华师大高数二重积分2
- 格式:ppt
- 大小:1.40 MB
- 文档页数:29
目录摘要 (1)关键词 (1)Abstract (1)Keywords (1)前言 (1)1.二重积分的概念 (1)1.1二重积分的定义 (1)1.2可积条件 (2)1.3可积类 (2)1.4二重积分的性质 (2)2.二重积分的计算方法 (3)2.1直角坐标系下的二重积分的计算 (3)2.2二重积分的变量变换 (4)2.2.1普通情况下的变换 (4)2.2.2极坐标计算二重积分 (4)3.广义二重积分 (6)4.二重积分的应用 (6)4.1体积 (7)4.2曲面的面积 (8)4.3其它 (8)参考文献 (9)二重积分的计算与应用学生姓名:学号:数学与信息科学学院数学与应用数学专业指导教师:职称:摘要:研究了二重积分的几何意义,概念,性质以及在直角坐标系及极坐标下的计算方法,并给出了计算公式及相关例题,最后总结了二重积分的计算方法.关键词:二重积分;直角坐标系;极坐标;曲顶柱体The calculation and application of double integral Abstract : This paper mainly studies the geometric significance of double integral, the concept, nature and calculation method under the rectangular coordinate system and polar coordinate calculation method.Key Words: Double integral; The rectangular coordinate system; The polar coordinate; Curved top cylinder前言我们已经很熟悉定积分的一些性质及计算方法.同样,二重积分在实际中应用广泛,且有直观的几何解释,所不同的是现在讨论的对象为定义在平面区域上的二元函数.这类问题在物理学与工程技术中也常遇到,如求非均匀平面的质量、质心、转动惯量等.二重积分的计算的基本途径是将其转化成二次积分计算,计算二重积分时选择积分顺序,交换积分次序以及转换坐标系都是至关重要的问题.本文对二重积分的计算方法进行了全面的概括和总结,并对各种计算方法的选择进行了认真地研究,为准确的计算二重积分提供有效的帮助.1.二重积分的概念1.1[]2二重积分的定义设(,)f x y是定义在可求面积的有界闭区域D上的函数.J是一个确定的数,若对任给的某个正数ε,总存在某个正数δ,是对于D的任何分割T,当它的细度||T||时,属于T 的所有积分和都有1(,)||ni i i i f J ξσσε=∆-<∑则成(,)f x y 在D 上可积,数J 称为(,)f x y 的二重积分,记为(,)σDJ f x y d =⎰⎰.1.2[]1可积条件二重积分的可积条件与定积分类似(1)必要条件:函数(,)f x y 在D 上可积,则(,)f x y 在D 上必有界. (2)充要条件:①函数(,)f x y 在D 上可积s S =⇔(其中S ,s 分别为在上的上积分和下积分). ②函数(,)f x y 在D 上可积⇔对0>∀ε,存在分割T ,使得()().ε<-T s T S③函数(,)f x y 在D 上可积⇔对0>∀ε,存在分割T ,使得.1εσω<∑=∆ni i i1.3[]1可积类(1)有界闭区域D 上的连续函数必可积.(2)若(,)f x y 在有界闭区域D 上有界,且仅在D 内有限条光滑曲线上不连续,则(,)f x y 在D 上可积.1.4[]2二重积分的性质性质4.1(线性性) (,)σ(,)σDDkf x y d k f x y d =⎰⎰⎰⎰.性质4.2(线性性)[](,)(,)σ=(,)σ(,)σDDDf x yg x y d f x y d g x y d ±±⎰⎰⎰⎰⎰⎰.性质4.3(分段可加性)1212(,)σ=(,)σ+(,)σD D D D f x y d f x y d f x y d +⎰⎰⎰⎰⎰⎰.性质4.4(保不等式性) 设(,),(,)(,)x y D f x y g x y ∀∈<, 则 (,)σ(,)σDDf x y dg x y d <⎰⎰⎰⎰.性质4.5 设(,)m f x y M ≤≤,则(,)σDm f x y d M σσ≤≤⎰⎰其中σ表示D 的面积.性质4.6 (二重积分的中值定理)设函数(,)f x y 在闭区域D 上连续,D S 是D 的面积,则∃(ζ,η)∈D 使得(,)Df x y ⎰⎰σd =(,)f ξηDS.