正比例函数的性质(教案)
- 格式:doc
- 大小:43.00 KB
- 文档页数:5
《正比例函数》教案(优秀6篇)在教学工作者开展教学活动前,就不得不需要编写教案,借助教案可以让教学工作更科学化。
那么应当如何写教案呢?以下内容是为您带来的6篇《《正比例函数》教案》,如果对您有一些参考与帮助,请分享给最好的朋友。
《正比例》优秀教学反思篇一刚刚上完正比例的教学内容,有以下几点心得:1、比例是建立在比的关系的基础上的,所以必须让学生回顾明确什么是是比。
两个数相除叫做这两个数的比。
比有两种写法,一种是比号写法,另一种是用分数写法。
2、单刀直入(其实学生已经预习知道)主题,告诉学生什么叫做正比例:两个量发生变化后(可以变大爷可以变小),他们的比值不变我们就说这两个量成正比例。
老师例子说明,并且请学生互动找例子。
3、现在这个环节是比较重要的,我不认同书本上就靠表格天数据来认知正比例。
首先强调这两个量都可以作为比的前项后后项,但是最好是写出有意义的比;其次,要求学生针对每一对数据表格都要写出一个比,并且求出比值,从而加深对正比例的意义的理解,也强化了正比例的计算方法。
我觉得这个环节是非常非常重要的,比起空洞地填写表格要实在的多,学生通过这个活动基本上掌握了正比例的意义,能准确地判断正比例。
4、运用以上的知识和方法,请学生完成书上的作业。
检查结果基本上没有错误。
注意点:让学生自己找生活中的例子可能不是很准确;表达阐述正比例的关系中,有些例子需要加入前提,如直径和半径成正比例的前提是同圆或等圆。
《正比例》优秀教学反思篇二正比例这一内≮≮容是在学生学习了比和比例知识的基础上进行教学的,着重使学生理解正比例的意义。
从内容上看,正比例在整个小学阶段是一个较抽象的概念,学生不仅要理解其意义,还要学会判断两种量是否是成正比例的量,同时还要学会用含有字母的式子来表示正比例关系。
教师要渗透给学生一些函数的思想,为他们以后的初中学习打下基础。
在教学图象的同时,我密切联系学生已有的生活经验和学习经验,给学生提供了有利于探索和理解两个量之间变化规律的材料,使学生理解正比例关系图象的特征,并掌握其画法。
《正比例函数》教案一、教学目标:1.理解正比例函数的概念,掌握正比例函数的性质。
2.能够绘制正比例函数的图象,运用正比例函数解决实际问题。
3.了解正比例函数在日常生活和工作中的应用。
二、教学重点和难点:1.正比例函数的性质和特点。
2.正比例函数的图象及其特点。
3.能够运用正比例函数解决实际问题。
三、教学过程:步骤一:导入新知(5分钟)1.反思:回顾在上一节课中我们学习的线性函数,谈谈它的特点和性质。
2.引入新知:今天我们将学习正比例函数,正比例函数和线性函数有什么异同之处?步骤二:概念讲解(10分钟)1. 定义:什么是正比例函数?正比例函数是一种特殊的线性函数,其表达式为y=kx(k≠0),其中k为常数,叫做比例因子。
2.性质:正比例函数的图象必经过原点(0,0);正比例函数的图象都通过同一点(如(1,k)或(k,1));正比例函数的图象总是经过第一象限;正比例函数的图象是一条直线,通过原点,且不会经过其他象限。
步骤三:绘制正比例函数的图象(15分钟)1.提示学生如何绘制正比例函数的图象:利用比例因子k的值来确定斜率,y轴上为k,x轴上为1/k的点,连接得到的点,绘制图象。
2.利用绘制的图象让学生发现正比例函数的性质,并让学生从图象中确定比例因子k的值。
步骤四:练习与巩固(20分钟)1.给出一组数据,让学生判断是否正比例关系,并求出比例因子k的值。
2.给出一个问题,让学生利用正比例函数求解,如:张璐每天跑步30分钟能消耗300卡路里的热量,如果她每天跑步60分钟,能消耗多少卡路里的热量?3.提供足够的练习题,让学生加深对正比例函数的理解和掌握。
步骤五:实际应用(15分钟)1.通过展示一些实际应用的例子,让学生了解正比例函数在生活和工作中的应用,如:手机话费与通话时间的关系、汽车行驶里程与耗油量的关系等。
