最新中考数学压轴题名师分类讲座精品课件-【512张PPT;103道精选试题分析;中考大题难题全覆盖—前所未有】
- 格式:ppt
- 大小:19.74 MB
- 文档页数:512
中考数学压轴题复习讲义(动点问题详细分层解析,尖子生首选资料 )所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想 注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式例1 )如图1,在半径为6,圆心角为90°的扇形OAB 的弧AB 上,有一个动点P,PH ⊥OA,垂足为H,△OPH 的重心为G.(1)当点P 在弧AB 上运动时,线段GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设PH x =,GP y =,求y 关于x 的函数解析式,并写出函数的定义域(即自变量x 的取值范围).(3)如果△PGH 是等腰三角形,试求出线段PH 的长.解:(1)当点P 在弧AB 上运动时,OP 保持不变,于是线段GO 、GP 、GH 中,有长度保持不变的线段,这条线段是GH=32NH=2132⋅OP=2.(2)在Rt △POH 中, 22236xPH OP OH -=-=, ∴2362121x OH MH -==.在Rt △MPH 中,.2222233621419x x x MH PH MP +=-+=+=HM NGPO AB图1x y∴y =GP=32MP=233631x + (0<x <6). (3)△PGH 是等腰三角形有三种可能情况:①GP=PH 时,x x =+233631,解得6=x . 经检验, 6=x 是原方程的根,且符合题意. ②GP=GH 时, 2336312=+x ,解得0=x . 经检验, 0=x 是原方程的根,但不符合题意.③PH=GH 时,2=x .综上所述,如果△PGH 是等腰三角形,那么线段PH 的长为6或2.二、应用比例式建立函数解析式例2 如图2,在△ABC 中,AB=AC=1,点D,E 在直线BC 上运动.设BD=,x CE=y . (1)如果∠BAC=30°,∠DAE=105°,试确定y 与x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α,β满足怎样的关系式时,(1)中y 与x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°, ∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°. ∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°, ∴∠CAE=∠ADB,∴△ADB ∽△EAC, ∴AC BD CE AB =,∴11x y =, ∴xy 1=. (2)由于∠DAB+∠CAE=αβ-,又∠DAB+∠ADB=∠ABC=290α-︒,且函数关系式成立, ∴290α-︒=αβ-, 整理得=-2αβ︒90.当=-2αβ︒90时,函数解析式xy 1=成立. 例3(2005年·上海)如图3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D,交线段OC 于点E.作EP ⊥ED,交射线AB 于点P,交射线CB 于点F.(1)求证: △ADE ∽△AEP.(2)设OA=x ,AP=y ,求y 关于x 的函数解析式,并写出它的定义域.(3)当BF=1时,求线段AP 的长. 解:(1)连结OD.根据题意,得OD ⊥AB,∴∠ODA=90°,∠ODA=∠DEP.又由OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE ∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ADO=90°,∴OD ∥BC, ∴53x OD =,54xAD =,AEDCB 图2A3(2)3(1)∴OD=x 53,AD=x 54. ∴AE=x x 53+=x 58. ∵△ADE ∽△AEP, ∴AE AD AP AE =, ∴x x yx 585458=. ∴x y 516= (8250≤<x ). (3)当BF=1时,①若EP 交线段CB 的延长线于点F,如图3(1),则CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE, ∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE. ∴5-x 58=4,得85=x .可求得2=y ,即AP=2. ②若EP 交线段CB 于点F,如图3(2), 则CF=2. 类似①,可得CF=CE.∴5-x 58=2,得815=x . 可求得6=y ,即AP=6.