其中中值定理的几何意义:以D 为底,z=(,)f x y ((,)f x y ≥0)为曲顶的曲顶柱体体积等于一个同底的平顶柱体的体积,这个平顶柱体的高等于(,)f x y 在区域D 某点的函数值(,)f ξη.2.二重积分的计算方法定理1 设在矩形区域[][],,D a b c d =⨯上可积,且对每个[],x a b ∈积分存在,则累次积分(,)b d acdx f x y dy ⎰⎰也存在,且(,)σ=(,)b d acDf x y d dx f x y dy ⎰⎰⎰⎰.另外,同理(,)σ=(,)db caDf x y d dy f x y dx ⎰⎰⎰⎰.2.1[]4直角坐标系下的二重积分的计算此方法的关键就是化二重积分为累次积分,对于一般区域,通常可以分为以下两种区域进行计算:①X 型区域:平面点集12{(,)|()(),},D x y y x y y x a x b =≤≤≤≤ 则化二重积分为累次积分21()()(,)σ(,)bx a x Dy f x y d dx f x y dy y =⎰⎰⎰⎰. ②Y 型区域:平面点集{12(,)|()(),}D x y x y x x y c y d =≤≤≤≤则化二重积分为累次积分21()()(,)σ=(,)dy c y Dx f x y d dy f x y dx x ⎰⎰⎰⎰. 例1 设D 是由直线0,1x y ==及x y =围成的区域,试计算22()y DI x e d σ-=⎰⎰.解 利用Y 型区域积分:231123001()3yy y I dy x e dx y e dy --==⎰⎰⎰.由分部积分法得 1163I e=-. 例2 计算二重积分Dd σ⎰⎰,其中D 为由直线2,2y x x y ==及3x y +=所围的三角形区域.解 利用X 型区域,则相应的221()2(01),()3(12),2x y x x x y x x x y =≤≤=-<≤=所以 1223012212x x x x DD D d d d dx dy dx dy σσσ-=+=+⎰⎰⎰⎰⎰⎰⎰⎰⎰⎰1201(2)(3)22x xx dx x dx =-+--⎰⎰ =32. 2.2[]5 二重积分的变量变换定理2 设(,)f x y 在有界闭区域D 上可积,变换T: (,),(,)x u v y u v ==将uv 平面由按段光滑闭曲线所围成的闭区域∆一对一的映成xy 平面上的闭区域D ,函数(,),(,)x u v y u v 在∆内分别具有一阶连续偏导数且它们的行列式 (,)0(,)(,)x y J u v u v ∂=≠∈∆∂, 则 (,)((,),(,))|(,)|D f x y dxdy f x u v y u v J u v dudv ∆=⎰⎰⎰⎰. 2.2.1普通情况下的变换例3 求抛物线22,y mx y nx ==和直线,y x y x αβ==所围成的区域D 的面积S (0,0m n αβ<<<<).解 D 的面积DS dxdy =⎰⎰为了简化积分区域,做变换2,,u ux y v v==则[][],,m n αβ∆=⨯.由于4(,)(,)(,)x y uJ u v u v v ∂==∈∆∂,所以 22334433()()6n m Du dv n m S dxdy dudv u du v v βαβααβ∆--====⎰⎰⎰⎰⎰⎰. 2.2.2极坐标计算二重积分当积分区域是圆域或圆域的一部分时,或者背积函数的形式为22()f x y +时,采用极坐标变换T :cos ,sin (0,02)x r y r r θθθπ==≤<+∞≤≤, 则 (,)(,)(,)x y J r r u v θ∂==∂.定理3 设(,)f x y 满足定理1的条件,且在极坐标变换下xy 平面上有界闭区域D 与r θ平面上区域∆对应,则成立(,)(cos ,sin )Df x y dxdy f r r rdrd θθθ∆=⎰⎰⎰⎰.二重积分在极坐标下化为累次积分有以情况:1.θ型区域:若原点o D ∈,且xy 平面上射线θ=常数与D 的边界至多交与两点,则必可表示为12()(),r r r θθαθβ≤≤≤≤, 于是有 2()1()(,)(cos ,sin )r r Df x y dxdy d f r r rdr βθαθθθθ=⎰⎰⎰⎰.R 型区域:若平面上的圆r =常数与D 的边界至多交与两点,则∆必可表示为1212()(),r r r r r θθθ≤≤≤≤,于是有 2211()()(,)(cos ,sin )r r Dr f x y dxdy rdr f r r d r θθθθθ=⎰⎰⎰⎰.2.