2.让学生举例说明自己身边可能存在的正比例关系,引导学生思考正比例函数的实际应用。
步骤六:课堂小结(5分钟)1.对学生进行知识点的总结,强调正比例函数的定义、性质和图象特点。
函数的性质教案函数的性质教案1一、教学内容:正比例函数的图象和性质二、教学目标:(一)知识与能力1、进一步巩固正比例函数的概念,会画正比例函数的图象,进一步熟悉函数图象作图步骤。
2、能根据正比例函数图象观察、发现归纳出它的性质,并会简单运用。
(二)过程与方法1、通过实例函数图象画法的学习,发现并总结正比例函数图象的常用画法。
2、通过观察、探究、分析、引导学生发现正比例函数的性质。
3、培养学生善于观察问题发现结论,了解数形结合及由一般到特殊的数学思想。
(三)情感态度及价值观培养学生积极参与数学活动,勇于探究,发现数学的现象和规律,培养学生的数学交流能力和团队协作精神。
三、教学重点:正比例函数图象的画法及性质的探索。
四、教学难点:发现、归纳正比例函数的性质。
五、教法与学法教法:本节课选用引导学生观察,发现法和探索实践归纳法。
本节课的难点是发现正比例函数性质,因此我通过教师引导,启发调动学生的积极性,让学生在课堂上多活动(画、图、交流、展示)、多观察(图象),主动参与到整个教学活动中来,最后发现其性质。
学法指导:教师引导学生观察、发现、归纳的学习方法。
六、教具:三角板、多媒体。
七、教学过程。
教学过程:(1)温故知新,引入课题。
1、下列函数哪些是正比例函数?(1)y=-3x (2)y= x + 3 (3) y= 4x (4)y= x22、(学生回答完上述问题后提问概念)一般地,形如y= kx(K≠0)的函数,叫正比例函数,其中K叫做比例系数。
3、画函数图象的一般步骤(1)列表(2)描点(3)连线学生回答后:教师引导:现在我们已经知道正比例函数的意义及画图象的步骤,那么正比例函数的图象有什么特征呢?出示课题(二)探究正比例函数的图象和性质例1、画出下列正比例函数的图象。
(1)y=2x(2)y=-2x解(1)函数y=2x中x 可取任意实数,列表如下:描点连线(2)学生练习画出函数y=-2x的图象。
(3)提出问题师:观察上面的函数图象,它们的形状相同吗?是什么?一定经过哪些象限和特殊点?生甲:一条直线生乙:过原点的直线,y=2x的图象过一、三象限,y=-2x 的图象过二、四象限。
《正比例函数的图象和性质》教案一、教学目标:1. 知识与技能:学生能够理解正比例函数的定义和图象特点。
学生能够运用正比例函数的性质解决实际问题。
2. 过程与方法:学生通过观察和分析正比例函数的图象,探索其性质。
学生通过合作交流,培养解决问题的能力。
3. 情感态度价值观:学生培养对数学的兴趣和好奇心,体验数学的乐趣。
学生培养团队合作意识,提高自我表达能力。
二、教学重点与难点:重点:正比例函数的定义和图象特点。
正比例函数的性质。
难点:理解和运用正比例函数的性质解决实际问题。
三、教学准备:教学课件或黑板。
正比例函数的图象和性质的相关素材。
练习题和作业。
四、教学过程:1. 导入:引导学生回顾已学过的函数知识,为新课的学习做好铺垫。
通过实际例子引入正比例函数的概念。
2. 探究正比例函数的定义和图象特点:引导学生观察正比例函数的图象,分析其特点。
学生通过合作交流,总结正比例函数的性质。
3. 讲解正比例函数的性质:引导学生理解正比例函数的性质,并能够运用到实际问题中。
通过例题和练习题,巩固学生对正比例函数性质的掌握。
4. 应用与拓展:给学生提供实际问题,让学生运用正比例函数的性质解决。
引导学生思考正比例函数在实际生活中的应用。
五、作业布置:根据课堂练习题和作业,布置相关的习题,巩固学生对正比例函数的图象和性质的理解。
鼓励学生进行思考和探索,培养学生的自学能力。
六、教学评估:1. 课堂提问:在教学过程中,教师应适时提问学生,了解学生对正比例函数图象和性质的理解程度。
