10-地球化学样品分析
- 格式:pdf
- 大小:797.05 KB
- 文档页数:41
地球化学技术与分析方法从样品采集到实验室分析地球化学技术与分析方法在地球科学领域扮演着重要的角色,它们能够为我们提供关于地球内部结构、元素分布和环境变化等方面的重要信息。
本文将介绍地球化学技术与分析方法的整个流程,从样品采集到实验室分析。
1. 样品采集地球化学的样品可以包括岩石、土壤、水和气体等,采集样品是进行后续分析的第一步。
采集样品时,需注意选择代表性样本,并避免样品受到外界污染。
在岩石样品采集时,需注意选择适当的采样工具,以避免样品受到污染或损伤。
2. 样品处理与前处理采集回来的样品需要进行处理与前处理,以便更好地进行后续分析。
对于岩石样品,可利用机械破碎的方法将样品粉碎成适合实验的粒度。
土壤样品则需要经过筛分、干燥和研磨等步骤,以提高分析的准确性。
3. 样品制备将处理好的样品进行制备是进行地球化学分析的关键一步。
样品制备的过程中,需要根据不同的分析方法和仪器要求进行适当的加热、溶解、稀释等操作。
此外,还需要使用相应的化学试剂,以满足分析的要求。
4. 分析仪器选择与分析方法在地球化学分析过程中,选择合适的分析仪器和分析方法是十分关键的。
常用的分析仪器包括质谱仪、元素分析仪、高效液相色谱仪等。
针对具体的分析目标,选择合适的仪器和方法,可以提高分析的准确性和精确度。
5. 数据分析与结果解读实验室完成分析后,需要对得到的数据进行分析与结果解读。
地球化学数据分析可以采用统计学方法和地质化学模型等手段,以揭示样品的成分和特征。
结果解读需要结合背景知识和地质特征,对分析结果进行合理的解释与推断。
总结:地球化学技术与分析方法的流程包括样品采集、样品处理与前处理、样品制备、分析仪器选择与分析方法、数据分析与结果解读等环节。
通过这些环节的连续配合与科学操作,我们可以获得关于地球化学特征的重要信息,从而进一步了解地球的成分和演化历史。
地球化学技术的应用不仅在地质学、环境科学等学科领域起着重要作用,也为人类认识地球和解决环境问题提供了有力的依据。
地球化学分析方法微量元素和同位素地球化学的飞速发展,主要得益于基础科学理论的渗透和现代测试技术的充分应用。
地质样品的元素和同位素地球化学分析主要考量三个方面:准确度、精确度和仪器检测限。
准确度是指测量值和真实值之间的接近程度;精确度是指分析测试的可靠性,也即测试结果的可重复性;检测限是指能够被所使用测试方法检测到的最低浓度。
事实上,尽管可以参考标准样品的推荐值来检测分析样品的值,但确定样品的真实值非常困难。
所以从某种程度上来说,精确度比准确度更为重要,因为对于一套由同一实验室分析的数据,成分的相对差异可以用来推断地球化学过程。
下面简要介绍一下在岩石地球化学研究中常用的几种分析测试方法。
(一)X射线荧光光谱X射线荧光光谱(XRF)的原理是基于用X射线激发样品,使之产生二次x射线,而每个元素都有特征二次x射线波长,因此,加入校正标准,通过测不同元素特征二次X射线的强度就可以用来确定元素的浓度。
典型岩石样品的XRF分析有两种不同形式的样品制备方法。
一种是将均匀的样品粉末压片来分析微量元素;另外一种是由岩石粉末与亚硼酸锂或者四方硼酸盐混合并熔融制成玻璃片来分析主量元素。
XRF分析是目前用于分析硅酸盐全岩样品最常用的方法,在微量元素分析上也有应用。
该方法的适用性广、分析快速,能够分析80多种元素,检测限可以达到几个ppm。
XRF分析方法的主要缺陷是不能分析比钠(原子序数一11)轻的元素。
(二)电子探针分析电子探针分析(EMPA)的原理与XRF十分相似,只是前者用的是电子束而不是X射线来激发样品而已。
通过分析激发的二次x射线的波长,相对于标样记录峰的面积,用适当的模型进行校正,可以将峰的强度转化为浓度。
电子探针主要用于矿物的主量元素分析,也可扩大束斑直径对隐晶质岩石或岩石熔融而成的玻璃进行主量元素分析。
另外,利用长的计数时间和精确的背景测量,电子探针的检测限也可延伸到微量元素的范围,满足分析部分微量元素的要求。
