:有一组邻边相等的平行四边形是菱形; .四条边都相等的四边形是菱形;3.对角线垂直的平行四边形是菱形;.对角线互相垂直平分的四边形是菱形。
四.菱形的面积:等于两条对角线乘积的一半.,周长=边长的4倍复习:1.如图,在△ABC中,E是AD的中点,过点A作BC的平行线交BE的延长线于F,且AF?DC,连接CF.求证:D是BC的中点;若AB?AC,试猜测四边形ADCF 的形状,并证明.解答:证明:AF∥BC,??AFE??DBE.∵E是AD的中点,?AE?DE.又?AEF??DEB,?△AEF≌△DEB.?AF?DB.∵AF?DC,?DB?DC.解:四边形ADCF是矩形,证明:∵AF∥DC,AF?DC,?四边形ADCF是平行四边形.∵AB?AC,D是BC的中点,?AD?BC.即?ADC?90.?四边形ADCF是矩形.菱形例题讲解:1.已知点D在△ABC的BC边上,DE∥AC交AB于E,DF∥AB交AC于F.若AD平分∠BAC,试判断四边形AEDF的形状,并说明理由.解答:四边形AEDF是菱形,∵DE∥AC,∠ADE=∠DAF,同理∠DAE=∠FDA,∵AD=DA,∴△ADE≌△DAF,∴AE=DF;∵DE∥AC,DF∥AB,∴四边形AEDF是平行四边形,∴∠DAF=∠FDA.∴AF=DF.∴平行四边形AEDF为菱形.2.已知:如图,在梯形ABCD中,AB∥CD,BC=CD,AD⊥BD,E为AB中点,求证:四边形BCDE是菱形.证明:∵AD⊥BD,∴△ABD是Rt△∵E是AB的中点,∴BE=DE,∴∠EDB=∠EBD, ∵CB=CD,∴∠CDB=∠CBD,∵AB∥CD,∴∠EBD=∠CDB,∴∠EDB=∠EBD=∠CDB=∠CBD,∵BD=BD,∴△EBD≌△CBD ,∴BE=BC,∴CB=CD=BE=DE,∴菱形BCDE.3.如图,△ABC与△CDE都是等边三角形,点E、F分别在AC、BC上,且EF∥AB,求证:四边形EFCD是菱形;设CD=4,求D、F两点间的距离.解答:证明:∵△ABC与△CDE都是等边三角形,∴ED=CD=CE.∵EF∥AB∴∠EFC=∠ACB=∠FEC=60°,∴EF=FC=EC ∴四边形EFCD是菱形.解:连接DF,与CE相交于点G,由CD=4,可知CG=2,∴ ∴.4.如图,平行四边形ABCD的对角线AC的垂直平分线与边AD、BC分别相交于点E、F.求证:四边形AFCE是菱形.证明:∵AE∥FC.∴∠EAC=∠FCA.又∵∠AOE=∠COF,AO=CO,∴△AOE≌△COF.∴EO=FO.又EF⊥AC,∴AC是EF的垂直平分线.∵EF是AC的垂直平分线.∴四边形AFCE为菱形5.在中,E,F分别为边AB,CD的中点,连接DE,BF,BD.求证:△ADE≌△CBF.若AD?BD,则四边形BFDE是什么特殊四边形?请证明你的结论.解:在平行四边形ABCD中,∠A=∠C,AD=CB,AB=CD.∵E,F分别为AB,CD的中点∴AE=CF , ?△AED≌△CF若AD⊥BD,则四边形BFDE是菱形.证明:AD?BD,?△ABD是Rt△,且AB是斜边,E是AB的中点,?DE?1AB?BE.由题意可EB∥DF且EB?DF,?四边形BFDE是平行四边形,?四边形BFDE是菱形.实战演练1.一菱形周长是20cm,两条对角线的比是4∶3,则这菱形的面积是 A.12cm2B.24cm C.48cm2D.96cm2 2.如图,已知长方形ABCD,AB=3cm,AD=4cm,过对角线BD的中点O做BD的垂直平分线EF,分别交AD、BC于点E、F,则AE的长为_____7cm__________.分析:连EB,∵EF垂直平分BD,∴ED=EB,设AE=x,则DE=EB=,AE2+AB2=BE2,即:x2+32=2,解得:x=/83.如图,在菱形ABCD中,AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH=4.如图,菱形ABCD的连长是2㎝,E是AB中点,且DE⊥AB,则菱形ABCD的面积为___㎝2.5.如图,在菱形ABCD中,对角线AC与BD交于点O,OE⊥AB,若∠ADC=130°,则∠AOE的大小为6.如图,已知四边形1+第4题7.在菱形ABCD中,已知AB=10,AC=16,那么菱形ABCD 的面积为8.菱形的一边与两条对角线所构成的两个角的差是32°,则菱形较小的内角是.9.已知菱形ABCD的两条对角线相交于点O,若AB =,∠BDC =0?,则菱形的面积为10.在四边形ABCD中,给出四个条件:①AB=CD,②AD∥BC,③AC⊥BD,④AC平分∠BAD,由其中三个条件推出四边形ABCD是菱形,你认为这三个条件是①③④或②③④ .11.如图,已知在□ABCD中,AD=2AB,E、F在直线AB 上,CE与AD交与点M, DF与CB交与点N,且AE=AB=BF,求证:CE⊥DF.证明:连接MN,∵□ABCD, ?AB=DC, 又∵AB=AE, ?AE=DC??AEM??CDM,?M为AD的中点. 又∵AD=2AB, ?CD=DM?CDMN是棱形,所以CE⊥DF.12.如图所示,△ABC中,∠ACB=90°,∠ABC的平分线BD?交AC于点D,CH⊥AB于H,且交BD于点F,DE⊥AB 于E,四边形CDEF是菱形吗?请说明理由.D解:解法一:四边形CDEF是菱形.理由:如图所示,BD平分∠ABC,?CD=DE,BHEA因为∠1+∠4=90°,∠2+∠5=90°,∠1=∠2,∠3=∠5,??∠3=∠4.?CF=CD.?CF=DE.因为CF//DE.?所以四边形CDEF是平行四边形.所以□CDEF是菱形.13.如图所示,已知△ABC中,AB=AC,D是BC的中点,过点D?作DE⊥AB,DF⊥AC,垂足分别为E,F,再过E,F作EG⊥AC,FH⊥AB,垂足分别为G,H,且EG,?FH相交于点K,试说明EF和DK之间的关系. A解:EF与DK 互相垂直平分.理由:因为DE⊥AB,FH⊥AB,?DE∥FH.? ∵DF⊥AC,EG⊥AC,所以DF∥EG.?四边形DEKF是平行四边形.∵AB=AC,?∠B=∠C.又因为BD=CD,∠BED=∠CFD=90°,HG?△BDE≌△CDF,?DE=DF.?DEKF是菱形,?EF与DK互相垂直平分.点拨:要说明EF与DK互相垂直平分,只要说明四边形DEKF是菱形,?要说明四边形DEKF是E菱形,可先说明四边形DEKF是平行四边形,再说明一组邻边相等即可. BDC菱形性质练习题一.选择题1.如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是,则顶点M、N的坐标分别是A.M,N B.M,N C.M,ND.M,N2.菱形的周长为4,一个内角为60°,则较短的对角线长为A.B. C.1 D.3.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为A.3:1 B.4:1 C.5:1 D.6:14.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为A.1B. C.7.D.二.填空题25.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是.6.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB 的距离OH= _________ .27.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为 cm.6题图题图题图题图8.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为 _________ .9如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO=10如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1=10题图 12题13题图 14题图11.已知菱形的一个内角为60°,一条对角线的长为,则另一条对角线的长为12.如图所示,两个全等菱形的边长为1米,一个微型机器人由A点开始按A﹣>B﹣>C﹣>D﹣>E﹣>F﹣>C ﹣>G﹣>A的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在 _________ 点.13如图,P为菱形ABCD的对角线上一点,PE⊥AB于点E,PF⊥AD于点F,PF=3cm,则P点到AB的距离是. 14已知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为15.已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为cm.16.已知菱形的周长是52cm,一条对角线长是24cm,则它的面积是cm.217如图,菱形ABCD的对角线的长分别为2和5,P是对角线AC上任一点,且PE∥BC交AB于E,PF∥CD交AD于F,则阴影部分的面积是 _________ .17题图19题图19.如图:点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE= 度.三.解答题20.如图,四边形ABCD为菱形,已知A,B.求点D的坐标;求经过点C的反比例函数解析式.21.如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC 交BC的延长线于点E.求证:DE=BE.22.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.求∠ABD的度数;求线段BE的长.23.如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.求证:BE=BF;当菱形ABCD的对角线AC=8,BD=6时,求BE的长.24.如图,在菱形ABCD中,P是AB上的一个动点,连接DP交对角线AC于E连接BE.证明:∠APD=∠CBE;若∠DAB=60°,试问P点运动到什么位置时,△ADP 的面积等于菱形ABCD面积的,为什么?25.如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B出发向点C运动,点P、Q的速度都是1cm/s.在运动过程中,四边形AQCP可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP是菱形?