通过学生的回答,教师可以及时发现问题,并进行针对性的讲解和辅导。
2. 练习题解答:在课堂练习环节,教师应观察学生的解答过程,了解学生对正比例函数图象和性质的应用能力。
对于学生解答中出现的问题,教师可以进行个别辅导,帮助学生纠正错误,提高解题能力。
3. 作业完成情况:教师应检查学生作业的完成情况,包括答案的正确性和解题过程的完整性。
通过作业反馈,教师可以了解学生对正比例函数图象和性质的掌握情况,为下一步教学提供参考。
《正比例函数的图象和性质》教案第一章:正比例函数的定义1.1 引入正比例函数的概念通过实际例子(如长度和宽度、速度和时间等)引导学生理解正比例关系。
解释正比例函数的定义:形如y = kx (k 是常数)的函数称为正比例函数,其中x 是自变量,y 是因变量。
1.2 解析正比例函数的性质引导学生分析正比例函数的图像特征,如通过观察图像理解正比例函数的单调性、过原点等性质。
引导学生理解正比例函数的斜率k 的意义,如k 的正负决定了函数图象在坐标平面内的位置,k 的绝对值决定了函数图像的倾斜程度。
第二章:正比例函数的图像2.1 绘制正比例函数的图像引导学生通过观察函数式y = kx 理解函数图像的形状,如直线、通过原点等。
利用计算器或绘图软件,让学生实际绘制正比例函数的图像,观察不同k 值对图像的影响。
2.2 分析正比例函数图像的性质引导学生理解正比例函数图像的几个关键点,如原点、正半轴、负半轴等。
第三章:正比例函数的性质3.1 理解正比例函数的斜率解释斜率的概念,即函数图像在任意两点间的斜率等于这两点的纵坐标之差与横坐标之差的比值。
引导学生理解正比例函数的斜率恒为常数k,与x 的取值无关。
3.2 探讨正比例函数的单调性引导学生通过观察图像或分析函数式,理解正比例函数的单调性,即在定义域内,随着x 的增大,y 也随之增大或减小。
第四章:正比例函数的应用4.1 实际问题引入通过实际问题引入正比例函数的应用,如人口增长、商品价格等。
引导学生将实际问题转化为正比例函数问题,即找到自变量和因变量之间的正比例关系。
4.2 解题方法指导引导学生运用正比例函数的性质和解题方法解决实际问题,如通过给定的两个点的坐标求斜率、通过已知斜率求点的坐标等。
第五章:巩固与拓展5.1 练习题提供一些有关正比例函数的练习题,让学生巩固所学知识,如图像绘制、性质分析、实际应用等。
5.2 拓展讨论引导学生思考正比例函数在实际生活中的应用,如如何利用正比例函数模型预测未来的趋势。
正比例函数教案正比例函数教案一、引言正比例函数是数学中的重要概念,它在实际生活中有着广泛的应用。
本教案旨在通过生动的教学方法,帮助学生理解正比例函数的概念、性质和应用,并培养他们解决实际问题的能力。
二、知识目标1. 理解正比例函数的定义和性质;2. 掌握正比例函数的图像特征和表示方法;3. 学会利用正比例函数解决实际问题。
三、教学过程1. 导入通过展示一组图片,引起学生对正比例函数的兴趣。
例如,展示一组汽车行驶时间与路程的关系图,让学生思考这种关系是否是正比例。
引导学生提出问题,并激发他们的猜想。
2. 概念讲解首先,向学生介绍正比例函数的定义:当两个变量的比例始终保持不变时,它们之间的关系可以用正比例函数表示。
然后,讲解正比例函数的性质:图像经过原点,曲线是一条直线,斜率代表比例关系。
3. 图像展示通过绘制正比例函数的图像,让学生观察并总结其特征。
引导学生发现图像经过原点,并且是一条直线。
同时,让学生观察不同斜率的正比例函数图像之间的关系,引导他们思考斜率与比例关系的联系。
4. 实例分析选择一些实际问题,如购买水果的数量与价格、行驶时间与路程等,让学生运用正比例函数解决这些问题。
通过实例分析,帮助学生理解正比例函数在实际生活中的应用,并培养他们解决实际问题的能力。
5. 拓展应用引导学生思考更复杂的问题,如多个变量之间的正比例关系、利用正比例函数解决实际生活中的实际问题等。