若原点为D 的内点,D 的边界的极坐标方程为()r r θ=,则∆必可表示成为0(),02r r θθπ≤≤≤≤,于是有 2()0(,)(cos ,sin )r Df x y dxdy d f r r rdr πθθθθ=⎰⎰⎰⎰.3.若原点O 在D 的边界上,则∆为0(),r r θαθβ≤≤≤≤, 于是有 ()0(,)(cos ,sin )r Df x y dxdy d f r r rdr βθαθθθ=⎰⎰⎰⎰.例4 计算I=D其中D 为圆域.122≤+y x解 由于原点为D 的内点故有210Dd πθ=⎰⎰[].212010202πθθππ=--=⎰⎰d d r例5 求球体2222x y z R ++≤被圆柱体22x y Rx +=所割下部分的体积(称为维维安尼体(Viviani )).解 由所求立体的对称性,只要求出第一卦限的部分体积后乘以4即可.在第一卦限内的体积是一个曲顶柱体,其底为xy 平面内由0y ≥和22x y Rx +=所确定的区域,曲顶的方程为z =所以4DV σ=.其中D={}22(,)|0,x y y x y Rx ≥+≤,用极坐标变换后有cos33322004424(1sin )()3323R V d R d R ππθπθθθ==-=-⎰⎰⎰.3[]4.广义二重积分若在无界区域D 上(),0,≥y x f 则()σd y x f D⎰⎰,收敛⇔在D 的任何有界子区域上f 可积,且积分值有上界.例6 证明反常积分σd e Dy x⎰⎰+-)(22收敛,其中[)[);,0,0+∞⨯+∞=D 并由此计算概率积分.02dx e x ⎰+∞-证明 设(),,)(22y xe y xf +-= 则显然()y x f ,在[)[)+∞⨯+∞=,0,0D 上非负.设,0,0,:222≥≥≤+y x R y x D R 则).1(4r 2222020)(R Rr Dy x e e d d e--+--==⎰⎰⎰⎰πθσπ显然对D的任何有限子集'D ,只要R 充分大,总可使得,'R D D ⊂ 于是有.4'22'22)()(πσσ≤≤⎰⎰⎰⎰+-+-d e d e Dy xDy x即广义积分σd e Dy x⎰⎰+-)(22收敛.记,2dx e I x ⎰+∞-=则.))(()(022222dxdy e dy e dx e I Dy xy x ⎰⎰⎰⎰+-+∞-+∞-== 其中[)[),,0,0:+∞⨯+∞D 做极坐标代换,0,20,sin ,cos +∞<≤≤≤⎩⎨⎧==r r y r x πθθθ 则,4r 02022πθπ==⎰⎰∞+-dr e d I r .202π==⎰∞+-dx e I x 4.二重积分的应用二重积分在几何、物理等许多学科中有着广泛的应用,这里重点介绍它在几何方面的应用. 4.1体积根据二重积分的几何意义,⎰⎰Dd y x f σ),(表示以),(y x f 为曲顶,以),(y x f 在xOy坐标平面的投影区域D 为底的曲顶柱体的体积.因此,利用二重积分可以计算空间曲面所围立体的体积. 例7[]6 求椭球面1222222=++cz b y a x 所围之椭球的体积.解 由于椭球体在空间直角坐标系八个卦限上的体积是对称的.令D 表示椭球面在xOy 坐标面第一象限的投影区域,则D ,0,0,1),(2222⎭⎬⎫⎩⎨⎧≥≥≤+=y x b y a x y x体积.),(8⎰⎰=Ddxdy y x z V 作广义极坐标变换θθsin ,cos br y ar x ==,则此变换的雅可比行列式abr J =,与D 相对应的积分区域{},20,10),(*πθθ≤≤≤≤=r r D 此时,1),(2r c y x z z -==从而 abrdr r c d drd J br ar z V D ⎰⎰⎰⎰-==2*1218)sin ,cos (8πθθθθ.34128102abc dr r r abc ππ⎰=-⋅= 例8[]6 求球面+2x 2224a z y =+与圆柱面)0(222>=+a ax y x 所围立体的体积.图1解 由对称性(图1(a )给出的是第一卦限部分).44222⎰⎰--=Ddxdy y x a V其中D 为半圆周22x ax y -=及x 轴所围成的闭区域(图1(b )).在极坐标系中,与闭区域D 相应的区域*D {},20,cos 20),(πθθθ≤≤≤≤=a r r 于是⎰⎰⎰⎰-=-=Da rdr r a d rdrd r a V 20cos 2022224444πθθθ=.)322(332)sin 1(33220333⎰-=-ππθθa d a4.2曲面的面积设曲面S 的方程为),,(y x f z = 它在xOy 面上的投影区域为,xy D 求曲面S 的面积.A若函数),(y x f z =在域xy D 上有一阶连续偏导数,可以证明,曲面S 的面积.),(),(122dxdy y x f y x f A xyD y x ⎰⎰'+'+=(1)例9 计算抛物面22y x z +=在平面1=z 下方的面积.