分别求出菱形AQCP的周长、面积.菱形性质经典练习题一.选择题1.如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是,则顶点M、N的坐标分别是A.M,N B.M,N C.M,ND.M,N2.菱形的周长为4,一个内角为60°,则较短的对角线长为A.B. C.1 D.3.菱形的周长为8cm,高为1cm,则该菱形两邻角度数比为A.3:1 B.4:1 C.5:1 D.6:14.如图,菱形ABCD中,AB=15,∠ADC=120°,则B、D两点之间的距离为A.1B. C.7.D.二.填空题25.已知菱形的两条对角线长分别为2cm,3cm,则它的面积是cm.6.如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH丄AB,垂足为H,则点0到边AB 的距离OH= _________ .27.如图,菱形ABCD的边长是2cm,E是AB的中点,且DE丄AB,则菱形ABCD的面积为cm.6题图题图题图题图8.如图,在菱形ABCD中,对角线AC与BD相交于点O,AB=13,AC=10,过点D作DE∥AC交BC的延长线于点E,则△BDE的周长为9.如图,已知菱形ABCD的一个内角∠BAD=80°,对角线AC、BD相交于点O,点E在AB上且BE=BO,则∠BEO= _________ 度.10.如图,一活动菱形衣架中,菱形的边长均为16cm,若墙上钉子间的距离AB=BC=16cm,则∠1=10题图 12题13题图 14题图11.已知菱形的一个内角为60°,一条对角线的长为,则另一条对角线的长为.12.如图所示,两个全等菱形的边长为1米,一个微型机器人由A点开始按A﹣>B﹣>C﹣>D﹣>E﹣>F﹣>C ﹣>G﹣>A的顺序沿菱形的边循环运动,行走2009米停下,则这个微型机器人停在13.如图,P为菱形ABCD的对角线上一点,PE⊥AB于点E,PF⊥AD于点F,PF=3cm,则P点到AB的距离是 _________ cm.14.已知:如图,菱形ABCD中,∠B=60°,AB=4,则以AC为边长的正方形ACEF的周长为.15.已知菱形的周长为40cm,两条对角线之比为3:4,则菱形的面积为.216.已知菱形的周长是52cm,一条对角线长是24cm,则它的面积是.17.如图,菱形ABCD的对角线的长分别为2和5,P 是对角线AC上任一点,且PE∥BC交AB于E,PF∥CD交AD 于F,则阴影部分的面积是 _________ .17题图 18题图 19题图18.如图:菱形ABCD中,AB=2,∠B=120°,E是AB的中点,P是对角线AC上的一个动点,则PE+PB的最小值是_________ .19.如图:点E、F分别是菱形ABCD的边BC、CD上的点,且∠EAF=∠D=60°,∠FAD=45°,则∠CFE= 度.三.解答题20.如图,四边形ABCD为菱形,已知A,B.求点D的坐标;求经过点C的反比例函数解析式.221.如图所示,在菱形ABCD中,∠ABC=60°,DE∥AC 交BC的延长线于点E.求证:DE=BE.22.如图,在菱形ABCD中,∠A=60°,AB=4,O为对角线BD的中点,过O点作OE⊥AB,垂足为E.求∠ABD的度数;求线段BE的长.23.如图,四边形ABCD是菱形,BE⊥AD、BF⊥CD,垂足分别为E、F.求证:BE=BF;当菱形ABCD的对角线AC=8,BD=6时,求BE的长. 24.如图,在菱形ABCD中,P是AB上的一个动点,连接DP交对角线AC于E连接BE.证明:∠APD=∠CBE;若∠DAB=60°,试问P点运动到什么位置时,△ADP 的面积等于菱形ABCD面积的,为什么?25.已知:如图,四边形ABCD是菱形,E是BD延长线上一点,F是DB延长线上一点,且DE=BF.请你以F为一个端点,和图中已标明字母的某一点连成一条新的线段,猜想并证明它和图中已有的某一条线段相等.连接 _________ ;猜想: _________ = _________ ;证明:26.如图所示,在矩形ABCD中,AB=4cm,BC=8cm、点P从点D出发向点A运动,同时点Q从点B出发向点C运动,点P、Q的速度都是1cm/s.在运动过程中,四边形AQCP可能是菱形吗?如果可能,那么经过多少秒后,四边形AQCP是菱形?分别求出菱形AQCP的周长、面积.答案与评分标准一.选择题1.如图所示,在平面直角坐标系中,菱形MNPO的顶点P的坐标是,则顶点M、N的坐标分别是A.M,N B.M,N C.M,N D.M,N 考点:菱形的性质;坐标与图形性质。
菱形(提高)【学习目标】1. 理解菱形的概念.2. 掌握菱形的性质定理及判定定理.【要点梳理】要点一、菱形的定义有一组邻边相等的平行四边形叫做菱形.要点诠释:菱形的定义的两个要素:①是平行四边形.②有一组邻边相等.即菱形是一个平行四边形,然后增加一对邻边相等这个特殊条件.要点二、菱形的性质菱形除了具有平行四边形的一切性质外,还有一些特殊性质:1.菱形的四条边都相等;2.菱形的两条对角线互相垂直,并且每一条对角线平分一组对角.3.菱形也是轴对称图形,有两条对称轴(对角线所在的直线),对称轴的交点就是对称中心.要点诠释:(1)菱形是特殊的平行四边形,是中心对称图形,过中心的任意直线可将菱形分成完全全等的两部分.(2)菱形的面积由两种计算方法:一种是平行四边形的面积公式:底×高;另一种是两条对角线乘积的一半(即四个小直角三角形面积之和).实际上,任何一个对角线互相垂直的四边形的面积都是两条对角线乘积的一半.(3)菱形可以用来证明线段相等,角相等,直线平行,垂直及有关计算问题.要点三、菱形的判定菱形的判定方法有三种:1.定义:有一组邻边相等的平行四边形是菱形.2.对角线互相垂直的平行四边形是菱形.3.四条边相等的四边形是菱形.要点诠释:前两种方法都是在平行四边形的基础上外加一个条件来判定菱形,后一种方法是在四边形的基础上加上四条边相等.【典型例题】类型一、菱形的性质1、如图所示,菱形ABCD中,E、F分别是BC、CD上的点,∠B=∠EAF=60°,∠BAE =18°.求∠CEF的度数.【思路点拨】由已知∠B=60°,∠BAE=18°,则∠AEC=78°.欲求∠CEF的度数,只要求出∠AEF的度数即可,由∠EAF=60°,结合已知条件易证△AEF为等边三角形,从而∠AEF=60°.【答案与解析】解:连接AC.∵四边形ABCD是菱形,∴ AB=BC,∠ACB=∠ACF.又∵∠B=60°,∴△ABC是等边三角形.∴∠BAC=∠ACB=60°,AB=AC.∴∠ACF=∠B=60°.又∵∠EAF=∠BAC=60°∴∠BAE=∠CAF.∴△ABE≌△ACF.∴ AE=AF.∴△AEF为等边三角形.∴∠AEF=60°.又∵∠AEF+∠CEF=∠B+∠BAE,∠BAE=18°,∴∠CEF=18°.【总结升华】当菱形有一个内角为60°时,连接菱形较短的对角线得到两个等边三角形,有助于求相关角的度数.在求角的度数时,一定要注意已知角与所求角之间的联系.2、(2018•龙岩)如图,在周长为12的菱形ABCD中,AE=1,AF=2,若P为对角线BD上一动点,则EP+FP的最小值为()A.1 B.2 C.3 D.4【思路点拨】作F点关于BD的对称点F′,则PF=PF′,由两点之间线段最短可知当E、P、F′在一条直线上时,EP+FP有最小值,然后求得EF′的长度即可.【答案】C.【解析】解:作F点关于BD的对称点F′,则PF=PF′,连接EF′交BD于点P.∴EP+FP=EP+F′P.由两点之间线段最短可知:当E、P、F′在一条直线上时,EP+FP的值最小,此时EP+FP=EP+F′P=EF′.∵四边形ABCD为菱形,周长为12,∴AB=BC=CD=DA=3,AB∥CD,∵AF=2,AE=1,∴DF=AE=1,∴四边形AEF′D是平行四边形,∴EF′=AD=3.∴EP+FP的最小值为3.故选:C.【总结升华】本题主要考查的是菱形的性质、轴对称﹣﹣路径最短问题,明确当E、P、F′在一条直线上时EP+FP有最小值是解题的关键.举一反三:【变式】(2018春•潍坊期中)如图,在菱形ABCD中,对角线AC、BD相交于点O,E是AB的中点,如果EO=2,求四边形ABCD的周长.【答案】解:∵四边形ABCD为菱形,∴BO=DO,即O为BD的中点,又∵E是AB的中点,∴EO是△ABD的中位线,∴AD=2EO=2×2=4,∴菱形ABCD的周长=4AD=4×4=16.类型二、菱形的判定3、(2018春•郑州校级月考)如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从点A出发沿射线AG以lcm/s的速度运动,同时点F从点B出发沿线射BC以2cm/s 的速度运动,设运动时间为t(s).(1)连接EF,当EF经过AC边的中点D时,求证:△ADE≌△CDF;(2)当t为多少时,四边形ACFE是菱形.【思路点拨】(1)由题意得到AD=CD,再由AG与BC平行,利用两直线平行内错角相等得到两对角相等,利用AAS即可得证;(2)若四边形ACFE是菱形,则有CF=AC=AE=6,由E的速度求出E运动的时间即可.【答案与解析】(1)证明:∵AG∥BC,∴∠EAD=∠DCF,∠AED=∠DFC,∵D为AC的中点,∴AD=CD,在△ADE和△CDF中,,∴△ADE≌△CDF(AAS);(2)解:①若四边形ACFE是菱形,则有CF=AC=AE=6,则此时的时间t=6÷1=6(s).故答案为:6s.【总结升华】此题考查了菱形的判定,全等三角形的判定与性质等知识,弄清题意是解本题的关键.举一反三:【变式】已知,在△ABC中,AB=AC=a,M为底边BC上任意一点,过点M分别作AB、AC 的平行线交AC于P,交AB于Q.⑴求四边形AQMP的周长;⑵M位于BC的什么位置时,四边形AQMP为菱形?说明你的理由.【答案】解:(1)∵MQ∥AP,MP∥AQ,∴四边形AQMP是平行四边形∴QM=AP又∵AB=AC,MP∥AQ,∴∠2=∠C,△PMC是等腰三角形,PM=PC∴QM+PM=AP+PC=AC=a∴四边形AQMP的周长为2a(2)M位于BC的中点时,四边形AQMP为菱形.∵M位于BC的中点时,易证△QBM与△PCM全等,∴QM=PM,∴四边形AQMP为菱形类型三、菱形的综合应用4、如图所示,菱形ABCD中,AB=4,∠ABC=60°,∠EAF=60°,∠EAF的两边分别交BC、CD于E、F.(1)当点E、F分别在边BC、CD上时,求CE+CF的值.(2)当点E、F分别在CB、DC的延长线时,CE、CF又存在怎样的关系,并证明你的结论.