通过拓展应用,激发学生的思维,培养他们解决复杂问题的能力。
四、教学评价1. 课堂练习设计一些练习题,让学生巩固所学的知识。
例如,给出一组数据,要求学生判断是否为正比例函数,并绘制其图像。
通过课堂练习,检验学生对正比例函数的理解和应用能力。
2. 课后作业布置一些作业题,要求学生运用正比例函数解决实际问题。
通过作业,巩固学生的知识,培养他们独立解决问题的能力。
五、教学反思在教学过程中,要注重培养学生的实际应用能力。
通过引入实际问题和拓展应用,激发学生的兴趣,提高他们解决实际问题的能力。
正比例函数教案正比例函数教案一、教学内容本节课讲解正比例函数的概念与性质,并通过实例演示如何求解正比例函数的具体表达式。
二、教学目标1.了解正比例函数的概念与性质;2.能够找出具备正比例关系的实例,并求解其表达式;3.能够解决一些简单的实际问题,运用正比例函数进行分析与求解。
三、教学过程1. 导入新知识,导入新知识的环节可以通过提问或例子来引入,例如:“小明去市场买苹果,他发现,苹果的价格与购买的数量存在一定的规律性,你们能猜出这种规律是什么吗?”;2. 引出正比例函数的概念,利用上述例子,介绍苹果的价格与购买的数量之间的关系是正比例关系;3. 定义正比例函数的概念,即函数y=kx,其中k为常数;4. 通过实例演示如何求解正比例函数的具体表达式,例如将苹果的价格和购买的数量对应起来,列出表格,找到规律性,并得出函数表达式;5. 练习,让学生自行找例子,进行求解;6. 引入实际问题,例如地铁票价与乘坐的里程数之间的关系,让学生进行分析与求解;7. 检查与讨论,让学生上台展示他们的解答过程与答案,并进行讨论;8. 给出总结与归纳,总结正比例函数的定义与性质;9. 作业布置,规定时间内完成作业。
四、教学流程及方法本节课采用引导式教学方法,通过问题导入,引出正比例函数的概念;再通过实例演示的方式,让学生发现正比例函数的规律与性质;最后通过实际问题帮助学生综合运用所学知识。
五、教学资源1. PowerPoint或黑板、粉笔等教学工具;2. 相关的实例与练习题。
六、教学评价1. 在课堂上观察学生的学习状态,是否能够积极思考、回答问题;2. 练习题的完成情况;3. 学生的思维深度与能力是否有所提升。
七、教学后续1. 引导学生进行拓展学习,深入了解正比例函数的应用领域;2. 鼓励学生自主学习,参加一些数学竞赛;3. 随时进行课堂小结,巩固所学内容。
正比例函数教学设计(9篇)正比例函数教学设计1【教学内容】正比例【教学目标】使学生理解正比例的意义,会正确判断成正比例的量。
【重点难点】重点:理解正比例的意义。
难点:正确判断两个量是否成正比例的关系。
【教学准备】投影仪。
【复习导入】1、复习引入。
用投影仪逐一出示下面的题目,让学生回答。
①已知路程和时间,怎样求速度?板书:=速度。
②已知总价和数量,怎样求单价?板书:=单价。
③已知工作总量和工作时间,怎样求工作效率?板书:=工作效率。
2、引入课题:这是我们过去学过的一些常见的数量关系。
这节课我们进一步来研究这些数量关系的一些特征,首先来研究这些数量之间的正比例关系。
板书课题:成正比例的量。
【新课讲授】1、教学例1.教师用投影仪出示例1的.图和表格。
学生观察上表并讨论问题。
(1)铅笔的总价和数量有关系吗?(2)铅笔的总价是怎样随着数量的变化而变化的?(3)铅笔的总价和数量的变化有什么规律?组织学生在小组中讨论,然后交流说一说。
根据观察,学生可能会说出:①铅笔的。
总价随着数量变化,它们是两种相关联的量。
②数量增加,总价也增加;数量降低,总价也减少。
③铅笔的总价和数量的比值总是一定的,即单价一定。
教师指出:总价和数量有这样的变化关系,我们就说总价和数量成正比例关系,总价和数量叫做成正比例的量。
2、教师出示:一列火车行驶的时间和路程如下表。