地球化学解析地壳与地幔的化学成分地球是我们赖以生存的唯一之所,而地球的内部则是一个充满奥秘的世界。
地壳和地幔是地球内部的两个重要组成部分,它们的化学成分对地球的构造和演化有着深远的影响。
本文将通过地球化学的方法,探索地壳和地幔的化学成分,并揭示其背后的奥秘。
一、地壳的化学成分地壳是地球外表面最外层的固体壳,包括陆地地壳和海洋地壳。
地壳主要由氧、硅和铝等元素构成,其中氧占据了地壳元素质量的47%,硅占据了27%,铝占据了8%。
此外,钙、钠、钾等元素的含量也相对较高。
这些元素以氧化物和硅酸盐的形式存在于地壳中。
地壳的化学成分在不同地区有所差异。
例如,海洋地壳富含镁、钠等元素,而铝、钾等元素的含量相对较低。
相比之下,陆地地壳富含铁、铝和钾等元素,而镁、钙等元素的含量相对较低。
这种地区差异主要是由于地壳物质的来源和成因不同所致。
二、地幔的化学成分地幔是地球内部的中间层,位于地壳和地核之间。
地幔主要由硅、镁和铁等元素构成,其中硅占据了地幔元素质量的30%,镁占据了29%,铁占据了15%。
此外,钙、铝、钠等元素的含量也相对较高。
地幔中的元素主要以氧化物和硅酸盐的形式存在。
与地壳相比,地幔的化学成分更加均匀。
地幔中的元素含量相对稳定,不会随地区的变化而明显改变。
地幔物质主要来自于上地幔和下地幔的岩石圈演化过程,具有较高的热稳定性和化学稳定性。
三、地球化学的研究方法地球化学是研究地球及其成分的化学元素和化学互作用的科学。
在解析地壳和地幔的化学成分时,地球化学家运用多种方法和技术,其中包括:1. 岩石和矿物分析:通过收集地壳和地幔中的岩石和矿物样品,并进行化学分析,可以确定其中的化学成分。
常用的分析方法包括X射线荧光光谱、电子探针微区分析等。
2. 地球化学示踪:利用地球化学示踪元素,如放射性同位素和稳定同位素,分析地壳和地幔岩石中的同位素组成,可以揭示地球演化和岩石循环的过程。
常用的示踪方法包括锆石U-Pb定年、锆石Lu-Hf同位素分析等。
FHZDZDQHX0079 地球化学调查样品 有机质的测定 重铬酸钾氧化稀释热法F-HZ-DZ-DQHX-0079地球化学调查样品—有机质的测定—重铬酸钾氧化-稀释热法1 范围本方法适用于化探土壤样品中有机质的测定。
测定范围:质量百分数0.x%~x%。
2 原理利用浓硫酸和重铬酸钾溶液混合时产生的稀释热,促使有机质中的碳氧化为二氧化碳,而重铬酸钾中的Cr 6+被还原成Cr 3+,剩余的重铬酸钾再用硫酸亚铁标准溶液滴定。
根据有机碳被氧化前后Cr 2O 数量的变化,可算出活性有机质的含量。
本法应在室温20℃以上的条件下进行,如气温较低,应采取适当的保温措施。
−273 试剂3.1 硫酸(ρ 1.84g/mL)。
土壤中若有氯离子存在,每升浓硫酸中加15g 硫酸银(Ag 2SO 4)。
3.2 重铬酸钾标准溶液[c(61K 2Cr 2O 7)=1mol/L]:称取49.0306g 重铬酸钾(K 2Cr 2O 7)(预先在150℃烘2h ,置于干燥器中冷却至室温),加400mL 水加热溶解,冷却至室温,移入1000mL 容量瓶中,用水稀释至刻度,摇匀。
3.3 硫酸亚铁标准溶液[c(FeSO 4)=0.5mol/L]:称取140g 硫酸亚铁(FeSO 4·7H 2O)溶于水,加入15mL 硫酸(ρ 1.42g/mL),冷却,用水稀释至1000mL ,摇匀。
此溶液极易被空气氧化而致浓度下降,故需每天标定。
标定方法如下:吸取50.0mL 重铬酸钾标准溶液[c(1/6K 2Cr 2O 7)=0.1mol/L]置于100mL 三角瓶中,加3mL~5mL 浓硫酸和2滴~3滴邻啡啰啉指示剂,用硫酸亚铁标准溶液滴定,根据硫酸亚铁溶液的消耗量计量准确浓度。
3.4 邻啡啰啉指示剂:称取1.49g 邻啡啰啉(C 12H 8N 2·H 2O),溶于含有0.70g FeSO 4·7H 2O 或1.0g(NH 4)2SO 4·FeSO 4·6H 2O 的100mL 水溶液中。