【思路点拨】(1)由菱形的性质可知AB=BC,而∠ABC=60°,即联想到△ABC为等边三角形,∠BAC=60°,又∠EAF=60°,所以∠BAE=∠CAF,可证△BAE≌△CAF,得到BE=CF,所以CE+CF=BC.(2)思路基本与(1)相同但结果有些变化.【答案与解析】解:(1)连接AC.在菱形ABCD中,BC=AB=4,AB∥CD.∵∠ABC=60°,∴ AB=AC=BC,∠BAC=∠ACB=60°.∴∠ACF=60°,即∠ACF=∠B.∵∠EAF=60°,∠BAC=60°,∴∠BAE=∠CAF.∴△ABE≌△ACF(ASA),∴ BE=CF.∴ CE+CF=CE+BE=BC=4.(2)CE-CF=4.连接AC如图所示.∵∠BAC=∠EAF=60°,∴∠EAB=∠FAC.∵∠ABC=∠ACD=60°,∴∠ABE=∠ACF=120°.∵ AB=AC,∴△ABE≌△ACF(ASA),∴ BE=CF.∴ CE-CF=CE-BE=BC=4.【总结升华】(1)菱形的性质的主要应用是证明角相等、线段相等、两直线平行、两线段互相垂直、互相平分等.(2)注意菱形中的60°角的特殊性,它让菱形这个特殊的平行四边形变得更加特殊,常与等边三角形发生联系.【巩固练习】一.选择题1.下列命题中,正确的是( )A.两邻边相等的四边形是菱形B.一条对角线平分一个内角的平行四边形是菱形C.对角线垂直且一组邻边相等的四边形是菱形D.对角线垂直的四边形是菱形2. 菱形的周长为高的8倍,则它的一组邻角是()A.30°和150°B.45°和135°C.60°和120°D.80°和100°3.已知菱形的周长为40cm,两条对角线的长度比为3:4,那么两条对角线的长分别为()A.6cm,8cm B. 3cm,4cm C. 12cm,16cm D. 24cm,32cm4.(2018•青神县一模)如图,在菱形ABCD中,∠ADC=72°,AD的垂直平分线交对角线BD于点P,垂足为E,连接CP,则∠CPB的度数是()A.108°B.72°C.90°D.100°5. (2018•枣庄)如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于()A.B.C.5 D.46. 如图,菱形ABCD和菱形ECGF的边长分别为2和3,∠A=120°,则图中阴影部分的面积是()二.填空题7. (2018•江西三模)将矩形纸片ABCD按如图所示的方式折叠,得到菱形AECF.若AB=3,则BC的长为.8.如图,已知菱形ABCD,其顶点A、B在数轴上对应的数分别为-4和1,则BC=_____.9.如图,菱形ABCD的边长是2cm,E是AB中点,且DE⊥AB,则菱形ABCD的面积为______ 2cm.10.已知菱形ABCD的周长为20cm,且相邻两内角之比是1∶2,则菱形的两条对角线的长和面积分别是.11. 如图,菱形ABCD的对角线AC、BD相交于点O,且AC=8,BD=6,过点O作OH⊥AB,垂足为H,则点O到边AB的距离OH=.12.如图,在菱形ABCD中,对角线AC、BD相交于点O,AC=12,BD=16,E为AD中点,点P在x轴上移动,小明同学写出了两个使△POE为等腰三角形的P点坐标(-5,0)和(5,0).请你写出其余所有符合这个条件的P点坐标__________________.三.解答题13. (2018•建湖县一模)如图,△ABC中,∠ACB=60°,分别以△ABC的两边向形外作等边△BCE、等边△ACF,过A作AM∥FC交BC于点M,连接EM.求证:(1)四边形AMCF是菱形;(2)△ACB≌△MCE.14.(2018•安顺)如图,在▱ABCD中,BC=2AB=4,点E、F分别是BC、AD的中点.(1)求证:△ABE≌△CDF;(2)当四边形AECF为菱形时,求出该菱形的面积.15.如图,菱形ABCD的边长为2,BD=2,E、F分别是边AD,CD上的两个动点(不与端点重合),且满足AE+CF=2.(1)求证:△BDE ≌△BCF ;(2)判断△BEF 的形状,并说明理由;(3)设△BEF 的面积为S ,求S 的取值范围.【答案与解析】一.选择题1.【答案】B ;2.【答案】A ;【解析】由题意可知边长是高的2倍,所以一个内角为30°,另一个内角为150°.3.【答案】C ;【解析】设两条对角线的长为6,8k k .所以有()()2223410k k +=,∴2k =,所以两条对角线的长为12 ,16.4.【答案】B ;【解析】连接PA ,如图所示:∵四边形ABCD 是菱形,∴∠ADP=∠CDP=∠ADC=36°,BD 所在直线是菱形的对称轴,∴PA=PC ,∵AD 的垂直平分线交对角线BD 于点P ,∴PA=PD ,∴PD=PC ,∴∠PCD=∠CDP=36°,∴∠CPB=∠PCD+∠CDP=72°;故选:B.5.【答案】A.【解析】∵四边形ABCD是菱形,∴AO=OC,BO=OD,AC⊥BD,∵AC=8,DB=6,∴AO=4,OB=3,∠AOB=90°,由勾股定理得:AB==5,∵S菱形ABCD=,∴,∴DH=,故选A.6.【答案】A;【解析】阴影部分面积=两个菱形面积-△ABD面积-△DEF面积-△BGF面积==.二.填空题7.【答案】.;【解析】∵AECF为菱形,∴∠FCO=∠ECO,由折叠的性质可知,∠ECO=∠BCE,又∠FCO+∠ECO+∠BCE=90°,∴∠FCO=∠ECO=∠BCE=30°,在Rt △EBC 中,EC=2EB ,又EC=AE ,AB=AE+EB=3,∴EB=1,EC=2,∴BC=.8.【答案】5;【解析】菱形四条边相等.9.【答案】【解析】由题意∠A =60°,DE10.【答案】5;;2;【解析】菱形一个内角为60°,边长为5,所以两条对角线长为5和,面积为152⨯⨯=. 11.【答案】512; 【解析】431255AO BO OH AB ⨯⨯===. 12.【答案】()258,0,,08⎛⎫⎪⎝⎭; 【解析】由在菱形ABCD 中,AC =12,BD =16,E 为AD 中点,根据菱形的性质与直角三角形的性质,易求得OE 的长,然后分别从①当OP =OE 时,②当OE =PE 时,③当OP =EP 时去分析求解即可求得答案.三.解答题13.【解析】证明:(1)∵△ACF 是等边三角形,∴∠FAC=∠ACF=60°,AC=CF=AF ,∵∠ACB=60°,∴∠ACB=∠FAC,∴AF∥BC,∵AM∥FC,∴四边形AMCF是平行四边形,∵AM∥FC,∠ACB=∠ACF=60°,∴∠AMC=60°,又∵∠ACB=60°,∴△AMC是等边三角形,∴AM=MC,∴四边形AMCF是菱形;(2)∵△BCE是等边三角形,∴BC=EC,在△ABC和△MEC中∵,∴△ABC≌△MEC(SAS).14.【解析】(1)证明:∵在▱ABCD中,AB=CD,∴BC=AD,∠ABC=∠CDA.又∵BE=EC=BC,AF=DF=AD,∴BE=DF .∴△ABE ≌△CDF .(2)解:∵四边形AECF 为菱形时,∴AE=EC .又∵点E 是边BC 的中点,∴BE=EC ,即BE=AE .又BC=2AB=4,∴AB=BC=BE ,∴AB=BE=AE ,即△ABE 为等边三角形,▱ABCD 的BC 边上的高可由勾股定理算得为,∴菱形AECF 的面积为2.15.【解析】解:(1)∵AE +CF =2=CD =DF +CF∴AE =DF ,DE =CF ,∵AB =BD∴∠A =∠ADB =60°在△BDE 与△BCF 中BD BC ADB C DE CF =⎧⎪∠=∠⎨⎪=⎩∴△BDE ≌△BCF(2)由(1)得BE =BF ,∠EBD =∠CBF∴∠EBF =∠EBD +∠DBF =∠DBF +∠CBF =∠CBD =60°∴△BEF 是等边三角形(3)∵3≤△BEF 的边长<2∴2244S ≤<S ≤<。
八年级数学《菱形》知识总结及经典例题学习目标1.掌握菱形的概念.2.理解菱形的性质及识别方法.3.能利用菱形的性质及识别方法,解决一些问题.学法指导把平行四边形、矩形、菱形的性质及识别方法对照起来学习,了解它们的相同点和不同点.基础知识讲解1.菱形的定义四条边都相等的平行四边形(或一组邻边相等的平行四边形)叫做菱形.由菱形的定义可知,菱形是一种特殊的平行四边形,菱形的定义包含两个条件,①是平行四边形,②邻边相等,这两个条件缺一不可.2.菱形的性质(1)它具有平行四边形的一切性质(2)它除具有平行四边形的性质外,还具有自己的特殊性质.①菱形的四条边都相等.②菱形的对角线互相垂直平分,而且每条对角线平分一组对角.③菱形是轴对称图形,对称轴是两条对角线所在的直线.④菱形的对角线分菱形为4个全等的直角三角形.3.菱形的识别方法菱形的识别方法,除用定义来识别外,还有其它的识别方法,用定义来识别是最基本的识别方法.其它的识别方法有①四条边都相等的四边形,也为菱形.②对角线互相垂直的平行四边形,也是菱形,运用这个识别方法必须符合两个条件,一是对角线互相垂直,二是平行四边形.4.菱形的面积计算由菱形的对角线把菱形分成4个全等的直角三角形,可得出,菱形的面积=4×S Rt △. 设对角线长分别为a ,b .则菱形的面积=4×21×(22b a )=21ab ,即菱形的面积等于对角线乘积的一半.5.菱形的性质及识别方法的作用利用它们可以证明线段相等、垂直、平分、平行等关系.证明角相等,平分等关系,证明一个四边形为菱形和进行有关的计算.重点难点重点:菱形的性质,识别方法及其在生活、生产中的应用.难点:运用菱形的性质及识别方法,灵活地解答一些问题.易错误区分析运用菱形的定义时易忽略,邻边相等的平行四边形中的平行四边形这个条件. 例1.判断下列说法对不对(1)邻边相等的四边形为菱形.( )(2)两边相等的平行四边形为菱形.( )错误分析:(1)中应为邻边相等的平行四边形.(2)中是指邻边相等而不是两边相等. 错解:(1)(√) (2)(×)正解:(2)(×) (2)(×)运用菱形的识别方法“对角线”互相垂直且平分的平行四边形中有时忽略垂直或者平分,有时忽略平行四边形这些条件.由于本节的性质判别方法较多,利用本节解题时易犯推理不严密的错误.例2.如图在菱形ABCD 中,E ,F 分别是BC ,CD 的中点连结AE ,AF.求证:AE =AF错误分析:本题证明错在BE =DF ,因为并未证明BC =CD ,推理不严格错证:∵菱形ABCD ,∴AB =CD ,∠B =∠D又∵E ,F 分别为BC ,CD 的中点,∴BE =DF∴△ABE ≌△ADF ∴AE =AF正证:∵菱形ABCD ∵AB =AD ,∠B =∠D , ∴21BC=21CD 又∵EF 分别为BC ,CD 的中点 ∴BE =DF ,∴△ABE ≌△ADF ∴AE =AF典型例题例l .