解 1=z 下方的抛物面在xOy 面的投影区域xy D {}.1),(22≤+=y x y x又,2x z x =',2y z y =' 221y x z z '+'+=,44122y x ++ 代入公式(1)并用极坐标计算,可得抛物面的面积 ⎰⎰⎰⎰+=++=xyxyD D rdrd r dxdy y x A *22241441θ=).155(6)41(201212-=+⎰⎰πθπrdr r d如果曲面方程为),(z y g x =或),(z x h y =,则可以把曲面投影到yOz 或xOz 平面上,其投影区域记为yz D 或xz D ,类似地有.),(),(122dydz z y g z y g A yzD zy ⎰⎰'+'+= 或.),(),(122dxdz x z h x z h A xzD z x⎰⎰'+'+= 4.3其它例10[]4 平均利润 某公司销售商品Ⅰx 个单位,商品Ⅱy 个单位的利润),(y x P .5000)100()200(22+----=y x现已知一周内商品Ⅰ的销售数量在150~200个单位之间变化,一周内商品Ⅱ的销售数量在80~100个单位之间变化.求销售这两种商品一周的平均利润.解 由于y x ,的变化范围{},10080,200150),(≤≤≤≤=y x y x D 所以D 的面积.10002050=⨯=σ 由二重积分的中值定理,该公司销售这两种商品一周的平均利润为[]σσσd y x d y x P DD⎰⎰⎰⎰+----=5000)100()200(10001),(122 []dy y x dx 5000)100()200(100012210080200150+----=⎰⎰ dx y y y x 100803220015050003)100()200(10001⎥⎦⎤⎢⎣⎡+----=⎰ 20015020015023292000)200(2030001⎰⎥⎦⎤⎢⎣⎡+--=x x dx 4033300012100000≈=(元). 参考文献:[1] 赵树原,胡显佑,陆启良.微积分学习与考试指导[M] .北京:中国人民大学出版社, 1999. [2] 华东师范大学数学系.数学分析(第三版)[M]. 北京:高等教育出版社,2004. [3] 刘玉琏,傅沛仁等.数学分析讲义(第四版)[M]. 北京:高等教育出版社,2003. [4] 周应编著. 数学分析习题及解答[M]. 武汉:武汉大学出版社,2001. [5] 胡适耕,张显文编著. 数学分析原理与方法[M].北京:科学出版社,2008. [6] 吴良森等编著. 数学分析习题精解[M].北京:科学出版社,2002.。
第21章重积分21.1本章要点详解本章要点■二重积分的概念■二重积分的定义、存在性及性质■格林公式■曲线积分与路径无关的定义■二重积分的变量替换■三重积分的定义、计算■重积分的应用重难点导学一、二重积分的概念1.平面图形的面积(1)设P是一平面有界图形,用某一平行于坐标轴的一组直线网T分割这个图形(如图21-1所示)这时直线网T的网眼——小闭矩形Δi可分为三类①Δi上的点都是P的内点;②Δi上的点都是P的外点,即;③Δi上含有P的边界点.图21-1将所有介于直线网T 的第①类小矩形(如图21-1中阴影部分)的面积加起来,记这个和数为s p (T ),则有(这里ΔR 表示包含P 的那个矩形R 的面积);将所有第①类与笫③类小矩形(如图21-1中粗线所围部分)的面积加起来,记这个和数为S p (T ),则有s p (T )≤S p (T ).由确界存在定理可以推得,对于平面上所有直线网,数集{s p (T )}有上确界,数集{S p (T )}有下确界,记显然有通常称I P 为P 的内面积,P I 为P 的外面积.(2)若平面图形P 的内面积I P 等于它的外面积P I ,则称P 为可求面积,并称其共同值P P P I I I ==为P 的面积.(3)平面有界图形P 可求面积的充要条件是:对任给的ε>0,总存在直线网T ,使得S p (T )-s p (T )<ε(4)平面有界图形P 的面积为零的充要条件是它的外面积0P I =,即对任给的ε>0,存在直线网T ,使得S p (T )<ε或对任给的ε>0,平面图形P 能被有限个面积总和小于ε的小矩形所覆盖.(5)平面有界图形P可求面积的充要条件是:P的边界K的面积为零.(6)若曲线K为定义在[a,b]上的连续函数f(x)的图像,则曲线K的面积为零.(7)参数方程所表示的光滑曲线K的面积为零.(8)由平面上分段光滑曲线所围成的有界闭区域是可求面积的.2.