FHZDZDQHX0001 地球化学调查样品分析F-HZ-DZ-DQHX-0001地球化学调查样品分析地球化学是研究化学元素在矿物、岩石、土壤、水和大气圈中的分布和含量以及这些元素在自然界的转移规律。
勘查地球化学是地球化学在地质找矿工作中的具体运用,目前地球化学调查已成为地质勘查的重要组成部分。
地球化学调查主要采用岩石、土壤、水系沉积物、水化学、生物(植被)、气体等地球化学调查方法,当前广泛应用的是岩石、土壤和水系沉积物三种地球化学调查方法。
我国属于发展中国家,除内地和沿海地区外,地质工作程度较低。
内地和沿海地区除冲积平原和黄土覆盖区外,一般水系较发育,因此采用水系沉积物调查方法,可以低成本、高效率地扫视大面积范围内元素地球化学分布情况,从而发现潜在的矿化异常,取得区域地球化学填图和地质勘查效果。
边远地区由于地质条件较复杂,常根据不同地球化学景观,综合应用相适应的地球化学调查方法。
结合我国的实际情况,为便于资料对比和元素地球化学拼图,常使用水系沉积物为主,岩石和土壤为辅的地球化学调查方法。
我国勘查地球化学调查工作,五十年代开始以土壤的1/20万金属量测量方式开展,由于剖面间距大(2km),对矿床的遥测能力差,而且元素受雨淋流失严重,再加上当时分析技术水平不高,因此难以取得良好效果。
1978年地质矿产部确定在全国开展水系沉积物的1/20万区域地球化学调查(区域化探扫面),由于水系沉积物采样点的均匀布置及其形成特征,调查方式较能适应地质和表生环境条件的变化,可反映上游汇水盆地中元素的平均含量,再加上分析化学技术的进步,元素分析方法的检出限、精密度和准确度有较大提高,因此地质效果较显著,特别是包含潜水的运移,对寻找隐伏矿体有明显效果。
在1/20万区域地球化学调查基础上,全国发现了大量的元素地球化学异常,通过筛选,选择有利地段开展1/5万区域地球化学调查(普查化探),缩小靶区,对异常进行验证和检查,直接取得地质找矿效果。
地球化学分析技术及其在矿产勘探中的应用地球化学分析技术是一种通过对地球中各种元素和化合物的分析,来揭示地球内部和地球表面沉积物的起源、演化和地球过程的一门科学。
它在矿产勘探中起着重要的作用。
一、地球化学分析技术的概述地球化学分析技术是利用各种分析手段,对地球样品中的矿物、岩石、土壤、水、气体等进行成分和结构的定量和定性分析。
常用的地球化学分析方法包括光谱分析、质谱分析、色谱分析、X射线衍射分析等。
光谱分析利用物质对光的吸收、发射、散射、透射等特性来确定其成分。
常见的光谱分析方法有原子吸收光谱、X射线荧光光谱、近红外光谱等。
质谱分析是通过测量粒子离子加速运动引起的圆周运动进行定性和定量分析的方法。
质谱分析可以检测地样品中的元素及其同位素。
色谱分析是将混合物中的组分分离并进行定性和定量分析的方法。
色谱分析广泛应用于地样品的有机物和无机物成分分析。
X射线衍射分析是利用物质中原子排列引起的衍射现象来对样品进行结构分析的方法。
X射线衍射分析广泛应用于矿物和岩石中的晶体结构研究。
二、地球化学分析技术在矿产勘探中的应用地球化学分析技术在矿产勘探中有着广泛的应用。
它可以通过对地球样品中的各种元素和化合物进行分析,来揭示地下矿产资源的存在、分布和富集规律。
首先,地球化学分析技术可以用于找矿模型的建立和修正。
通过对不同地质背景下的矿产勘查区域进行地球化学分析,可以确定矿床的主要控制因素和富集规律,进而构建合理的找矿模型,为后续的矿产勘探提供指导。
其次,地球化学分析技术可以用于矿产物质的定性和定量分析。
通过对矿石、岩石和土壤样品中的元素和化合物进行分析,可以确定矿石矿物的组成及其含量,进一步研究矿石的赋存状况和可能的成矿机制。
此外,地球化学分析技术还可以用于地下水和地下气体的分析。
地下水和地下气体中的元素和化合物的含量和组成对于矿产勘探具有重要意义。
地下水和地下气体中的某些元素的异常含量可能与矿床的存在和富集有关,因此通过对地下水和地下气体进行地球化学分析,可以为矿产勘探提供宝贵的线索。