已知,如图所示,菱形ABCD 中,E ,F 分别是BC 、CD 上的一点,∠D=∠EAF=∠AEF =60°.∠BAE =18°,求∠CEF 的度数.分析:要求∠CEF 的度数,可先求∠AEB 的度数,而要求∠AEB 的度数则必须求∠B 的度数,这一点则可由菱形是特殊的平行四边形可得到.另外,由∠D =60°.如连结AC 得等边△ABC 与△ACD ,从而△ABE ≌△ACF ,有AE =AF ,则△AEF 为等边三角形,再由外角等于不相邻的两个内角和,可求∠CEF解法一:因为菱形是特殊的平行四边形.所∠B =∠D =60°.因为∠BAE =18°,∠AEB+∠B+∠BAE =180°所以∠AEB+60°+18°=180°.即∠AEB=180°-60°-18°=102°.又∠AEF =60°,∠AEB+∠AEF+∠CEF =180°所以∠CEF =180°-60°-102°=18°解法二:连结AC ∴四边形ABCD 为菱形,∴∠B =∠D =60°,AB =BC =CD =AD .∴△ABC 和△CDA 为等边三角形 ∴AB =AC ,∠B =∠ACD =∠BAC =60°∵∠EAF =60° ∴△BAE=∠CAF ∴△ABE ≌△ACF ∴AE =AF又∵∠EAF =60° ∴△EAF 为等边三角形 ∴∠AEF =60°∵∠AEC=∠B+∠BAE=∠AEF+∠CEF∴60°+18°=60°+∠CEF ∴∠CEF =18°解法三:利用辅助线把菱形转化为三角形来解答,这是一种常用的作辅助线的方法.例2.已知:如图,△ABC 中,∠BAC =90°,AD ⊥BC 于点D ,BE 平分∠ABC ,交AD 于点M ,AN 平分∠DAC ,交BC 于点N.求证:四边形AMNE 是菱形.分析:要证AMNE 是菱形,可以根据定义,证得它是平行四边形,并且有一组邻边相等,也可以根据判定定理,证它四边相等;或证两条对角线互相垂直平分,注意到AN 是∠DAC 的平分线,只要证AM =AE ,则AN 垂直平分ME ,若证AN ⊥ME ,则再由BE 平分∠ABN 易知BE 也垂直平分AN ,即AN 与ME 互相垂直平分,故有AM =MN =NE =AE ,即AMNE 是菱形,此为证法一.显然,在上述证法中,证得BE 垂直平分AN 后,可得AM =MN ,所以∠MNA =∠MAN =∠NAE ,所以MN AE ,则AMNE 是平行四边形,又AM =MN 所以AMNE 是菱形.证法一:因为∠BAC =90°,AD ⊥BC ,所以∠BAD =∠C因为BE 平分∠ABC ,所以∠ABE =∠EBC .因为∠AME =∠BAD+∠ABE =∠C+∠EBC =∠AEM ,所以AM =AE ,又因为AN 平分∠DAC ,所以AM =MN ,所以AM =MN =NE =AE .所以AMNE 是菱形.证法二:同上,若证AN 垂直平分ME ,再证BE 垂直平分AN ,则AM =MN ,所以∠MNA=∠MNA=∠NAE.所以MN AE .所以AMNE 是平行四边形,由AM =MN 得AMNE 是菱形.例3.已知:如图菱形ABCD 中,DE ⊥AB 于点E ,且OA =DE ,边长AD =8,求菱形ABCD 的面积.分析:由菱形的对角线互相垂直知OA 是△ABD 的边BD 上的高,又由DE ⊥AB ,OA =DE ,易知△AOD ≌△DEA 从而知△ABD 是等边三角形,从而菱形ABCD 面积可求.解:在菱形ABCD 中,因为AC ⊥BD ,所以△AOD 是直角三角形,因为DE ⊥AB ,所以△AED 是直角三角形.在Rt △AOD 和Rt △AED 中,因为AD =AD ,DE =OA ,所以Rt △AOD ≌Rt △DEA .所以∠ADO =∠DAE ,因为ABCD 为菱形,所以∠ADO =∠ABO ,所以△ABD 是等边三角形.因为AD =8,DE ⊥AB ,所以AE =21AD =4,在Rt △AED 中,DE =22AE AD =43.从而S 菱形ABCD =AB ·DE =8×43=323注意:题中是将菱形的面积按一般的平行四边形面积公式计算的,当然也可以求出对角线AC ,BD 的长,按S 菱形ABCD =21AC ·BD 来计算,但后者较繁复. 例4.已知:如图,□ABCD 中,AD =2AB ,将CD 向两边分别延长到E ,F 使CD =CE =DF. 求证:AE ⊥BF分析:注意□ABCD 中,AD =2AB 这一特殊条件,因此□ABCD 能分成两个菱形.从而可以通过菱形的对角线互相垂直来证明.证明:设AE 交BC 于点G ,BF 交AD 于点H ,连结GH.因为AB ∥DF ,所以∠F=∠ABH , ∠FDH=∠BAH.又因为AB =CD =DF ,所以△ABH ≌△DFH.所以AH =HD=21AD=AB.所以BC AH ,BG=AB .则四边形ABGH 是菱形,所以AE ⊥BF.例5.如图所示,AD 是△ABC 的角平分线,EF 垂直平分AD ,分别交AB 于E ,交AC 于F ,则四边形AEDF 是菱形吗?请说明理由.分析:由已知判断△AOF 和△DOF 是关于直线EF 成轴对称图形,再由轴对称的特征,得到∠OAF =∠ODF ,再结合已知得到∠ODF =∠OAE ,从而判断DF ∥AE ,得到AEDF 是平行四边形,进一步推出对角线互相垂直平分,得到AEDF 是菱形。
中考数学总复习知识点专题讲解 专题 14 正方形的性质与证明的综合应用一、知识点综述 1. 菱形性质(“三板斧”) ①边——两组对边分别平行且相等,邻边相等; ②角——两组对角分别相等; ③对角线——两条对角线垂直且互相平分,每条对角线平分一组对角.2. 菱形判定(“菱形三兄弟”) ①一组邻边相等的平行四边形是菱形; ②对角线垂直的平行四边形是菱形; ③四条边相等的四边形是菱形. ☆这“三兄弟”在证明菱形的过程中是互通的,“你中有我,我中有你”,要熟记.3. 对角线垂直的四边形的面积等于对角线乘积的一半. (面积法)二、基本图形图形条件结论四边形 ABCD 对角线 AC⊥BD1S四边形ABCD = 2 × AC × BDAD2 + BC2 = AB2 + CD21 / 14∠A=30°,∠C=90°c = 2a b = 3a a= 3b3边长为 a 的菱形,一个 内角为 60°对角线长分别为a和 3a S = 3 a2 2三、典型例题选讲题 1. 如图 1-1,边长为 2 菱形 ABCD 中,∠DAB=60°,连接对角线 AC,以 AC 为边作第二个菱形 ACC1D1,使∠D1AC=60°;连接 AC1,再以 AC1 为边作第三个菱形 AC1C2D2,使∠D2AC1=60°;…,按此 规律所作的第 n 个菱形的边长为.( )n+1【 答案】 2 × 3 .图 1-1【解析】解:∵四边形 ABCD 是菱形,∠DAB=60°,∴AD=AB.∠DAC=∠DCA=30°根据基本图形,可得:∴AC= 3AB = 2 3 .( ) ( ) ( ) 2n +1n +1同理可得 AC1=3AC ,AC2=3AC 1=3 AC ……,ACn+1=3AC = 2 × 32 / 14( )n+1故答案为: 2 × 3 . 题 2. 如 图 2-1 所示,四边形 ABCD 是菱形,AC=24,BD=10,DH⊥AB 于点 H,则 线段 BH 的长为________.图 2-1 50 【答案】 13 . 【解析】解:由菱形性质知:AO=12,BO=5, 在 Rt△AOB 中,由勾股定理得:AB=13.1所以 S菱形ABCD =AB ⋅ DH = 2 × AC ⋅ BD120 即 BH= .13 50在 Rt△BDO 中,由勾股定理得:BH= 13 50故答案为: 13 . 题 3. 如图 3-1 所示,在边长为 2 的菱形 ABCD 中,∠DAB=60°,E 为 AB 的中点,F 是 AC 上一动点,则 EF+BF 的最小值为________.图 3-1 【答案】 3 . 【解析】解:由菱形性质知:点 B 与点 D 关于 AC 对称,连接 DE, 线段 DE 长即为 EF+BF 的最小值,连接 BD,如图 3-2 所示.3 / 14图 3-2 因为∠DAB=60°, 所以△ABD 为等边三角形. 又 E 是 AB 的中点, 所以 DE⊥AB. 在△ADE 中,∠ADE=30°,A D=2,所以 AE=1,DE= 3 . 故答案为: 3 . 题 4. 如图 4-1 在菱形 ABCD 中,∠ABC=60°,E 是对角线 AC 上任意一点,F 是线段 BC 延长线上一点,且 CF=AE,连接 BE,EF. (1)如图 4-1,当 E 是线段 AC 的中点时,求证:BE=EF. (2)如图 4-2,当 E 不是线段 AC 的中点,其他条件不变时,请你判断(1)中的结论: ________(填“成立”或“不成立”). (3)如图 4-3,当 E 是线段 AC 延长线上的任意一点,其他条件不变时,(1)中的结论是否 成立?若成立,请给予证明;若不成立,请说明理由.图 4-1图 4-2【答案】(1)见解析;(2)成立;(3)见解析.4 / 14图 4-3【解析】(1)证明:∵四边形 ABCD 是菱形, ∴AB=BC. 又∵∠ABC=60°, ∴△ABC 是等边三角形, ∴∠BCA=60°. ∵E 是线段 AC 的中点, ∴∠CBE=∠ABE=30°,AE=CE. ∵CF=AE, ∴CE=CF,1 ∴∠F=∠CEF=2∠BCA=30°, ∴∠CBE=∠F=30°, ∴BE=EF. (2)成立. 可过 E 作 EG∥BC 交 AB 于点 G. (3)成立.理由如下: 过点 E 作 EG∥BC 交 AB 的延长线于点 G,如图 4-4 所示.图 4-4 ∵四边形 ABCD 为菱形,∴AB=BC. 又∵∠ABC=60°,∴△ABC 是等边三角形, ∴AB=AC,∠ACB=60°,∴∠ECF=60°. ∵EG∥BC,5 / 14∴∠AGE=∠ABC=60°. 又∵∠BAC=60°,∴△AGE 是等边三角形, ∴AG=AE=GE, ∴BG=CE,∠AGE=∠ECF. 又∵CF=AE, ∴GE=CF, ∴△BGE≌△ECF, ∴BE=EF. 题 5. 如图 5-1 所示,在菱形 ABCD 中,AB=10,对角线 AC 与 BD 相交于点 O,且 AC: BD=3:4,AE⊥CD 于点 E,则 AE 的长是图 5-1 【答案】9.6. 【解析】解:由菱形性质知:AO=OC,BO=DO,AC⊥BD, 设 AO=OC=3x,BO=DO=4x, 在 Rt△AOB 中,由勾股定理得:AB=5x=10. 