引导学生观察、思考:路程和时间有关系吗?路程怎样随着时间的变化而变化?路程和时间的变化有什么规律?组织学生分析、讨论、汇报:路程和时间是两种相关联的量,路程扩大,时间也跟着扩大;路程缩小,时间也跟着缩小;但是路程和时间的比值一定,写成关系式是=速度(一定)。
教师小结:所以说路程和时间成正比例关系,路程和时间叫做成正比例的量。
3、归纳概括正比例关系。
①组织学生分小组讨论,上面两个例子有什么共同规律?②教师引导学生归纳总结:都是两种相关联的量,一种量变化,另一种量也随着变化;如果这两种量中相对应的两个数的比值也就是商一定,这两种量就叫做成正比例的量,它们的关系就叫做成正比例关系。
正比例函数的性质(教案)
宛平中学韩群
一、教学目标
(1)知识目标:
能根据正比例函数的图像,观察归纳出函数的性质;并会简单应用。
(2)能力目标:
逐步培养学生的观察能力,概括的能力,通过教师指导发现知识,初步培养学生数形结合的思想以及由一般到特殊的数学思想;
(3)情感目标:
激发学生学习数学的兴趣和积极性,逐步培养学生实事求是的科学态度。
二、教学的重点和难点
教学重点:正比例函数的性质及其应用。
教学难点:发现正比例函数的性质
三、教学方法与学法指导
教学方法:通过本节课的教学,我选用引导发现法和直观演示法,本节课的难点是发现正比例函数的性质,通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动(画图)、多观察(图像),主动参与到整个教学活动中来,最后发现其性质。
学法指导:教师引导学生学会观察、归纳的学习方法。
五、教学过程:
(一)温故知新,引入课题
温故:正比例函数的图像是什么?
答:正比例函数图像是经过原点(0,0)和点(1,k)的一条直线
(二):知新:
在两个直角坐标系内,分别画出下列每组函数的图像:
① y =2x y=x y=41x ② y =-2x y=-x y=-4
1x 引导学生观察图像,看看每组直线分布的特征?
观察图像,思考问题:
1、 图像经过的象限与k 的取值有何联系?不够明确。
图像经过的象限与k 的取值(特别是符号)有何联系?
2、 对其中的某一个正比例函数图像(例如y=2x),当x 增大时,函数值y 怎样变化?x 减小呢?是不是要提出减小?请斟酌。
3、 你从中得出什么规律?
第一个问题:图像经过的象限与k 的取值有何联系?
估计生:发现第一组的三条直线都经过第一象限和第三象限;而第二组的三条直线都经过第二和第四象限。
师:从比例系数来看呢,函数的比例系数和他们的图像分布有什么联系?用词前后宜一致
估计生:第一组k>0,而第二组k<0。
师:很好,谁能把他们联系一下?
估计生:当k >0时,函数图像经过第一、三象限;当k <0时,函数图像经过第二、四象限。
师:那么是不是对于所有的正比例函数的图像都有:当k >0时,函数图像经过第一、三象限;当k <0时,函数图像经过第二、四象限呢?【电脑演示:任意正比例函数的图像,当在一、三象限运动时,它的解析式中的k 的值无论怎样变化都是大于零的,反之,图像在二、四象限运动时,k 的值都小于零的。
】 下面由老师来证明这个性质:(由观察猜想到逻辑证明)
当k >0时,函数图像经过第一、三象限;当k <0时,函数图像经过第二、四象限。
(板书)证明:这个证明是书上要求的吗?如果书上没有要求,你也不要求。
下
面第二个问题同。
当k>0时,若x>0,则kx>0,即y>0 ∴点(x,y)在第一象限
若x<0,则kx<0,即y<0 ∴点(x,y)在第三象限
当x=0时,则kx=0,即y=0 ∴点(x,y)即原点。
即函数图像上所有的点(原点除外)都在一、三象限内,所以图像经过一、三象限。
同理,当k<0时,亦可证明函数图像经过二、四象限。
我们看到:当k >0时,函数图像的走向很像汉字笔画里的“提”,当k <0时,走向是“捺”。
这样更形象,容易记忆。