综上所述, 当BF=1时,线段AP 的长为2或6. 三、应用求图形面积的方法建立函数关系式例4 如图,在△ABC 中,∠BAC=90°,AB=AC=22,⊙A 的半径为1.若点O 在BC 边上运动(与点B 、C 不重合),设BO=x ,△AOC 的面积为y .(1)求y 关于x 的函数解析式,并写出函数的定义域. (2)以点O 为圆心,BO 长为半径作圆O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点A 作AH ⊥BC,垂足为H. ∵∠BAC=90°,AB=AC=22, ∴BC=4,AH=21BC=2. ∴OC=4-x . ∵AH OC S AOC ⋅=∆21, ∴4+-=x y (40<<x ). (2)①当⊙O 与⊙A 外切时,在Rt △AOH 中,OA=1+x ,OH=x -2, ∴222)2(2)1(x x -+=+. 解得67=x . 此时,△AOC 的面积y =617674=-. ②当⊙O 与⊙A 内切时,在Rt △AOH 中,OA=1-x ,OH=2-x , ∴222)2(2)1(-+=-x x . 解得27=x . 此时,△AOC 的面积y =21274=-. 综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为617或21.动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系;分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。
36 - x 2 PH 2 + MH 2 x 2 + 9 - 1x 2 4 1 36 + 3x 2中考数学压轴题复习讲义(动点问题详细分层解析,尖子生首选资料 )所谓“动点型问题”是指题设图形中存在一个或多个动点,它们在线段、射线或弧线上运动的一类开放性题目.解决这类问题的关键是动中求静,灵活运用有关数学知识解决问题.关键:动中求静.数学思想:分类思想 函数思想 方程思想 数形结合思想 转化思想注重对几何图形运动变化能力的考查从变换的角度和运动变化来研究三角形、四边形、函数图像等图形,通过“对称、动点的运动”等研究手段和方法,来探索与发现图形性质及图形变化,在解题过程中渗透空间观念和合情推理。
选择基本的几何图形,让学生经历探索的过程,以能力立意,考查学生的自主探究能力,促进培养学生解决问题的能力.图形在动点的运动过程中观察图形的变化情况, 需要理解图形在不同位置的情况,才能做好计算推理的过程。
在变化中找到不变的性质是解决数学“动点”探究题的基本思路,这也是动态几何数学问题中最核心的数学本质。
二期课改后数学卷中的数学压轴性题正逐步转向数形结合、动态几何、动手操作、实验探究等方向发展.这些压轴题题型繁多、题意创新,目的是考察学生的分析问题、解决问题的能力,内容包括空间观念、应用意识、推理能力等.从数学思想的层面上讲:(1)运动观点;(2)方程思想;(3)数形结合思想;(4)分类思想;(5)转化思想等.研究历年来各区的压轴性试题,就能找到今年中考数学试题的热点的形成和命题的动向,它有利于我们教师在教学中研究对策,把握方向.只的这样,才能更好的培养学生解题素养,在素质教育的背景下更明确地体现课程标准的导向.本文拟就压轴题的题型背景和区分度测量点的存在性和区分度小题处理手法提出自己的观点.函数揭示了运动变化过程中量与量之间的变化规律,是初中数学的重要内容.动点问题反映的是一种函数思想,由于某一个点或某图形的有条件地运动变化,引起未知量与已知量间的一种变化关系,这种变化关系就是动点问题中的函数关系.那么,我们怎样建立这种函数解析式呢?下面结合中考试题举例分析. 一、应用勾股定理建立函数解析式例 1 )如图 1,在半径为 6,圆心角为 90°的扇形 OAB 的弧 AB 上,有一个动点 P,PH⊥OA,垂足为 H,△OPH 的重心为 G.(1)当点 P 在弧 AB 上运动时,线段 GO 、GP 、GH 中,有无长度保持不变的线段?如果有,请指出这样的线段,并求出相应的长度.(2)设 PH = x ,GP = y ,求 y 关于 x 的函数解析式,并写出函数的定义域(即自变量 x 的取值范围). (3)如果△PGH 是等腰三角形,试求出线段 PH 的长.解:(1)当点 P 在弧 AB 上运动时,OP 保持不变,于是线段 GO 、GP 、GH2中,有长度保持不变的线段,这条线段是 GH= 3 NH= 2 ⋅ 1 OP=2.3 2(2) 在 Rt △ POH 中 ,OH= = ,∴MH = 1 OH = 1 2 236 - x 2 .在 Rt△MPH 中,图 1MP = = = 2 1OP 2 - PH 2BPD ●●.∴ y =GP= 2MP= 136 + 3x 2(0< x <6).3 3(3)△PGH 是等腰三角形有三种可能情况:1①GP=PH 时, 3 36 + 3x 2 = x ,解得 x = . 