所以,x=2,即 AC=6x=12,BD=8x=16.1所以 S菱形ABCD =CD ⋅ AE = 2 × AC ⋅ BD可得:AE=9.6. 故答案为:9.6. 题 6. 如图 6-1 所示,在菱形 ABCD 中,∠BAD=60°,M 为对角线 BD 延长线上一点,6 / 14连接 AM 和 CM,E 为 CM 上一点,且满足 CB=CE,连接 BE,交 CD 于点 F. (1)若∠AMB=30°,且 DM=3,求 BE 的长; (2)求证:AM=CF+DM.图 6-1 【答案】见解析. 【解析】解:(1)∵四边形 ABCD 是菱形,∠BAD=60°, ∴△ABD,△BCD 都是等边三角形,AB=BC, ∵∠AMB=30°,∠ADB=∠AMB+∠DAM, ∴∠DAM=∠AMB, ∴∠BAM=90°,DA=DM=AB=CB=CE=3. 在△BMA 和△BMC 中,∵BM=BM,∠MBA=∠MBC,AB=CB,∴△BMA≌△BMC, ∴∠BCM=∠BAM=90°. ∴在 Rt△BCE 中,由勾股定理得:BE= 3 2 . (2)证明:如图 6-2 所示,在 BD 上取一点 G,使得 BG=DF,连接 CG 交 BE 于点 O.7 / 14图 6-2 ∵BG=DF,∠CBG=∠BDF,CB=BD, ∴△GBC≌△FDB, ∴∠BGC=∠BFD,∠DBF=∠BCG, ∴∠MGC=∠BFC,∠COF=∠CBO+∠OCB=∠CBO+∠DBF=60°. 又∠ECO+∠COE+∠CEO=180°,∠BFC+∠CBE+∠BCF=180°, ∵∠CBE=∠CEO ∵∠BCF=∠COE=60°, ∴∠ECO=∠BFC=∠MGC, ∴MC=MG. 由(1)可知 AM=MC=MG. ∵MG=DG+DM,BD=CD,BG=DF, ∴DG=CF,∴AM=CF+DM. 题 7. 如图 7-1 所示,菱形 ABCD 中,点 E、F 分别为 AB、AD 的中点,连接 CE、CF. (1)求证:CE=CF; (2)如图 7-2,若 H 为 AB 上一点,连接 CH,使∠CHB=2∠ECB,求证:CH=AH+AB.【答案】见解析.图 7-1图 7-28 / 14【解析】(1)证明:∵四边形 ABCD 是菱形,∴∠B=∠D,AB=BC=CD=AD,∵点 E、F 分别为 AB、AD 的中点,11∴BE= AB,DF= AD,22∴BE=DF,∴△BCE≌△DCF,∴CE=CF;图 7-3 (2)证明:延长 BA、CF,交于点 G,如图 7-3 所示. 由菱形性质可知: ∠B=∠D ,AB=BC=CD=AD,AF∥BC,AB∥CD, ∴∠G=∠FCD, ∵点 F 分别为 AD 的中点,且 AG∥CD, ∴AG=AB, 由(1)知:∠ECB=∠DCF, ∵∠CHB=2∠ECB, ∴∠CHB=2∠G, ∵∠CHB=∠G+∠HCG, ∴∠G=∠HCG, ∴GH=CH,9 / 14∴CH=AH+AG=AH+AB. 题 8. 如图 8-1 所示,在菱形 ABCD 中,若边 AB 的长等于 4,∠BAD=120°,点 E,F 分别在菱形的边 BC,CD 上滑动,且△AE F 为等边三角形,点 E,F 不与点 B,C,D 重合. (1)求证:BE=CF. (2)当点 E,F 在滑动时,四边形 AECF 的面积是否会发生变化?如果不变,求出这个 定值;如果变化,请说明理由.图 8-1 【答案】见解析. 【解析】(1)证明:∵在菱形 ABCD 中,∠BAD=120°,1 由菱形性质,得:∠B=60°,∠BAC=2∠BAD=60°, ∴△ABC 为等边三角形,即 AB=BC=AC. ∵△AEF 为等边三角形,即 AE=AF,∠EAF=60°, ∴∠BAE=∠CAF,∴△BAE≌△CAF,∴BE=CF. (2)四边形 AECF 的面积不会发生变化.理由如下: 由(1)知:△BAE≌△CAF,∴S△ABE=S△ACF,△ △ △ ∴S 四边形 AECF=S△AEC+S△ACF=S AEC+S ABE=S ABC.∵∵ABC 的面积是定值, ∴四边形 AECF 的面积不会发生变化.10 / 14图8-2如图8-2所示,过点A 作AH ⊥BC 于点H .∵AB =4,∠BAH =30°,∴BH =12BC =2, 在Rt ∵ABH 中,由勾股定理得:AH =,∴S 四边形AECF =S △ABC =12BC ·AH =题9. 如图9-1所示,在正方形ABCD 中,以对角线BD 为边作菱形BDFE ,使B ,C ,E 三点在同一直线上,连接BF ,交CD 与点G .(1)求证:CG =CE ;(2)若正方形边长为4,求菱形BDFE 的面积.图9-1【答案】见解析.【解析】(1)证明:因为以正方形ABCD 的对角线BD 为边作菱形BDFE ,所以BD =BE ,∠BDG =45°图9-2连接GE ,如图9-2所示.AD F B CE G AD FB C E G因为BD=BE,BG=BG,∠DB 所以∵DBG≌∵EBG,所以∠GEB=∠BDG=45°,所以∠GEB=∠CGE=45°所以CG=CE.(2)因为正方形边长为4,所以BD= BE=,所以菱形BDFE的面积等于题10. 如图10-1所示,在Rt 的平分线AD交BC于点D,求证:四边形ADCF是菱形【答案】见解析.【解析】证明:∵AF∥CD,∴∠AFE=∠CDE,在∵AFE和∵CDE中,∠FAE ∴∵AEF≌∵CED.AF=CD∵AF∥CD,∴四边形ADCF是平行四边形,AC=2AB,∠BAC 于点F,连接FC.,由题意知,AE =AB ,∠EAD ∴∵AED ≌∵ABD .∴∠AED =∠B =90°,即DF ∴四边形ADCF 是菱形.题11. 如图11-1所示,在菱形且与边AD 、BC 分别交于点(1)请你判断OM 和ON 的数(2)过点D 作DE ∥AC 【答案】见解析.【解析】解:(1)∵四边形∴AD ∥BC ,AO =OC ,∠∴∵AOM ≌∵CON∴OM =ON .(2)∵四边形ABCD 是菱形∴AC ⊥BD ,AD =BC =AB =3∴在Rt ∵AOB 中,由勾股定理∴BD=∵DE ∥AC ,AD ∥CE ,∴四边形ACED 是平行四边形∴DE =AC =6,AD =∠BAD ,AD =AD ,⊥AC .在菱形ABCD 中,对角线AC 与BD 相交于点于点M 和点N .的数量关系,并说明理由; 交BC 的延长线于点E ,当AB =3,AC =4时,边形ABCD 是菱形,AOM =∠CON ,∠MAO =∠NCO菱形,,股定理得:BO,四边形,于点O ,MN 过点O ,求∵BDE 的周长.∴∵BDE的周长为:BD+DE+BE=BD+AC+(BC+CE)=(3+3)=10+即∵BDE的周长是10+.。
菱形的性质与判定之八大考点【考点导航】目录【典型例题】【考点一利用菱形的性质求角度】【考点二利用菱形的性质求线段长】【考点三利用菱形的性质求面积】【考点四利用菱形的性质证明】【考点五添一个条件使四边形是菱形】【考点六证明四边形是菱形】【考点七根据菱形的性质与判定求角度、线段长】【考点八根据菱形的性质与判定求面积】【过关检测】【典型例题】【考点一利用菱形的性质求角度】1(2023秋·陕西汉中·九年级统考期末)如图,在菱形ABCD中,对角线AC、BD相交于点O,若∠BAD =110°,则∠OBC的度数为________.【变式训练】1(2023春·重庆渝中·八年级重庆巴蜀中学校考阶段练习)如图,菱形ABCD的对角线AC、BD相交于点O,过点D作DH⊥AB于点H,连接OH,若∠BCD=50°,则∠DHO的度数为.2(2023春·八年级单元测试)如图,在菱形ABCD中,∠ABC=40°,点E为对角线BD上一点,F为AD边上一点,连接AE、CE、FE,若AE=FE,∠BEC=58°,则∠AFE的度数为.【考点二利用菱形的性质求线段长】1例题:(2023·辽宁鞍山·统考一模)如图,在菱形ABCD中,对角线AC,BD分别为8和6,DE⊥AB,垂足为E,则DE的长为______.【变式训练】1(2023·广东东莞·东莞市东莞中学初中部校考一模)如图,菱形ABCD对角线AC、BD相交于点O,AC=8,BD=6,则菱形的边长为.2(2022秋·陕西榆林·九年级校考期末)如图,已知四边形ABCD是菱形,且AE⊥BC于点E,AF⊥CD于点F.(1)求证:AE=AF;(2)若AB=10,CE=4,求菱形ABCD的面积.【考点三利用菱形的性质求面积】1(2023春·广东韶关·八年级校考期中)如图,在菱形ABCD中,对角线AC与BD相交于点O,AC=7,BD=4,则菱形ABCD的面积为_______.【变式训练】1(2023春·广东惠州·八年级校考阶段练习)菱形的两条对角线长为6和8,则菱形的边长为,面积为.2(2023春·浙江·八年级专题练习)如图,菱形ABCD中,对角线AC与BD相交于点O,若AB= 25cm,AC=4cm,则BD的长为__cm,菱形ABCD的面积为cm2.【考点四利用菱形的性质证明】1(2023春·湖北襄阳·八年级统考阶段练习)如图,四边形ABCD是菱形,点E,F分别在边AB,AD的延长线上,且BE=DF,连接CE,CF.求证:CE=CF.【变式训练】1(2023·浙江嘉兴·统考中考真题)如图,在菱形ABCD中,AE⊥BC于点E,AF⊥CD于点F,连接EF(1)求证:AE=AF;(2)若∠B=60°,求∠AEF的度数.2(2023春·广东肇庆·八年级校考期中)如图,在菱形ABCD中,AB的垂直平分线交对角线AC于点F,交AB于点E,连接DF.(1)求证:AF=DF;(2)若∠BAD=70°,求∠FDC的度数.【考点五添一个条件使四边形是菱形】1(2023·黑龙江牡丹江·统考二模)如图,四边形ABCD是平行四边形.请添加一个条件_______,使平行四边形ABCD为菱形.(只填一种情况即可)【变式训练】1(2023·安徽·校联考一模)如图,四边形ABCD的对角线AC,BD相交于点O,若AB∥CD,AO= CO,想要判断四边形ABCD是菱形,则可以添加一个条件是.2(2023春·湖南永州·八年级统考期中)如图,在四边形ABCD中,E,F,G,H分别是AB,BD,CD,AC 的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是.【考点六证明四边形是菱形】1(2023·吉林长春·统考一模)如图,在四边形ABCD中,AB∥CD,AD∥BC.过点D分别作DE⊥AB 于点E,DF⊥BC于点F,且DE=DF.求证:四边形ABCD是菱形.