2016年秋季新华东师大版七年级上册数学2.4绝对值
- 格式:ppt
- 大小:976.00 KB
- 文档页数:14
2.4 绝对值【基本目标】1.通过数轴上的点与原点的距离引出有理数的绝对值的概念.2.明确绝对值的代数定义和几何意义;会求一个已知数的绝对值;会在已知一个数的绝对值条件下求这个数.3.体验数学的概念、法则来自于实际生活,渗透数形结合和分类思想.【教学重点】求一个数的绝对值.【教学关键】绝对值在数轴上的意义问题.一、情境导入,激发兴趣创设情境:在一节体育课中,老师组织了一次游戏.如图所示,四位同学站在圆上,比赛谁最先到达圆的中心.提问:1.四位同学到达中心的距离相等吗?2.他们的方向会影响距离的长度吗?结论:与方向无关,距离相等.【教学说明】通过一个具体的实例,让学生体会只考虑距离,和方向无关,为学习绝对值打下基础.二、合作探究,探索新知1. 找一找数轴上表示1与-1的点,3与-3的点,观察它们到原点的距离各是多少?结论:1与-1到原点的距离相等,3与-3到原点的距离相等.【教学说明】让学生观察后回答,发现他们距离的关系.2.概念讲解在数轴上表示-6的点与原点的距离是6,数100的点与原点的距离是100.我们叫做-6的绝对值是6,100的绝对值是100,也就是说,把数轴上表示数a 的点与原点的距离叫做数a的绝对值,记做|a|.【教学说明】教师结合具体的例子,给出绝对值的概念,重点强调绝对值与数轴上的点之间的关系.3.随常练习(1)试一试,口答:|+2|=________ |15|=________|+8.2|=________ |0|=________ |-3|=________ |-0.2|=________ |-8.2|=________(2)求下列各数的绝对值:-152,110,-4.75,+10.5.【教学说明】让学生结合绝对值的概念进行回答,进一步理解绝对值的概念,及时巩固所学知识.4.观察思考:通过求上面数的绝对值,观察在原点右边的点表示的数(正数)的绝对值有什么特点?在原点左边的点表示的数(负数)的绝对值又有什么特点?请同学们分类讨论,归纳出数a的绝对值的一般规律.【教学说明】学生先对照具体的数字思考规律,然后互相交流,总结正数、负数和0的绝对值分别是什么数,有什么规律.5.总结归纳一个正数的绝对值是它本身;零的绝对值是零;一个负数的绝对值是它的相反数.【教学说明】教师根据学生的回答及时板书,再用字母代表的式子表示这个规律,形成知识体系.三、示例讲解,掌握新知例1 求下列各数的绝对值:-152,+110,-4.75,10.5.例2 求下列式子的值:(1)|-(+12)|;(2)-|-113|.【教学说明】先让学生自主尝试,教师检查学生的掌握情况,及时点拨.四、练习反馈,巩固提高1.写出下列各数的绝对值:6,-8,-3.9,100,π-5.2.|x|=7,则x=________;|-x|=7,则x=________.3.如果a>3,则|a-3|=________,|3-a|=________.4.若|a-2|=0,则a=________;若|b-4|=0,则b=________.5.计算:(1)|8|+|-8|-|-3|;(2)|-6.5|-|-5.5|.6.给出下列说法:①互为相反数的两个数绝对值相等;②绝对值等于本身的数只有正数;③不相等的两个数绝对值不相等;④绝对值相等的两数一定相等.其中正确的有()A.0个B.1个C.2个D.3个【教学说明】学生独立完成,发现自己存在的问题,及时纠正,巩固本节课所学知识.【答案】1.6,8,3.9,100,5-π2.±7 ±73.a-3 a-34.2 45.(1)13(2)1 6.B五、师生互动,课堂小结1.对绝对值概念的理解可以从其几何意义和代数意义两方面考虑.