正比例函数
- 格式:ppt
- 大小:1.00 MB
- 文档页数:22
正比例函数知识点整理一、正比例函数的定义。
1. 定义形式。
- 一般地,形如y = kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做比例系数。
例如y = 2x,y=(1)/(3)x都是正比例函数,这里k = 2和k=(1)/(3)分别是它们的比例系数。
2. 对定义的理解。
- 函数表达式必须是y = kx这种形式,x的次数为1,且不能有其他项。
比如y = 2x+1就不是正比例函数,因为它多了常数项1;y=x^2也不是,因为x的次数是2。
- k不能为0,如果k = 0,那么函数y = 0× x=0,它是一个常数函数,而不是正比例函数。
二、正比例函数的图象与性质。
1. 图象。
- 正比例函数y = kx(k≠0)的图象是一条经过原点(0,0)的直线。
- 当k>0时,例如y = 2x,图象经过一、三象限,从左向右上升;当k < 0时,比如y=-2x,图象经过二、四象限,从左向右下降。
2. 性质。
- 增减性。
- 当k>0时,y随x的增大而增大。
例如在y = 3x中,如果x_1 = 1,y_1 = 3×1 = 3;当x_2=2时,y_2 = 3×2 = 6,因为2>1且6 > 3,所以y随x增大而增大。
- 当k < 0时,y随x的增大而减小。
例如在y=-2x中,若x_1 = 1,y_1=-2×1=-2;当x_2 = 2时,y_2=-2×2=-4,因为2 > 1且-4<-2,所以y随x增大而减小。
- 倾斜程度。
- | k|越大,直线越靠近y轴,即直线越陡。
例如y = 5x比y = 2x的图象更陡,因为|5|>|2|;y=-5x比y=-2x的图象更陡,同样是因为| - 5|>|-2|。
三、正比例函数解析式的确定。
1. 方法。
- 因为正比例函数y = kx(k≠0),只需要知道一个点的坐标(除原点外)就可以确定k的值,从而确定函数解析式。
1、正比例函数 一般地,形如y=kx(k是常数,k≠0)的函数叫做正比例函数,其中k叫做系数.2、正比例函数图象和性质 一般地,正比例函数y=kx(k为常数,k≠0)的图象是一条经过原点和(1,k)的一条直线,我们称它为直线y=kx.当k>0时,直线y=kx经过第一、三象限,从左向右上升,即随着x的增大,y也增大;当k<0时,直线y=kx经过第二、四象限,从左向右下降,即随着x的增大y反而减小.3、正比例函数解析式的确定 确定一个正比例函数,就是要确定正比例函数定义式y=kx(k≠0)中的常数k,其基本步骤是: (1)设出含有待定系数的函数解析式y=kx(k≠0); (2)把已知条件(自变量与函数的对应值)代入解析式,得到关于系数k的一元一次方程; (3)解方程,求出待定系数k; (4)将求得的待定系数的值代回解析式.4、一次函数 一般地,形如y=kx+b(k,b是常数,k≠0),那么y叫做x的一次函数.当b=0时,y=kx+b即y=kx,所以说正比例函数是一种特殊的一次函数.5、一次函数的图象 (1)一次函数y=kx+b(k≠0)的图象是经过(0,b)和两点的一条直线,因此一次函数y=kx+b的图象也称为直线y=kx +b. (2)一次函数y=kx+b的图象的画法. 根据几何知识:经过两点能画出一条直线,并且只能画出一条直线,即两点确定一条直线,所以画一次函数的图象时,只要先描出两点,再连成直线即可.一般情况下:是先选取它与两坐标轴的交点:(0,b),.即横坐标或纵坐标为0的点.6、正比例函数与一次函数图象之间的关系 一次函数y=kx+b 的图象是一条直线,它可以看作是由直线y=kx平移|b|个单位长度而得到(当b>0时,向上平移;当b<0时,向下平移).7、直线y=kx+b的图象和性质与k、b的关系如下表所示: k>0,b>0 经过第一、二、三象限 k>0,b<0经过第一、三、四象限 k>0,b=0经过第一、三象限k>0时,图象从左到右上升,y随x的增大而增大 k<0 b>0经过第一、二、四象限 k<0,b<0经过第二、三、四象限 K,0,b=0经过第二、四象限 k<0 图象从左到右下降,y随x的增大而减小8、直线y1=kx+b与y2=kx图象的位置关系: (1)当b>0时,将y2=kx图象向x轴上方平移b个单位,就得到y1=kx+b的图象. (2)当b<0时,将y2=kx图象向x轴下方平移-b个单位,就得到了y1=kx+b的图象.9、直线l1:y1=k1x+b1与l2:y2=k2x+b2的位置关系可由其解析式中的比例系数和常数来确定: 当k1≠k2时,l1与l2相交,交点是(0,b). 10、直线y=kx+b(k≠0)与坐标轴的交点. (1)直线y=kx与x轴、y轴的交点都是(0,0); (2)直线y=kx+b与x轴交点坐标为( ,0)与y轴交点坐标为(0,b).。
正比例函数知识点总结正比例函数是数学中一种重要的函数形式,也是高中数学中常见的函数类型之一。
它是指两个变量之间的关系是成正比的,即当一个变量增大(或减小)时,另一个变量也相应地增大(或减小)。
下面将从定义、性质、图像、应用等方面对正比例函数进行总结。
一、定义正比例函数又称为一次函数,它的数学定义为:如果两个变量x和y之间的比值恒定,即y与x的比值为常数k,则称y是x的正比例函数,记作y=kx。
其中k为比例系数,表示y与x之间的关系。