投影打出正比例函数的性质:当k >0时,函数图像经过第一、三象限;当k <0时,函数图像经过第二、四象限。
师:现在我们做个小练习,由正比例函数解析式(根据k 的正负),来判断其函数图像的走向。
y =-x y=32x y= 2x y =-2
3x y=(a 2+1)x (其中a 是常数) y=(-a 2-1)x (其中a 是常数) 鼓励学生踊跃抢答。
反过来,由函数图象所在的象限,请你说出一个满足条件的正比例函数解析式。
好,我们来看下一个问题,(电脑重现第二问题:2、对其中的某一个正比例函数图像,当x 增大时,函数值y 怎样变化?x 减小呢?)如果一定想讲减少,建议放在练习里讲。
继续观察刚才的函数图像,看看当自变量发生变化时,函数值是怎样变化的。
我们以y=2x 为例,【几何画板演示:x 取……-3、-2、-1、0、1、2、3……,观察对应的函数值y 的变化……,发现当x 在逐渐增大时,y 的值也在增大;反之,亦
成立!画板中用 表示x 在增大,用表示y 在增大。
图像的走向是不是很像汉字里的提呢,(提)在从左向右的同时,也从下到上的走势,(图像函数值)由小到大的变化。
】学生在自己的小方格本上观察有些困难,通过教师的电脑动态演示,使图像动起来,看起来更直观,便于发现正比例函数图像的性质。
再看正比例函数的比例系数k 小于零时的情况(以y =-2x 为例),当自变量x 逐渐增大时,函数值y 反而减小,反之,当自变量x 逐渐减小时,函数值y 却在变大。
【几何画板演示,同上。
】我们把它很形象地比作汉字里捺的走向,捺从上到下,函数值从大到小。
即:当k >0时,自变量x 逐渐增大时,函数值y 也在逐渐增大;(即“提”的走向)当k <0时,自变量x 逐渐增大时,函数值y 反而减小。
(即“捺”的走向) 下面由老师来证明这个性质:(由观察猜想到逻辑证明)
(口述)证明:这个证明是不是书上要求的?当k>0时,若x 1>x 2,则有kx 1>kx 2,即y 1>y 2
若x 1<x 2 ,则有kx 1<kx 2,即y 1<y 2
即当k>0时,自变量x 逐渐增大时,函数值y 也在逐渐增大。
同理,当k<0时,亦可证明y 随x 的增大而减小。
师:小练习:由函数解析式,请你说出它的变化情况:
y=3x y =-x y=2x y=-
3
x y=(a 2+1)x (其中a 是常数) y=(-a 2-1)x (其中a 是常数) 鼓励学生踊跃抢答。
第三个问题:你从中得出什么规律?
归纳总结(由学生回答)正比例函数y=kx(k ≠0)的性质:
① 当k >0时,函数图像经过第一、三象限;自变量x 逐渐增大时,函数值y 也在逐渐增大;(也就是“提”的走向)
② 当k >0时,函数图像经过第二、四象限;自变量x 逐渐增大时,函数值y 反而减小。
(也就是“捺”的走向)
归纳为一句话,正比例函数图象的性质归根结底看k 的符号。
即: k >0 提 (一、三,增大) ;
k <0 捺 (二、四,减小)
(三)应用
1、、正比例函数的解析式是 ,它的图像一定经过 。
2、y =-
2
x 的图像经过第 象限。
3、已知ab <0,则函数y= a b x 的图象经过 象限。
4、已知正比例函数y=(2a+1)x ,若y 的值随x 的增大而减小,求a 的取值范围。
5、当m 为何值时,y=mx m2-3是正比例函数,且y 随x 的增大而增大。
思考题:
① 已知正比例函数y=(m+1)x m2+1,那么它的图象经过哪些象限。
② 分别说明下列各正比例函数,当m 为何值时,y 随x 的增大而增大,或y 随x 的增大而减小?
a 、y=(m 2+1)x
b 、y=m 2x
c 、y=(m+1)x
(四)小结
这节课让我们知道了……
以表格形式小结,可以整理知识点,形成网络.有利于学生的记忆和内化,让学生理清知识脉络。
(五) 作业
A 组:
B 册21.4(2)、思考题
B 组:B 册第26页到27页1. 3.4.5
以上作在B 号本上。