二重积分的定义及其存在性(1)设f(x,y)是定义在可求面积的有界闭区域D上的函数,J是一个确定的数,若对任给的正数ε,总存在某个正数δ,使对于D的任何分割T,当它的细度时,属于T的所有积分和都有则称f(x,y)在D上可积,数J称为函数f(x,y)在D上的二重积分,记作其中f(x,y)称为二重积分的被积函数,x,y称为积分变量,D称为积分区域.(2)f(x,y)在D上可积的充要条件是:.(3)f(x,y)在D上可积的充要条件是:对于任给的正数ε,存在D的某个分割T,使得S(T)-s(T)<ε.(4)有界闭区域D上的连续函数必可积.(5)设ε在有界闭域D上有界,且其不连续点集E是零面积集,则f(x,y)在D上可积.3.二重积分的性质(1)若f (x ,y )在区域D 上可积,k 为常数,则kf (x ,y )在D 上也可积,且(,)d (,)d D Dkf x y k f x y σσ=⎰⎰⎰⎰(2)若f (x ,y ),g (x ,y )在D 上都可积,则f (x ,y )±g (x ,y )在D 上也积,且(3)若f (x ,y )在D 1和D 2上都可积,且D 1与D 2无公共内点,则f (x ,y )在D 1∪D 2上也可积,且(4)若f (x ,y )与g (x ,y )在D 上可积,且f (x ,y )≤g (x ,y ),(x ,y )∈D则(5)若f (x ,y )在D 上可积,则函数|f (x ,y )|在D 上也可积,且(6)若f (x ,y )在D 上可积,且则这里S D 是积分区域D 的面积.(7)中值定理若f (x ,y )在有界闭区域D 上连续,则存存(ξ,η)∈D ,使得这里S D 是积分区域D 的面积.二、直角坐标系下二重积分的计算1.定义在矩形区域D =[a ,b ]×[c ,d ]上二重积分计算问题(1)设f (x ,y )在矩形区域D =[a ,b ]×[c ,d ]上可积,且对每个x ∈[a ,b ],积分(,)d dc f x y y ⎰存在,则累次积分d (,)d b da c x f x y y ⎰⎰也存在,且(,)d d (,)db da c D f x y x f x y y σ=⎰⎰⎰⎰(2)设f (x .y )在矩形区域D =[a ,b ]×[c ,d ]上可积,且对每个y ∈[c ,d ],积分(,)d ba f x y x⎰存在,则累次积分d (,)d dbc a y f x y x ⎰⎰也存在且(,)d d (,)d d bc a D f x y y f x y x σ=⎰⎰⎰⎰2.定义在一般区域的二重积分计算问题若f (x ,y )在x 型区域D 上连续,其中y 1(x ),y 2(x )在[a ,b ]上连续,则21()()(,)d d (,)d b y x a y x D f x y x f x y yσ=⎰⎰⎰⎰即二重积分可化为先对y ,后对x 的累次积分.三、格林公式、曲线积分与路线的无关性1.格林公式(1)设区域D 的边界L 中一条或几条光滑曲线所组成边界曲线的正方向规定为:当人沿边界行走时,区域D总在它的左边;如图21-2所示,与上述规定的方向相反的方向称为负方向,记为-L.图21-2(2)若函数P(x,y),Q(x,y)在闭区域D上连续,且有连续的一阶偏导数,则有(21-1)这里L为区域D的边界曲线,分段光滑,并取正方向.(3)格林公式沟通了沿闭曲线的积分与二重积分之间的联系.格林公式(21-1)也可写成下述形式2.曲线积分与路线的无关性(1)若对于平面区域D上任一封闭曲线,皆可不经过D以外的点而连续收缩于属于D 的某一点,则称此平面区域为单连通区域.否则称为复连通区域.(2)设D是单连通闭区域,若函数P(x,y),Q(x,y)在D内连续,且具有一阶连续偏导数,则以下四个条件等价①沿D内任一按段光滑封闭曲线L,有。
第十一章 重积分§1 二重积分的概念1.把重积分⎰⎰D xydxdy 作为积分和的极限,计算这个积分值,其中D=[][]1,01,0⨯,并用直线网x=n i ,y=nj (i,j=1,2,…,n-1)分割这个正方形为许多小正方形,每一小正方形取其右上顶点为其界点.2.证明:若函数f 在矩形式域上D 可积,则f 在D 上有界.3.证明定理(20.3):若f 在矩形区域D 上连续,则f 在D 上可积.4.设D 为矩形区域,试证明二重积分性质2、4和7.性质2 若f 、g 都在D 上可积,则f+g 在D 上也可积,且()⎰+D g f =⎰⎰+D D g f . 性质4 若f 、g 在D 上可积,且g f ≤,则 ⎰⎰≤D Dg f , 性质7(中值定理) 若f 为闭域D 上连续函数,则存在()D ,∈ηξ,使得()D ,f f D∆ηξ=⎰. 5.设D 0、D 1和D 2均为矩形区域,且210D D D =,∅=11D int D int , 试证二重积分性质3.性质3(区域可加性) 若210D D D =且11D int D int ∅=,则f 在D 0上可积的充要条件是f 在D 1、D 2上都可积,且⎰0D f =⎰⎰+21D D f f , 6.设f 在可求面积的区域D 上连续,证明:(1)若在D 上()0y ,x f ≥,()0y ,x f ≠则0f D>⎰; (2)若在D 内任一子区域D D ⊂'上都有⎰'=D 0f ,则在D 上()0y ,x f ≡。