【变式训练】1(2023春·广东惠州·八年级校考期中)▱ABCD的对角线AC的垂直平分线与边AD、BC分别交于E,F,求证:四边形AFCE是菱形?2(2023·吉林长春·统考二模)如图,AC为▱ABCD的对角线,点E、F分别在边AB、AD上,AE= AF,连接EF交AC于点G.若AC⊥EF,求证.四边形ABCD是菱形.【考点七根据菱形的性质与判定求角度、线段长】1(2023春·全国·八年级专题练习)如图,BD是△ABC的角平分线,过点D作DE⎳BC交AB于点E,DF⎳AB交BC于点F.(1)求证:四边形BEDF是菱形;(2)如果∠A=80°,∠C=30°,求∠BDE的度数.【变式训练】1(2023春·广东惠州·九年级校考开学考试)如图,△ABC中,∠ACB的平分线交AB于点D,作CD 的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60°,∠ACB=45°,BD=2,试求BF的长.2(2023·广东广州·校考二模)如图,在平行四边形ABCD中,对角线AC、BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.(1)求证:四边形ABCD是菱形;(2)若AB=10,BD=2,求OE的长度.3(2023春·全国·八年级专题练习)如图,平行四边形ABCD中,AD=BD,过点C作CE∥BD,交AD的延长线于点E.(1)求证:四边形BDEC是菱形;(2)连接BE,若AB=6,AD=9,则BE的长为.【考点八根据菱形的性质与判定求面积】1(2023春·北京海淀·八年级校考期中)如图,在平行四边形ABCD中,过点A作AE⊥BC于点E,AF ⊥DC于点F,且BE=DF.(1)求证:平行四边形ABCD是菱形(2)若∠EAF=60°,CF=2,求菱形ABCD的面积.【变式训练】1(2023·四川南充·四川省南充高级中学校考三模)如图,在△ABC中,AC=BC,点D、E、F分别是AB、AC、BC的中点,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠A=75°,AC=8,求菱形DFCE的面积.2(2023春·广东珠海·八年级珠海市紫荆中学校考期中)如图,在平行四边形ABCD中,两条对角线相交于点O,EF经过O且垂直于AC,分别与边AD、BC交于点F、E.(1)求证:四边形AECF为菱形;(2)若AD=3,CD=2,且∠ADC=60°,求菱形AECF的面积.3(2023·黑龙江哈尔滨·哈尔滨市萧红中学校考模拟预测)如图,矩形ABCD的对角线AC的垂直平分线EF与AD、AC、BC分别交于点E、O、F.(1)求证:四边形AFCE是菱形;(2)若AB=5,BC=12,EF=6,求:①BO的长;②菱形AFCE的面积.【过关检测】一、选择题1(2023春·江西上饶·八年级统考阶段练习)如图,BD 为菱形ABCD 的对角线,已知∠A =50°,则∠BDC 的度数为()A.130°B.50°C.55°D.65°2(2023·浙江·统考中考真题)如图,在菱形ABCD 中,AB =1,∠DAB =60°,则AC 的长为()A.12B.1C.32D.33(2023春·湖北武汉·八年级校考阶段练习)如图,在菨形ABCD 中,过顶点C 作CE ⊥BC 交对角线BD 于E 点,已知∠A =134°,则∠BEC 的大小为()A.67°B.57°C.33°D.23°4(2023春·黑龙江哈尔滨·八年级校考期中)如图,在菱形ABCD 中,对角线BD =43,∠BAD =120°,则菱形ABCD 的面积是()A.83B.8C.163D.435(2023春·黑龙江哈尔滨·八年级校考期中)如图,菱形ABCD中,∠A=60°,E,F分别是边AB,AD的中点,DE,BF相交于G,连接CG,以下结论正确的有( )个①∠BGD=120°;②SΔADE:SΔGBC=2:3;③BG+DG=CG;④S菱形ABCD=32AB2A.1B.2C.3D.4二、填空题6(2023春·天津滨海新·八年级校考期中)如图,已知菱形ABCD,AC=6,面积等于24,则菱形ABCD的周长等于.7(2023春·北京海淀·八年级校考期中)如图,菱形ABCD中,AB=10,AC,BD交于点O,若E是边AD的中点,∠ABO=32°,则OE的长等于,∠ADO的度数为.8(2023·全国·八年级假期作业)如图,已知菱形ABCD的顶点A和B的坐标分别为-2,0、3,0,点C在y轴的正半轴上.则点D的坐标是.9(2023·河南新乡·统考三模)如图,菱形ABCD中,∠ABC=120°,AB=2,点E是AB的中点,点F 在AC上.若∠BEF=45°,则线段FG的长为.10(2023·浙江绍兴·统考中考真题)如图,在菱形ABCD中,∠DAB=40°,连接AC,以点A为圆心,AC长为半径作弧,交直线AD于点E,连接CE,则∠AEC的度数是.三、解答题11(2023春·湖南郴州·八年级校考期中)如图,在菱形ABCD中,对角线AC,BD相交于点O,∠BAC=30°,BD=6,求菱形的边长和对角线AC的长.12(2023·福建泉州·统考二模)如图,在菱形ABCD中,AC与BD相交于点O,CE⊥AB,已知OC =2,BE=7.(1)求菱形ABCD的面积.(2)求BD的长.13(2023·江苏镇江·统考二模)如图,在平行四边形ABCD中,点F是CD的中点,连接BF并延长,交AD的延长线于点E,连接CE.(1)求证:△DFE≌△CFB;(2)当BD、BC满足关系时,四边形BCED是菱形.14(2023春·江西上饶·八年级统考阶段练习)如图,在四边形ABCD中,对角线AC和BD交于点O,且OA=OC,OB=OD,过点C作CE⊥AD于点E,过点A作AF⊥CD于点F,且AF=CE.(1)求证:四边形ABCD为菱形.(2)若OB=8,OC=6,求AF的长.15(2023·浙江温州·校考三模)如图,在▱ABCD中,点E是对角线BD上的一点,过点C作CF∥BD,且CF=BE,连接AE,DF,EF,ED平分∠AEF.(1)求证:四边形AEFD是菱形.(2)若∠BDC=45°,DE=2CF,AB=102,求▱ABCD的面积.16(2023春·浙江·八年级专题练习)已知:如图,在平行四边形ABCD中,∠ABC的平分线交AD于点E,过点A作BE的垂线交BE于点F,交BC于点G,连接EG,CF.(1)求证:四边形ABGE是菱形;(2)若∠ABC=60°,AB=4,AD=5,求CF的长.17(2023春·浙江·八年级专题练习)如图,在△ABC中,D,E分别是AB,AC的中点.BE=2DE,延长DE到点F,使得EF=BE,连接CF.(1)求证:四边形BCFE是菱形;(2)若CE=4,∠BCF=120°,求菱形BCFE的面积.18(2023·全国·模拟预测)如图,在△ABC中,AB=AC,D是BC的中点,点E,F在直线AD上,且DE=DF.(1)求证:四边形BECF是菱形;(2)若DF=BC=8,AB=AF,求AB的长.。
专题06矩形、菱形、正方形的性质与判定压轴题九种模型全攻略【考点导航】目录【典型例题】 (1)【考点一利用矩形的性质求角度】 (1)【考点二利用矩形的性质求线段长】 (3)【考点三矩形的性质与判定综合问题】 (6)【考点四利用菱形的性质求角度】 (10)【考点五利用菱形的性质求线段长】 (11)【考点六菱形的性质与判定综合问题】 (14)【考点七利用正方形的性质求角度】 (18)【考点八利用正方形的性质求线段长】 (20)【考点九正方形的性质与判定综合问题】 (23)【过关检测】 (30)【典型例题】【考点一利用矩形的性质求角度】【答案】27.5︒【分析】本题主要考查了矩形的性质、等腰三角形的性质以及直角三角形的性质.由矩形的性质得出【变式训练】【答案】75︒/75度【分析】本题主要考查了矩形的性质,等边三角形的判定和性质,等腰三角形的判定和性质.根据矩形的性质可得90,BAD ABC OA ∠=∠=︒而得到30OBE ∠=︒,再根据等腰三角形的性质,即可求解.∵30BOF ∠=︒,∴AOF AOB BOF ∠=∠-∠如图所示,当点F 在BC 上时,∵30BOF ∠=︒,∴AOF AOB BOF ∠=∠+∠故答案为:46︒或106︒.【点睛】本题考查了矩形的性质,等边对等角,三角形的外角的性质,分类讨论是解题的关键.【考点二利用矩形的性质求线段长】例题:(2023上·四川成都·九年级校考阶段练习)如图,矩形ABCD 中,对角线AC BD 、相交于点O ,过点O【答案】3【分析】本题主要考查了矩形的性质、线段垂直平分线的性质、勾股定理、根据面积等式求线段的长度等知识与方法,连接BE ,由矩形的性质可得11S OB OE OD OE =⋅=⋅∵四边形ABCD 是矩形,对角线90BAD OB OD ∴∠=︒=,,OE BD ⊥ ,OE ∴垂直平分BD ,BOE S 【变式训练】1.(2024上·江西鹰潭·九年级统考期末)如图,矩形ABCD 中,对角线AC ,BD 相交于O ,E ,F 分别是OC ,BC 的中点.若5cm EF =,求AC 的长.AC=【答案】20cm【分析】本题考查了矩形的性质,中位线,根据矩形的性质得E、F分别是OC、BC的中点,(1)求EC的长;(2)求CDE∠的度数.【答案】(1)(843)cm-【考点三矩形的性质与判定综合问题】例题:(2023上·辽宁丹东·九年级统考期中)如图,四边形ABCD 是平行四边形,点E 在边BC 的延长线上,且CE BC =,AE AB =,AE ,DC 相交于点O ,连接DE .(1)求证:四边形ACED 是矩形;(2)若120AOD ∠=︒,4AC =,求AE 的长.【答案】(1)证明详见解析(2)8【变式训练】Y的对角线相交于点O,且1.(2023上·陕西咸阳·九年级咸阳市实验中学校考阶段练习)如图,ABCD∠=∠.COD OBC2(1)求证:四边形ABCD是矩形;是ABC 外角CAM ∠的平分线,CE AN ⊥,垂足为点E .(1)求证:四边形ADCE 为矩形;(2)若65BD DF ==,,求AD 的长.【答案】(1)见解析(2)8【分析】(1)证明90ADC DAE AEC ∠=∠=∠=︒,根据矩形的判定即可得到结论;(2)根据矩形的性质和勾股定理即可求出AD 的长.此题考查了矩形的判定和性质、勾股定理、等腰三角形的判定和性质等知识,熟练掌握矩形的判定和性质是解题的关键.【详解】(1)证明:∵AB AC =,AD 是BAC ∠的平分线,∴,AD BC BAD CAD ⊥∠=∠,∴90ADC ∠=︒,∵AN 是ABC 外角CAM ∠的平分线,∴MAN CAN ∠=∠.∴=90DAE ∠︒,∵CE AN ⊥,∴90AEC ∠=︒.