正比例函数可以看作是一条直线,其斜率为k,过原点(0,0)。
二、性质1. 常数k为正比例函数的比例系数,它决定了函数图像的斜率。
当k>0时,函数图像向上倾斜;当k<0时,函数图像向下倾斜。
2. 正比例函数的定义域为全体实数,值域为全体实数。
因为无论x 取任何实数,对应的y都可以通过比例系数k计算得出。
3. 正比例函数的图像经过原点(0,0),这是因为当x=0时,根据函数定义,y=k*0=0。
4. 当x>0时,y也大于0;当x<0时,y也小于0。
这是因为正比例函数的比例系数k为正,所以x的增大必然导致y的增大,x的减小必然导致y的减小。
三、图像正比例函数的图像为一条直线,过原点(0,0),斜率为k。
当k>0时,图像向上倾斜;当k<0时,图像向下倾斜。
当k=0时,函数图像为一条水平直线,即y=0。
四、应用正比例函数在实际生活中有许多应用,例如:1. 速度与时间的关系:当物体的速度恒定时,速度与时间成正比。
速度为正比例函数,时间为自变量,速度为因变量。
2. 成本与产量的关系:在某些生产过程中,成本与产量呈正比例关系。
成本为正比例函数,产量为自变量,成本为因变量。
3. 周长与半径的关系:在一个圆形中,周长与半径成正比。
周长为正比例函数,半径为自变量,周长为因变量。
4. 温度与气压的关系:在恒定的体积下,温度与气压成正比。
温度为正比例函数,气压为自变量,温度为因变量。
正比例函数正比例函数是一类具有特定形式的数学函数,它是数学中重要的概念之一。
正比例函数在各个学科领域都有广泛的应用,无论是自然科学、社会科学还是工程技术等领域,都可以找到正比例函数的身影。
正比例函数的基本形式可以表示为 y = kx,其中 k 是常数,表示比例系数。
可以看出,正比例函数中,自变量 x 和因变量 y 成正比关系,其比例系数 k 则表示了两个变量之间的比例关系。
当 x 变化一倍时,y 也会相应变化一倍,所以正比例函数也被称为直线函数。
正比例函数的图像在数学坐标系中是直线,其斜率就是比例系数 k。
当比例系数为正数时,图像呈斜正直线,斜率表示了函数的走向与增长速度;当比例系数为负数时,图像呈斜负直线,斜率表示了函数的走向与减小速度。
正比例函数可以用来描述各种实际问题中的变化规律。
比如,在物理学中,牛顿的第二定律 F = ma 中,力 F 和加速度 a 的关系可以用正比例函数来表达。
力的大小正比于物体的加速度,比例系数即为物体的质量。
在经济学中,成本和生产量之间的关系也可以用正比例函数来表示。
成本与生产量正好成正比,比例系数则表示单位生产量的成本。
在生物学中,体积和质量之间的关系也可以用正比例函数来描述。
当生物体的体积增加时,质量也会相应增加,比例系数就是体密度。
在工程中,速度和时间的关系也可以用正比例函数来表达。
车辆行驶的速度和行驶的时间成正比,比例系数就是车辆的平均速度。
通过使用正比例函数,我们可以更加深入地理解各种问题中的变化规律,并可以预测未知情况下的数值。
通过观察其图像特征和计算比例系数,可以直观地了解变量之间的关系。
在实际应用中,我们可以通过观察和分析数据,找到合适的比例系数,并运用正比例函数来解决问题。
除了基本形式 y = kx,正比例函数还可以有其他形式。
比如当自变量和因变量都经过了平移或伸缩时,正比例函数可以写成 y = k(x - a) 或者 y = k(x - a)+b 的形式。
正比例函数简介:正比例函数是数学中常见的一类函数,它们的图像是一条通过原点的直线。
本文将介绍正比例函数的定义、特点以及相关示例,以帮助读者更好地理解和应用正比例函数。
定义正比例函数是指一种函数关系,其中两个变量的比例保持不变。
设x和y是两个变量,若存在常数k使得对于任意的x,有y=kx成立,则称y是x的正比例函数。
k被称为比例系数。
通常用符号y ∝ x表示两者成比例的关系。
特点1.直线关系:正比例函数的图像是一条通过原点的直线。
这是因为当x为0时,y=k×0=0,因此原点(0,0)必然在图像上。
2.比例系数:比例系数k决定了直线的斜率。
斜率为正值时表示正相关关系,斜率为负值时则表示负相关关系。
斜率的绝对值越大,变化越快,反之则变化越慢。
3.例外情况:当比例系数k为0时,该函数不再成立。
因为此时代表变量无法通过相等的乘法关系相互联系。
示例以下是几个正比例函数的示例:示例1:函数表达式:y = 2xx | -2 | 0 | 3 | 5 |y | -4 | 0 | 6 | 10 |这个函数描述了一个正相关关系,且比例系数k为2。
当x增加1个单位时,y也增加2个单位。
以原点(0,0)为起点,连接所有的点就得到了一条通过原点的直线。
示例2:函数表达式:y = 0.5xx | -4 | 0 | 2 | 6 |y | -2 | 0 | 1 | 3 |这个函数仍然描述了一个正相关关系,但比例系数k为0.5。
即当x增加1个单位时,y增加0.5个单位。
通过连接所有的点,我们得到一条斜率较小的直线。
示例3:函数表达式:y = -3xx | -3 | 0 | 2 | 5 |y | 9 | 0 | -6 | -15 |这个例子展示了一个负相关关系,当x增加1个单位时,y减少3个单位。
我们可以通过连接所有的点得到一条斜率为负的直线。
应用正比例函数在实际生活中有许多应用。
例如:1.比例尺:地图上的比例尺可以用正比例函数来表示,其中地图上的距离与实际距离之间存在着直接成比例的关系。