.7.证明:若f 在可求面积的有界闭域D 上连续,,g 在D 上可积且不变号,则存在一点()D ,∈ηξ,使得()()⎰⎰D dxdy y ,x g y ,x f =()ηξ,f ()⎰⎰Ddxdy y ,x g .8.应用中值定理估计积分⎰⎰≤-++10y x 22ycos x cos 100dxdy 的值§2 二重积分的计算1.计算下列二重积分:(1)()⎰⎰-Ddxdy x 2y ,其中D=[][]2,15,3⨯;(2)⎰⎰D2dxdy xy ,其中(ⅰ)D=[][]3,02,0⨯,(ⅱ)D=[]3,0 []2,0⨯; (3)()⎰⎰+Ddxdy y x cos ,其中D=[]π⨯⎥⎦⎤⎢⎣⎡π,02,0; (4)⎰⎰+D dx dy x y 1x ,其中D=[][]1,01,0⨯. 2. 设f(x,y)=()()y f x f 21⋅为定义在D=[]⨯11b ,a []22b ,a 上的函数,若1f 在[]11b ,a 上可积,2f 在[]22b ,a 上可积,则f 在D 上可积,且⎰D f =⎰⎰⋅1122b a b a 21f f . 3.设f 在区域D 上连续,试将二重积分()⎰⎰Ddxdy y ,x f 化为不同顺序的累次积分:(1)D 由不等式x y ≤,a y ≤,b x ≤()b a 0≤≤所确的区域:(2)D 由不等式222a y x ≤+与a y x ≤+(a>0)所确定的区域;(3)D=(){}1,≤+y x y x .4.在下列积分中改变累次积分的顺序:(1) ()⎰⎰20x 2x dy y ,x f dx ; (2) ()⎰⎰----11x 1x 122dy y ,x f dx ; (3)()⎰⎰10x 02dy y ,x f dy +()()⎰⎰-31x 3210dy y ,x f dx .5.计算下列二重积分:(1)⎰⎰D2dxdy xy ,其中D 由抛物线y=2px 与直线x=2p (p>0)所围的区域; (2)()⎰⎰+D 22dxdy y x,其中D=(){1x 0y ,x ≤≤, y x ≤ }x 2≤; (3)⎰⎰-D x a 2dx dy (a>0),其中D 为图(20—7)中的阴影部分; (4)⎰⎰Ddxdy x ,其中D=(){}x y x y ,x 22≤+; (5)⎰⎰D dxdy xy ,其中为圆域222a y x ≤+.6.写出积分()⎰⎰ddxdy y ,x f 在极坐标变换后不同顺序的累次积分:(1)D 由不等式1y x 22≤+,x y ≤,0y ≥所确定的区域;(2)D 由不等式2222b y x a ≤+≤所确定的区域;(3)D=(){}0x ,y y x y ,x 22≥≤+.7.用极坐标计算二重积分: (1) ⎰⎰+D22dxdy y x sin ,其中D=(){222y x y ,x +≤π }24π≤; (2)()⎰⎰+Ddxdy y x ,其中D=(){}y x y x y ,x 22+≤+; (3)()⎰⎰+'D22dxdy y x f ,其中D 为圆域222R y x ≤+.8.在下列符号分中引入新变量后,试将它化为累次积分:(1) ()⎰⎰--20x 2x 1dy y ,x f dx ,其中u=x+y,v=x-y;(2) ()dxdy y ,x f D⎰⎰,其中D=(){a y x y ,x ≤+,0x ≥, }0y ≥,若x=v cos U 4, v sin U y 4=.(3)()⎰⎰dxdy y ,x f ,其中D=(){a y x y ,x ≤+,0x ≥, }0y ≥,若x+y=u,y=uv.9.求由下列曲面所围立体V 的体积:(1) v 由坐标平面及x=2,y=3,x+y+Z=4所围的角柱体;(2) v 由z=22y x +和z=x+y 围的立体; (3) v 由曲面9y 4x Z 222+=和2Z=9y 4x 22+所围的立体.11.试作适当变换,计算下列积分:(1)()()⎰⎰-+Ddxdy y x sin y x ,D=(){π≤+≤y x 0y .x }π≤-≤y x 0;(2)⎰⎰+D y x y dxdy e,D=(){1y x y ,x ≤+,0x ≥,}0y ≥.12.设f:[a,b]→R 为连续函数,应用二重积分性质证明:()≤⎥⎦⎤⎢⎣⎡⎰2b a dx x f ()()⎰-b a 2dx x f a b , 其中等号仅在f 为常量函数时成立。