∴90ADC DAE AEC ∠=∠=∠=︒,∴四边形ADCE 为矩形;(2)解:∵四边形ADCE 为矩形,∴AE CD AC DE ==,,∵BD CD =,∴6AE BD ==,【考点四利用菱形的性质求角度】【答案】70︒/70度【分析】本题考查菱形性质,利用三角形内角和即可求得本题答案.【变式训练】【答案】20︒/20度【分析】本题考查菱形的性质、直角三角形的性质、等腰三角形的性质,关键是熟练掌握直角三角形斜边∠中线性质.先根据菱形的性质得到CBD四边形ABCD是菱形,ABC∠=,∴∠=︒,OA OCBCD100∴∠=∠=︒,PA=50ACB ACD∴∠=∠=︒,PAC PCA20【考点五利用菱形的性质求线段长】【答案】513 13【分析】本题考查了菱形的性质,勾股定理;根据菱形的性质得出AO=得AE,在Rt ABE△中,勾股定理即可求解.【变式训练】【答案】2.5【分析】本题考查了菱形的性质以及中位线的性质,解题的关键是求出菱形的边长.【详解】解: 四边形ABCD【答案】6或63或6【分析】由题意知AP =90BP A ∠=︒,由勾股定理得,当16AP =时,16BP=;∵菱形ABCD 中,=60B ∠︒,∴ABC 是等边三角形,∵2162AP AC ==,【考点六菱形的性质与判定综合问题】(1)求证:四边形ABEF是菱形;AB=,求AE的长.(2)若8BF=,5【答案】(1)见解析(2)AE的长为6【变式训练】(1)求证:四边形ABCD是菱形;(2)若5AB=,2BD=,求在(2)的条件下,1OD =∵2DM =,∴22OM DM OM =-=(1)求证:四边形AFCE 是菱形.(2)若8AC =,6EF =,求BF 【答案】(1)见解析(2)75BF =【考点七利用正方形的性质求角度】【答案】22.5︒/22【分析】本题考查了正方形的性质,根据四边形=,即可求出据BP OB【详解】解: 四边形90BOC ∴∠=︒,45OBC ∠=︒,BP OB = ,BOP BPO ∴∠=∠,(18045)267.5BOP BPO ∴∠=∠=︒-︒÷=︒,9067.522.5COP ∴∠=︒-︒=︒.故答案为:22.5︒.【变式训练】【答案】70【分析】本题考查正方形的性质,全等三角形的判定和性质.证明ABE CBE △△≌,得到AEB BEC ∠=∠,利用三角形的内角和定理和平角的定义,进行求解即可.掌握正方形的性质,是解题关键.【详解】解:∵正方形ABCD ,∴45,ABE CBE AB BC ∠=∠=︒=,∵BE BE =,∴ABE CBE △△≌,∴AEB BEC ∠=∠,∵25BCF ∠=︒,∴1804525110AEB BEC ∠=∠=︒-︒-︒=︒,∴180********AEB AED ∠∠=︒--︒==︒︒,故答案为:70.【考点八利用正方形的性质求线段长】【答案】22【分析】本题主要考查正方形的性质以及勾股定理,熟练掌握勾股定理是解题的关键.根据正方形的性质得到2AB BC ==,再由勾股定理得到答案.【变式训练】【答案】352【分析】本题考查了正方形的性质,勾股定理求得12x =,进而表示出【详解】解:如图所示,连接∵AE 的垂直平分线分别交∴AG EG=设BG x =,则4CG =-∵E 是CD 的中点,则CE ∴(2224GE CG CE =+=∵2AP =,边长为6,即∴4PB =∵点Q 为BC 的中点,∴3CQ BQ ==,,过点P 作PE BC ⊥于E ,,∴6PE AB ==,BE AP =∵3BQ =,2AP =,∴1QE =,∴221637PQ =+=,【考点九正方形的性质与判定综合问题】例题:(2023上·山西吕梁·九年级统考期末)综合与实践【问题情境】如图1,正方形ABCD 中,点E 为其内一点,以点E 为直角顶点,以AB 为斜边构造直角三角形ABE ,使得90AEB ∠=︒,将Rt ABE △绕点B 按顺时针方向旋转90︒,得到△CBE '(点A 的对应点为C ),延长AE 交CE '于点F ,连接DE .DA DE =,∴12AQ QE AE ==. 四边形ABCD 是正方形,∴90DAB ∠=︒,DA AB =,∴90BAE DAQ ︒∠+∠=.90ADQ DAQ ∠+∠=︒,∴BAE ADQ ∠=∠,90DQA AEB ︒∠=∠=,∴(AAS)ADQ BAE △≌△,∴AQ BE =,DQ AE =,∴22DQ AE AQ BE ===.将Rt ABE 绕点B 沿顺时针方向旋转【变式训练】1.(2024上·内蒙古鄂尔多斯·九年级统考期末)如图1,正方形ABCD 的边长为5,点E 为正方形CD 边上一动点,过点B 作BP AE ⊥于点P ,将APB △绕点A 逆时针旋转90︒得AP D '△,延长BP 交P D '于点F ,连(1)判断四边形的AP FP '的形状,并说明理由;(2)若1DF =,求AP 的长度;(3)在(2)的条件下,求CPB APBS S ∆∆.【答案】(1)四边形AP FP '是正方形(2)3AP =∵90APB CGB ABC ∠=∠=∠=︒,∴ABP CBG BCG CBG ∠+∠=∠+∠=∴ABP BCG ∠=∠,在ABP 和BCG 中,APB BGC ∠=∠⎧⎪(1)如图1,当点E在线段AC上时.①求证:矩形DEFG是正方形;=-;②求证:CG AC CE(2)如图2,当点E在线段AC的延长线上时,正方形ABCD的边长为【答案】(1)①证明见解析,②证明见解析;(2)34GE=.∵EF DE ⊥,45PEC ∠=︒∴90DEF ∠=︒,∴45PED FEC ∠∠+=︒,∵45QEF FEC ∠+∠=︒,∴QEF PED ∠=∠,∵EP EQ =,90EQF EPD ∠=∠=︒∴()ASA EQF EPD ≌,∴EF ED =,∵四边形DEFG 矩形,EF ED =,∴四边形DEFG 是正方形;②证明:∵四边形DEFG 是正方形,∴DE DG =,90EDG ∠=︒∵90ADE EDC ∠+∠=︒,90CDG EDC ∠+∠=︒,∴ADE CDG ∠=∠,∵AD DC =,DE DG=∴()SAS ADE CDG ≌,∴AE CG =,∵AE AC CE =-,∴CG AC CE =-;(2)同(1)理,四边形DEFG 是正方形,∴,90DE DG EDG =∠=︒,∵90ADE EDC ∠=︒+∠,90CDG EDC ∠=︒+∠∴ADE CDG ∠=∠,∵,AD DC DE DG ==,∴()SAS ADE CDG ≌,)∴AE CG =,45DCG DAC ∠=∠=︒,∴90ACG ∠=︒,【过关检测】一、单选题1.(2024上·广东清远·九年级统考期末)菱形的面积为212cm ,一条对角线长是4cm ,那么菱形的另一条对A.22.5︒【答案】A【分析】本题主要考查的正方形的性质,等腰三角形的性质,根据正方形的性质得出腰三角形的性质得出【详解】解:∵四边形A.322B.32【答案】C【分析】本题主要考查了菱形的性质,三角形的中位线定理,熟练掌握菱形的性质是解答本题的关键.首先根据三角形中位线定理得到ACA.5B【答案】B【分析】本题考查了矩形的性质、线段垂直平分线的性质;连接四边形ABCD是矩形,对角线A.四边形BFDE是平行四边形B.若四边形ABCDC.若四边形ABCD∵四边形ABCD 是平行四边形,∴OA OC OB OD ==,,∵E 、F 是对角线AC 上的两点(不与点A 、C 重合),AE CF =,∴OE OF =,∵OB OD =,∴四边形BFDE 是平行四边形,故A 不符合题意;当四边形ABCD 是菱形时,BD AC ⊥,∴EF BD ⊥,又∵四边形BFDE 是平行四边形,∴四边形BFDE 是菱形,故B 不符合题意;当四边形ABCD 是正方形时,BD AC ⊥,∴EF BD ⊥,又∵四边形BFDE 是平行四边形,∴四边形BFDE 是菱形,故C 不符合题意;当四边形ABCD 是矩形时,AC BD =,∵E 、F 是对角线AC 上的两点(不与点A 、C 重合),∴EF BD ≠,∴四边形BFDE 不是矩形,故D 符合题意,故选:D .二、填空题=(答案不唯一)【答案】AC BD【分析】本题主要考查了矩形的判定.根据矩形的判定定理,即可求解.=,理由:【详解】解:添加AC BD【答案】67.5︒【分析】本题主要考查正方形的性质,熟练掌握正方形的性质是解题的关键;根据正方形的性质得到线段相等和【答案】20︒/20度【分析】本题考查了菱形的性质、等腰三角形的性质、直角三角形斜边上的中线性质等知识,熟练掌握菱形的性质是解题的关键.由菱形的性质得OB OD=,CD【答案】51 2 +【分析】在ABC中,AB∵,36AB AC A =∠=︒,∴(11802ABC ACB ==∠∠∴723636BCD ∠=︒-︒=︒,∴1807236BDC ∠=︒-︒-∴BDC B ∠=∠,∵四边形ABCD 为菱形,∴1362BAC BAD ==︒∠∠∴在等腰ABC 中底角为36【答案】1.5或3【分析】本题考查了矩形与翻折问题,∠=︒,画出对应的图形即可求解.EPC90∠=【详解】解:若PEC∠=∠=∠∵AEP B PEC、、三点共线∴A E C==由题意得:BC AD==,则CP设EP BP x∴2C E A C A E =-=∴()22242x x -=+,解得: 1.5x =∴ 1.5BP =若90EPC∠=︒,如图所示:则四边形ABPE 是矩形,由翻折可知:BP EP =,∴四边形ABPE 是正方形∴3BP AB ==综上所述: 1.5BP =或3BP =故答案为:1.5或3.三、解答题11.(2023上·新疆喀什·九年级校联考期中)如图,在菱形ABCD 中,对角线AC ,AE BC ⊥交CB 延长线于E ,CF AE ∥交AD 延长线于点F .(1)求证:四边形AECF 是矩形;(2)连接OE ,若5AD =,3BE =,求线段OE 的长.【答案】(1)见解析∵四边形ABCD 为菱形,∴5AB BC AD ===,又∵四边形AECF 为矩形,OA OC OE ==,(1)求证:OE OF=;CF=,求OC(2)若12CE=,5(3)当点O在边AC上运动到什么位置时,四边形【答案】(1)证明见解析【点睛】本题考查矩形的判定,平行四边形的判定,直角三角形的判定,角平分线的定义,平行线的性质,等角对等边,勾股定理,直角三角形斜边上的中线等于斜边的一半等知识,根据已知得出题关键.13.(2023上·河南驻马店·九年级驻马店市第二初级中学校考阶段练习)如图在(1)求证:四边形ADCF 是平行四边形(2)若6,10AB BC ==.①当AC =______时,四边形ADCF ②若四边形ADCF 是菱形,则DG勾股定理,是一道较为综合的几何题,熟练掌握各知识点并应用是解题的关键.14.