第二章 拉伸压缩
- 格式:ppt
- 大小:4.29 MB
- 文档页数:62
材料力学2-第二章拉伸、压缩与剪切第二章拉伸、压缩与剪切§2-1 拉伸与压缩的概念等直杆的两端作用一对大小相等、方向相反、作用线与杆件轴线重合的力,这种变形叫轴向拉伸或压缩。
一、工程实例悬索桥,其拉杆为典型受拉杆件;桁架,其杆件受拉或受压。
二、受力特点杆件受到的外力或其合力的作用线沿杆件轴线。
三、变形特点发生轴线方向的伸长或缩短。
§2-2 拉伸或压缩时横截面上的内力和应力一、轴力(1)对于轴向拉伸(压缩)杆件,用截面法求横截面m-m上的内力。
(2)轴力正负规定:拉力为正(方向背离杆件截面);压力为负(方向指向杆件截面)。
二、轴力图(1)轴力图:轴力沿轴线方向变化的图形,横坐标表示横截面位置,纵坐标表示轴力的大小和方向。
(2)轴力图作用:通过它可以快速而准确地判断出最大内力值及其作用截面所在位置,这样的截面称为危险截面。
轴向拉(压)变形中的内力图称为轴力图,表示轴力沿杆件轴线方向变化的情况。
(3)作下图所示杆件的轴力图三、横截面上的应力(1)平面假设:变形前原为平面的横截面,变形后仍保持为平面且仍垂直于轴线,只是各横截面间发生沿杆轴的相对平移。
通过对称性原理,平面假设可得以证明。
(2)由平面假设可得,两截面间所有纵向纤维变形相同,且横截面上有正应力无切应力。
(3)由材料的均匀连续性假设,可知所有纵向纤维的力学性能相同。
所以,轴向拉压时,横截面上只有正应力,且均匀分布。
即 N AF dA A σσ==? ANF =σ ,(2-1)为拉(压)杆横截面上的正应力计算公式。
正应力的正负号与轴力正负号相同,拉应力为正,压应力为负。
当轴力与横截面的尺寸沿轴线变化时,只要变化缓慢,外力与轴线重合,外力与轴线重合,如左图,式(2-1)也可使用。
这时某一横截面上的正应力为()()x A x x N F =)(σ (2-2)例题一等直杆受力情况如图a 所示,试作杆的轴力图。
解:(1)先求约束力直杆受力如图b 所示,由杆的平衡方程0F =∑x 得()k Nk N RA F =+-=50104020 (2)求杆中各段轴力AB 段:沿任意截面1-1将杆截开,取左段为研究对象,1-1截面上的轴力为N1F ,设N1F 为正,由左段的平衡方程0F =∑x 得:σ()x σ0F F RA N1=-, N1RA F F 20kN ==BC 段:沿任意截面2-2将杆截开,取左段为研究对象,设轴力N2F 为正,由左段的平衡方程0F =∑x 得:N2RA F F kN 0-+=50, N2F 0kN =-3 结果为负,说明N2F 的指向与所设方向相反,实为压力。