*点击以上标题可直接前往对应内容定义1设(,)f x y 为定义在无界区域D 上的二元函数. 若对于平面上任一包围原点的光滑封闭曲线,γ(,)f x y γE γ在曲线所围的有界区域与D 的交集E D D γγ= (图21-42)上二重可积.{}22min(,).d x yx y γγ=+∈若存在有限极限:xy2142-图γOE γDDγ令定义1lim (,)d ,d D f x y γγσ→∞⎰⎰γ且与的取法无关, 重积分收敛, (,)d lim (,)d ;(1)d DD f x y f x y γγσσ→∞=⎰⎰⎰⎰否则称(,)f x y 在D 上的反常二重积分发散, 或简(,)d Df x y σ⎰⎰发散.称(,)f x y 在D 上的反常二则称并记定理21.17为一列包围原点的光滑封闭曲线序列,{}22(i)inf(,)();n n d x yx y n γ=+∈→+∞→∞(ii)sup (,)d ,nnD I f x y σ=<+∞⎰⎰,n n DE D = n γn E 其中为所围的有界区域.常二重积分(1) 必定收敛, (,)d .Df x y I σ=⎰⎰设在无界区域D 上(,)0,f x y ≥12,,,γγ ,n γ 满足这时反并且,E '的区域记为.D E D ''= 并记→∞=+∞lim ,n x d 因为.n D D D '⊂⊂因此存在n , 使得≥(,)0,f x y 由于所以有(,)d (,)d .nD D f x y f x y I σσ'≤≤⎰⎰⎰⎰另一方面,因为sup (,)d ,nnD I f x y σ=⎰⎰0,ε>0,n 故对任给的总有证设'γ为任何包围原点的光滑封闭曲线,它所围成使得(,)d .nD f x y I σε>-⎰⎰(,)d .D f x y I σε'>-⎰⎰再由(,)d ,D I f x y I εσ'-<≤⎰⎰由定理21.17 的证明容易看到有以下定理:0,n D D '⊃因而对于充分大的有可知反常二重积分(,)d Df x y σ⎰⎰存在, 且等于I .定理21.18若在无界区域D 上(,)0,f x y ≥则反常二重积分(1) 收敛的充要条件是:上(,)f x y 可积,且积分值有上界.例1证明反常二重积分22()e d x y Dσ-+⎰⎰收敛,=+∞⨯+∞[0,)[0,).D 部分. 证设是以原点为圆心R 为半径的圆在第一象限R D 在D 的任何有界子区域其中D 为第一象限部分, 即22()e0,x y -+>所以二重积分因为22()e d Rx y D σ-+⎰⎰的值随着R 的增大而增大.22()ed Rx y D σ-+⎰⎰所以22()lim ed Rx y R D σ-+→∞⎰⎰显然对D 的任何有界子区域,D '总存在足够大的R , 使得,R D D '⊂于是22()ed x y D σ-+'⎰⎰又因2220πd e d (1e ),4Rr R r r θπ--==-⎰⎰2lim (1e ).44R R ππ-→∞=-=22()ed Rx y D σ-+≤⎰⎰π.2≤2ed .x σ+∞-⎰的值为此, 考察=⨯[0,][0,]a S a a 上的积分22()ed .a x y S σ-+⎰⎰因为-+⎰⎰22()e d ax y S σ--=⎰⎰22ed ed aax y x y ()22e d ,axx -=⎰因此由定理21.17, 反常二重积分22()e d x y Dσ-+⎰⎰收敛,并且由定理21.16有22()πe d .(2)4x y Dσ-+=⎰⎰由(2) 式还可推出在概率论中经常用到的反常积分故得2ed .2x x π+∞-=⎰下面的例子是应用反常二重积分补证第十九章中有例2 证明: 若0,0,p q >>则()()(,).