(2023上·山东枣庄·九年级校考阶段练习)如图,在ABC 中,D 是BC 边上的一点,点E 是AD 的中点,过A 点作BC 的平行线交CE 的延长线于点F ,且AF BD =,连接BF .(1)求证:BD CD =;(2)当ABC 满足什么条件时四边形AFBD 为矩形?证明你的结论;(3)若ABC 为直角三角形,且90BAC ∠=︒时,判断四边形AFBD 的形状,并说明理由.【答案】(1)见解析(2)当AB AC =时,四边形AFBD 为矩形,见解析(3)四边形AFBD 为菱形,见解析【分析】(1)证明AEF DEC △≌△可得AF DC =,再根据条件AF BD =可利用等量代换可得BD CD =;(2)首先判定四边形AFBD 为平行四边形,再根据等腰三角形三线合一的性质可得AD BC ⊥,进而可得四边形AFBD 为矩形;(3)利用直角三角形斜边中线的性质求得AD BD =,进而可得四边形AFBD 为菱形.【详解】(1)证明:∵AF BC ∥,AFE ECD ∴∠=∠.E 是AD 的中点,DE AE ∴=,在AEF △与DEC 中,AFE ECD AEF DEC AE ED ∠=∠⎧⎪∠=∠⎨⎪=⎩,(AAS)AEF DEC ∴△≌△,AF DC ∴=,AF BD = ,(1)求证:四边形AEDF 是菱形;(2)若5AE =,8AD =,求EF 的长;(3)ABC 满足什么条件时,四边形【答案】(1)见解析(2)6EF =四边形平行四边形(1)求证:矩形DEFG是正方形;(2)若2,2==,求CG的长度;AB CE(3)当线段DE与正方形ABCD的某条边的夹角是30︒时,直接写出【答案】(1)见解析(2)解:如图2中,在Rt ∵2,AB =∴222AC AB ==,2CE = ,AE CE ∴=,(3)解:①当DE 与AD 的夹角为则903060CDE ∠=︒-︒=︒,在四边形CDEF 中,由四边形内角和定理得:②当DE 与DC 的夹角为30︒90HCF DEF ∠=∠=︒ ,CHF ∠30EFC CDE ∴∠=∠=︒,综上所述,120EFC ∠=︒或30【点睛】本题考查正方形的性质、矩形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用所学知识解决问题,学会用分类讨论的思想思考问题.。
菱形一、菱形的性质菱形的定义 一组邻边相等的平行四边形叫做菱形. 菱形的性质①具有平行四边形的一切性质; ②菱形的四条边都相等;③菱形的对角线互相垂直平分,并且每一条对角线平分一组对角; ④菱形是轴对称和中心对称图形.推论 对角线垂直的四边形面积=两条对角线乘积的一半(由对角线互相垂直可得)二、菱形的判定①有一组邻边相等的平行四边形是菱形. ②四条边都相等的四边形是菱形. ③对角线互相垂直的平行四边形是菱形. ④对角线垂直且平分的四边形是菱形.⑤每一条对角线平分一组对角的四边形是菱形. 例题分析例题1 下列命题中,正确的是( ) A.对角线互相垂直且相等的四边形是菱形 B.有一组邻边相等的平行四边形是菱形 C.对角线互相平分且相等的四边形是菱形 D.对角线相等的四边形是菱形例题2 如图1-1-1,将完全相同的平行四边形和完全相同的菱形镶嵌成如图所示的图案。
设菱形中较小角为x 度,平行四边形中较大角为y 度,则y 与x 的关系式是( )︒+=9031.x y A x y B 21.= ︒+=9021.x y C x y D 31.=图1-1-1图1-1-2例题3 如图1-1-2,在菱形ABCD 中,对角线AC 与BD 相交于点O ,∠BAD=60° ,BD=6,求菱形的边长AB 和对角线AC 的长.例题4 如图1-1-3,已知菱形ABCD 的对角线AC=16cm ,BD=12cm ,DE 垂直BC 于点E ,求DE 的长.例题 5 如图1-1-4,在菱形ABCD 中,F E ,分别是CD BC 、上的点,且CEF BAE EAF B ∠18∠60∠∠求,,°=°==的度数.例题6 如图1-1-5,在菱形ABCD 中,作一个正∆AEF ,且AE=AB ,那么∠C 的度数是多少?例题7 已知菱形ABCD 的两条对角线AC ,BD 的乘积等于菱形的一条边长的平方,求菱形的四个内角.图1-1-3图1-1-4图1-1-5例题8 如图1-1-6,在菱形ABCD中, ABC=120°,点E平分DC,点P在BD上,且PE+PC=1,求边长AB的最大值.1-1-6课堂练习1.下列命题中,正确的是( )A.对角线相等的四边形是菱形B.对角线互相垂直的四边形是菱形C.对角线互相垂直且相等的四边形是菱形D.对角线互相垂直平分的四边形是菱形2.菱形的周长为100 cm,一条对角线长为14 cm,它的面积是()A.168 cm2B.336 cm2C.672 cm2 D.84 cm23.在菱形ABCD中,∠BAD=80°,AB的垂直平分线交AC于F,交AB于E,则,∠CDF=()A、80°B、70°C、65°D、60°4.在凸四边形ABCD中,E,F,G,H分别为AB,BD,CD,AC的中点,要使四边形EFGH为菱形,则四边形ABCD需要满足什么条件()A.四边形ABCD是梯形B.四边形ABCD是平行四边形C.对角线AC=BDD.AD=BC5.顺次连接一个凸四边形各边的中点,得到一个菱形,则这个四边形一定是()A.任意四边形B.两条对角线相等的四边形C.矩形D.平行四边形6.若菱形的面积为120,一条对角线长为10,则另一条对角线长为_______,边长为________,一条边上的高为_________。
《菱形的性质与判定》典型例题
例1 如图,在菱形ABCD 中,E 是AB 的中点,且a AB AB DE =⊥,,求:
(1)ABC ∠的度数;(2)对角线AC 的长;(3)菱形ABCD 的面积.
例2 已知:如图,在菱形ABCD 中,AB CE ⊥于AD CF E ⊥,于 F .
求证:.AF AE =
例 3 已知:如图,菱形ABCD 中,E ,F 分别是BC ,CD 上的一点,︒=∠=∠60EAF D ,︒=∠18BAE ,求CEF ∠的度数.
例4 如图,已知四边形ABCD 和四边形BEDF 都是长方形,且DF AD =. 求证:GH 垂直平分CF .
例 5 如图,ABCD中,AB
=,E、F在直线CD上,且
AD2
=.
DE=
CF
CD
求证:AF
BE⊥.
例6 如图,在Rt△ABC中,
∠ACB,E为AB的中点,四边形BCDE
=
90
是平行四边形.
求证:AC与DE互相垂直平分
参考答案
例1 分析 (1)由E 为AB 的中点,AB DE ⊥,可知DE 是AB 的垂直平分线,从而DB AD =,且AB AD =,则ABD ∆是等边三角形,从而菱形中各角都可以求出.(2)而OC AO BD AC =⊥,,利用勾股定理可以求出AC .(3)由菱形的对角线互相垂直,可知.2
1BD AC S ⋅= 解 (1)连结BD ,∵四边形ABCD 是菱形,∴.AB AD =
E 是AB 的中点,且AB DE ⊥,∴.DB AD =
∴ABD ∆是等边三角形,∴DBC ∆也是等边三角形.
∴.120260︒=⨯︒=∠ABC
(2)∵四边形ABCD 是菱形,∴AC 与BD 互相垂直平分, ∴.2
12121a AB BD OB === ∴a a a OB AB OA 2
3)21(2222=-=-=,∴.32a AO AC == (3)菱形ABCD 的面积.2
3321212a a a BD AC S =⋅⋅=⋅= 说明:本题中的菱形有一个内角是60°的特殊的菱形,这个菱形有许多特点,通过解题应该逐步认识这些特点.
例2 分析 要证明AF AE =,可以先证明DF BE =,而根据菱形的有关性质不难证明DCF BCE ∆≅∆,从而可以证得本题的结论.
证明 ∵四边形ABCD 是菱形,∴D B CD BC ∠=∠=,,且︒=∠=∠90DFC BEC ,∴DCF BCE ∆≅∆,∴DF BE =,
AD AB = ,
∴DF AD BE AB -=-,
∴.AF AE =
例3 解答:连结AC .
∵四边形ABCD 为菱形,
∴︒=∠=∠60D B ,AD CD BC AB ===.
∴ABC ∆与CDA ∆为等边三角形.
∴︒=∠=∠=∠=60,BAC ACD B AC AB
∵︒=∠60EAF ,
∴CAF BAE ∠=∠
∴ACF ABE ∆≅∆
∴AF AE =
∵︒=∠60EAF ,
∴EAF ∆为等边三角形.
∴︒=∠60AEF
∵CEF AEF BAE B AEC ∠+∠=∠+∠=∠,
∴CEF ∠+︒=︒+︒601860
∴︒=∠18CEF
说明 本题综合考查菱形和等边三角形的 性质,解题关键是连AC ,证ACF ABE ∆≅∆
例4 分析 由已知条件可证明四边形BGDH 是菱形,再根据菱形的对角线平分对角以及等腰三角形的“三线合一”可证明GH 垂直平分CF .
证明:∵四边形ABCD 、BEDF 都是长方形
∴BF DE //,CD AB //, 90=∠=∠BCD DFH ,BC AD =
∴四边形BGDH 是平行四边形
∵DF AD =,∴BC DF =
在△DFH 和△BCH 中
⎪⎩
⎪⎨⎧=∠=∠∠=∠BC DF BHC DHF BCH DFH
∴△DFH ≌△BCH ∴BH DH =,HC HF =
∵四边形BGDH 是平行四边形
∴四边形BGDH 是菱形
∴GH 平分BHD ∠ ∴GH 平分FHC ∠ ∵HC HF =
∴GH 垂直平分FC .
例5 分析 要证AF BE ⊥,关键是要证明四边形ABHG 是菱形,然后利用菱形的性质证明结论.
证明 ∵四边形ABCD 是平行四边形 ∴CD AB //,CD AB =,BH AG //,∴E ∠=∠1 ∵ED CD =,∴ED AB =
在△ABG 和△EDG 中 ⎪⎩
⎪⎨⎧=∠=∠∠=∠ED AB E 321
∴△ABG ≌△DEG ∴GD AG = ∵AB AD 2= ∴AB AG =
同理:BH AB = ∴BH AG = ∵BH AG //
∴四边形ABHG 是平行四边形
∵BH AB = ∴四边形ABHG 是菱形 ∴BE AF ⊥.
例6 分析 要证明AC 与DE 互相垂直平分,只要证明四边形ADCE 是菱形.所以要连结AD
证明 ∵在Rt △ABC 中,E 为AB 的中点 ∴BE CE AE ==
∵四边形BCDE 是平行四边形
∴AB CD //,BE CD = ∴AE CD //,
∴四边形ABCE 是平行四边形
∵EC AE = ∴ADCE 是菱形 ∴AC 与DE 互相垂直平分.。