经检验, x = 是原方程的根,且符合题意.1②GP=GH 时,336 + 3x 2 = 2 ,解得 x = 0. 经检验, x = 0是原方程的根,但不符合题意.③PH=GH 时, x = 2 .综上所述,如果△PGH 是等腰三角形,那么线段 PH 的长为或 2.二、应用比例式建立函数解析式例 2 如图 2,在△ABC 中,AB=AC=1,点 D,E 在直线 BC 上运动.设 BD= x , CE= y . (1)如果∠BAC=30°,∠DAE=105°,试确定 y 与 x 之间的函数解析式;(2)如果∠BAC 的度数为α,∠DAE 的度数为β,当α, β满足怎样的关系式时,(1)中 y 与 x 之间的函数解析式还成立?试说明理由.解:(1)在△ABC 中,∵AB=AC,∠BAC=30°,∴∠ABC=∠ACB=75°, ∴∠ABD=∠ACE=105°. ∵∠BAC=30°,∠DAE=105°, ∴∠DAB+∠CAE=75°, 又∠DAB+∠ADB=∠ABC=75°,ADE∴∠CAE=∠ADB,B C∴△ADB∽△EAC, ∴ AB = BD ,图 2CEAC1x 1∴ = , ∴ y = . y 1 xα(2)由于∠DAB+∠CAE= β-α,又∠DAB+∠ADB=∠ABC= 90︒ - ,且2函数关系式成立,Fα α∴ 90︒ - = β-α, 整理得β-2 2 = 90︒ .当β- α = 90︒ 时,函数解析式 y = 1成立.2 x例 3(2005 年·上海)如图 3(1),在△ABC 中,∠ABC=90°,AB=4,BC=3. 点 O 是边 AC 上的一个动点,以点 O 为圆心作半圆,与边 AB 相切于点 D,C 交线段 OC 于点 E.作 EP⊥ED,交射线 AB 于点 P,交射线 CB 于点 F.(1)求证: △ADE∽△AEP. P (2)设 OA= x ,AP= y ,求 y 关于 x 的函数解析式,并写出它的定 BF义域.(3)当 BF=1 时,求线段 AP 的长. 解:(1)连结 OD.3(1)E OAD根据题意,得 OD⊥AB,∴∠ODA=90°,∠ODA=∠DEP.2CE OA3(2)6 6 62 288 又由 OD=OE,得∠ODE=∠OED.∴∠ADE=∠AEP, ∴△ADE∽△AEP.(2)∵∠ABC=90°,AB=4,BC=3, ∴AC=5. ∵∠ABC=∠ADO=90°, ∴OD∥BC, ∴ OD = x , AD = x, 3 5 4 53 4 3 8∴OD= x ,AD= x . ∴AE= x + x = x .5 5 55 8x4x25∵△ADE∽△AEP, ∴ AE = AD,∴5 = 5 . ∴ y = 16x ( 0 < x ≤).(3)当 BF=1 时,AP AEy8x 5 85①若 EP 交线段 CB 的延长线于点 F,如图 3(1),则 CF=4.∵∠ADE=∠AEP, ∴∠PDE=∠PEC. ∵∠FBP=∠DEP=90°, ∠FPB=∠DPE, ∴∠F=∠PDE, ∴∠F=∠FEC, ∴CF=CE. ∴5- x =4,得 x =55 .可求得 y = 2,即 AP=2.8②若 EP 交线段 CB 于点 F,如图 3(2), 则 CF=2. 类似①,可得 CF=CE.∴5-x =2,得 x = 15 .58可求得 y = 6,即 AP=6.综上所述, 当 BF=1 时,线段 AP 的长为 2 或 6.三、应用求图形面积的方法建立函数关系式例 4 如图,在△ABC 中,∠BAC=90°,AB=AC= 2 ,⊙A 的半径为 1.若点 O 在 BC 边上运动(与点 B 、C 不重合),设 BO= x ,△AOC 的面积为 y .(1)求 y 关于 x 的函数解析式,并写出函数的定义域.(2)以点 O 为圆心,BO 长为半径作圆 O,求当⊙O 与⊙A 相切时, △AOC 的面积.解:(1)过点 A 作 AH⊥BC,垂足为 H.∵∠BAC=90°,AB=AC= 2 , ∴BC=4,AH= 12 1BC=2. ∴OC=4- x .∵ S ∆AOC= OC ⋅ AH , ∴ y = -x + 4 2( 0 < x < 4 ). 图 8(2)①当⊙O 与⊙A 外切时,在 Rt△AOH 中,OA= x + 1,OH= 2 - x , ∴ (x + 1) 2= 22+ (2 - x ) 2. 解得 x = 7. 6此时,△AOC 的面积 y = 4 - 76 ②当⊙O 与⊙A 内切时,=17 .6在 Rt△AOH 中,OA= x - 1,OH= x - 2 , ∴ (x - 1) 2= 22+ (x - 2) 2. 解得 x = 7. 2此时,△AOC 的面积 y = 4 - 7 2 = 1.22 2 17 3217 1综上所述,当⊙O 与⊙A 相切时,△AOC 的面积为或 .62动态几何特点----问题背景是特殊图形,考查问题也是特殊图形,所以要把握好一般与特殊的关系; 分析过程中,特别要关注图形的特性(特殊角、特殊图形的性质、图形的特殊位置。