()p q p q p q ΓΓB Γ=+Γ=2,x u d 2d ,x u u =证对于函数, 令则于是21210()e d 2e d .p xp u p xx uu Γ+∞+∞----==⎰⎰从而2221210()()4ed ed p xq y p q xx yyΓΓ+∞+∞----=⋅⎰⎰关函数与Γ函数的联系公式.B 2221210lim4ed e d .RR p x q y R xx yy ----→∞=⋅⎰⎰令=⨯[0,][0,],R D R R 由二重积分化为累次积分的计算公式, 222121()ed Rp q x y D xyσ---+⎰⎰所以222121()()()lim 4ed Rp q x y R D p q xyσΓΓ---+→∞=⎰⎰222121()4ed ,(4)p q x y Dxyσ---+=⎰⎰式右边的反常二重积分,记这里为平面上第一象限.D {}222(,)|,0,0.r D x y x y r x y =+≤≥≥有2221210ed e d .RRp x q y xx yy ----=⋅⎰⎰和例1 一样,下面讨论(4)于是有222121()()()4ed ,p q x y Dp q xyσΓΓ---+=⎰⎰222121()lim4ed .rp q x y r D xyσ---+→∞=⎰⎰对上式积分应用极坐标变换,+----→∞=⎰⎰22()22121200()()lim4d (cos )(sin )e d .rp q p q r r p q rr r πθθθΓΓ221212()120lim 2(cos )(sin )d 2e d rp q p q r r rrπθθθ--+--→∞=⋅⎰⎰2121202(cos )(sin )d ().p q p q πθθθΓ--=⋅+⎰再由第十九章§3 的(10) 式就得到()()(,)().p q p q p q ΓΓB Γ=+则得定理21.19(,)f x y D 设在无界区域的任何有界子区域上证(只证充分性) 设⎰⎰|(,)|d Df x y σ收敛于M .作辅|(,)|(,)(,),2f x y f x y f x y ++=|(,)|(,)(,).2f x y f x y f x y --=可积. 要条件是:助函数:|(,)|d D f x y σ⎰⎰收敛.反常二重积分收敛的充则反常二重积分(,)d Df x y σ⎰⎰显然有0(,)|(,)|,0(,)|(,)|,f x y f x y f x y f x y +-≤≤≤≤因而任给有界区域,D σ⊂恒有(,)d |(,)|d ,f x y f x y M σσσσ+≤=⎰⎰⎰⎰(,)d |(,)|d .f x y f x y M σσσσ-≤=⎰⎰⎰⎰+(,)f x y -(,)f x y 所以与在D 上的反常二重积分都收敛.+-=-(,)(,)(,),f x y f x y f x y 所以(,)f x y 在D 上的反常二重积分也收敛.又因关于必要性的证明, 有兴趣的读者可参阅菲赫金哥尔茨著的微积分学教程第三卷第一分册.注对于反常定积分, 绝对收敛的反常积分一定收敛,反之不然.分一定收敛, 反之亦然.为直线上的点是有序的, 而在平面上的点是无序的.而在反常二重积分中, 绝对收敛的反常积出现这种区别的原因, 是因定理21.20 (柯西判别法)=+22.r x y (i)若当r 足够大时, |(,)|(),p cf x y c r≤为正常数2p >⎰⎰(,)d Df x y σ则当时, 反常二重积分收敛;(,)f x y |(,)|,p cf x y r≥(ii) 若在D 上满足其中D 包含有以原点为顶点的无限扇形区域,反常二重积分⎰⎰(,)d Df x y σ发散.(,)f x y 设在无界区域D 的任何有界子区域上可积,D 中的点(,)x y 到原点的距离为2p ≤则当时定义2设P 为有界区域D 的一个聚点,(,)f x y 在D 上除(,)f x y D -∆在上可积, →-⎰⎰0lim (,)d d D f x y σ∆若极限∆存在且有限, 并与的取法无关, 无界函数的二重积分点外皆有定义, 且在的任何空心邻域内无界,P P 为D 中任何含有P 的小区域,∆∆的直径. 又设d 表示上的反常二重积分收敛,0(,)d lim(,)d ;d DD f x y f x y σσ∆→-=⎰⎰⎰⎰(,)f x y 在D 则称记作(,)d Df x y σ⎰⎰否则称反常积分发散.与无界区域上的反常重积分一样,常重积分也可建立相应的收敛性定理.也与定理21.20类同, 请读者自证.对无界函数的反其证明方法定理21.21 (柯西判别法)定义, 则下面两个结论成立:(i) 若在点P 的附近有(,),cf x y r α≤其中c 为常数,2200()(),r x x y y =-+-则当<2α(,)d D f x y σ⎰⎰时, 反常二重积分收敛;设在有界区域D 上除点00(,)P x y 外处处有(,)f x y P 是它的瑕点, 点(,),cf x y rα≥且D 含有以点P 为顶点的角形区域, 反常二重积分(,)d Df x y σ⎰⎰发散.(ii)若在点P 的附近有≥2α时, 则当复习思考题总结反常定积分与反常二重积分有哪些相同与不同之处.数学分析第二十一章重积分高等教育出版社。