区域地球化学调查样品分析质量监控与质量管理叶家瑜【摘要】通过对27个区域地球化学调查项目中出现的样品测试质量问题的研究,认为质量不高的主要原因是对DZ/T0167-95规范中规定的有关质量管理、质量监控的错误理解和执行不严所致.本文从区化样品测试特点出发,对有关分析方法的选择、质量监控目的和方式、系统误差的判别与处理等问题,提出一些认识和意见,供全国同行参考.【期刊名称】《物探与化探》【年(卷),期】2002(026)001【总页数】6页(P6-11)【关键词】区域地球化学调查;样品分析;质量监控;质量管理【作者】叶家瑜【作者单位】湖北省地质实验研究所,湖北,武汉,430022【正文语种】中文【中图分类】P632区域地球化学调查样品分析测试工作是直接为编制区域地球化学基础图件提供数据的,通过数据的变化可以反映出元素的区域特征并圈定其局部异常,为找矿和基础地质研究提供地球化学信息。
因此必须确保测试数据的质量,使之在编制元素地球化学图时能够进行省内、省际之间的拼接,并进行全国甚至全球性研究对比。
区域地球化学勘查规范DZ/T0167-95,对区化样品多元素分析测试质量管理和质量监控作了明确规定。
正确理解和执行规范中的各项规定和要求,并根据这些要求,制订本单位的实施细则付诸实践,对于保证区化样品分析质量是十分重要的。
近年来已完成的样品分析质量,大多数是好的和比较好的,但是由于诸多因素的影响,一部分质量存在问题,主要表现为分析方法不当、系统偏倚时有发生、过程控制不严等。
为了改变这种现状,本文对这些问题提出一些改进意见,借以促进分析测试质量进一步提高。
1 区域地球化学调查样品分析特点区域地球化学调查样品分析不同于一般的区调、矿产、普查、勘探样品分析,其特点归纳有如下几点。
1. 区化样品分析数量大,如果按平均7 000 km2为一幅1∶20万图幅,按4 km2组合一个分析样品,一个1∶20万图幅分析样品数量约1 800件,加上用于质量监控8%的一级标准物质、监控样,5%的内检分析,2%的异常点抽查,3%的密码检查,每一个1∶20万图幅实际分析样品数量超过2 000件,1∶50万一幅图分析数量可达到3 500件。
039Huabei Natural Resources论文华北自然资源1 引言地球化学调查样品在自然界中存在形式不同,类型较多,包括岩石、土壤、水系沉积物、水及生物样品等。
在岩石、土壤等地质样品多元素痕量分析中,由于样品在前处理过程中存在分解、分离难度大,试剂空白高等问题,其他分析方法在对银、锡、硼3种元素进行分析时要得到较好的分析结果都存在一定困难。
用交流电弧发射光谱法测定银、锡、硼,以其固体直接进样分析,快速、准确、无污染等优势已成为地球化学样品的多种分析系统配套方案中不可或缺的分析方法。
本文利用XZJ-54振动搅拌进行研磨,采用湖北地质实验室改装的交流电弧发射光谱仪对地质化学调查样品中的岩石、土壤及水系沉积物中的银、锡、硼元素进行测定,有效提高了测试效率,节省了材料及人工成本,检出限、精密度均满足地球化学样品测试的要求。
2 实验2.1 方法原理以硫酸钾、硫粉、碳粉、聚三佛氯乙烯粉、三氧化二铝喝氧化镁混合物作为缓冲剂,将固体样品装载在石墨电极上,利用交流电弧光源对样品进行激发,光谱采集系统获得光源信号,通过加装CCD 检测器的摄谱仪直接获得分析结果,实现了光谱直读,并可同时获得谱线强度和背景信息。
2.2 仪器工作条件与试剂摄谱仪:WP-1型一米光栅摄谱仪(北京第二光学仪器厂)。
光栅刻线1200条/mm,倒线色散率0.8nm/mm,中心波长300nm,三透镜照明系统。
摄谱仪的狭缝宽度10μm,中间光栏2mm。
CCD检测器(湖北省地质实验测试中心):分辨率0.01nm,每个CCD单元对应谱线宽度为0.005nm,由6块CCD组成,一次测量光谱范围约为82nm。
光源:WJD型交直流电弧发生器。
球磨机:XZJ-54振动搅拌仪。
电极规格:上电极为平头柱状,平面直径4mm,长10mm;下电极为细颈杯状,孔径4.0mm,孔深4.5mm,壁厚0.7mm,细颈的直径2.6mm,颈长4mm。
恒温干燥箱:电热鼓风干燥箱WG9040B。