从几何方面看,一个数a的绝对值就是数轴上表示数a的点与原点的距离,它具有非负性;从代数方面看,一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.求一个数的绝对值注意先判断这个数是正数还是负数.【教学说明】让学生总结和归纳,再一次回顾本节课所学知识,达到再巩固,再提高的目的.完成本课时对应的练习.绝对值是中学数学中一个非常重要的概念,它具有非负性,在数学中有着广泛的应用.本节从几何与代数的角度阐述绝对值的概念,重点是让学生掌握求一个已知数的绝对值,对绝对值的几何意义、代数定义的导出,对“负数的绝对值是它的相反数”的理解是教学中的难点.。
2.4 绝对值-华东师大版七年级数学上册教案知识点本节课主要涵盖以下知识点:1.定义绝对值的含义和记号2.绝对值的性质和应用教学目标1.能够准确理解绝对值的定义和记号2.掌握绝对值的性质和计算方法3.能够在实际问题中合理应用绝对值教学重点1.绝对值的定义和记号2.绝对值的性质和计算方法教学难点1.绝对值和符号的关系2.绝对值的应用教学内容和方法教学内容1.绝对值的定义和记号2.绝对值的性质和计算方法教学方法1.讲解:通过讲解演示绝对值的含义和记号,让学生理解其概念2.实例:通过实例演示绝对值的性质和计算方法,让学生掌握其应用教学步骤步骤一:导入通过对学生提问“在数学中,什么是绝对值?”“你们知道绝对值的记号是什么吗?”来引导学生了解本节课的知识点,激发他们的兴趣。
步骤二:概念讲解1.定义:绝对值是一个数到零的距离,即一个数离零点的距离。
2.记号:绝对值的记号是一个竖线 |a|,表示a的绝对值。
步骤三:性质讲解1.绝对值非负:任何一个实数的绝对值,都是非负数。
2.绝对值相等:如果|a| = |b|,那么a和b的符号一定相同。
3.绝对值三角不等式:对于任何实数a和b,有|a + b| ≤ |a| + |b|。
步骤四:练习1.让学生计算一些绝对值的值,以加深对绝对值的理解。
2.让学生通过实例计算出绝对值的值,并学会正确的绝对值应用方法。
步骤五:归纳总结通过对本节课所学的知识点进行归纳总结,并让学生自己总结记忆,以提高学生的自我学习能力。
课后作业1.完成练习册上的练习,巩固对绝对值的掌握。
2.在日常生活中收集一些需要用到绝对值的实例,并对其进行解析。
教学反思本节课采用分步讲解法,通过将绝对值的定义、记号、性质和应用分步讲解,有效地提高了学生的学习效果。
同时,通过提出练习和作业,让学生有了更好的实践机会,促进了学生对绝对值知识点的理解与掌握。
自主预习
1、预习课本P22--24的内容
2、牢记绝对值的定义:在数轴上,一个数a的点与原点的距离叫做该数的
绝对值,记作| a |. 完成试一试
3.绝对值的性质:
正数绝对值是它本身
负数的绝对值是它的相反数
0的绝对值是0
4.认真分析例1,例2,会求一个数的绝对值,会化简
二、合作交流与探究
探究1::
一只大象、两只小狗从同一点O出发,在一条笔直的街上跑,请说出大象和两只小狗分别距离原点多远?
探究2
思考问题: 一个正数的绝对值是什么?一个负数的绝对值是什么?0的绝对值是什么?
试一试: 若字母a表示一个有理数,你知道a的绝对值等于什么吗?
(1)如果a>0,那么|a|=;
(2)如果a<0,那么|a|=;
(3)如果a=0,那么|a|=.
小试牛刀: 绝对值等于0的数是,
绝对值等于5.25的正数是,
绝对值等于5.25的负数是,
绝对值等于2的数是.
结论:互为相反数的两个数的绝对值
当堂达标
1.求下列各数的绝对值:-21,+,0,-7.8.
2.如果|a|=4,那么a等于.
3.任何一个有理数的绝对值一定()
A.大于0
B.小于0
C.小于或等于0
D.大于或等于0
4.化简
(1)-[-(-3)];(2)-{-[+(-3)]};
(3)-{+[-(+3)]};(4)-{-[-(-│-3│)}.
1 、作业等级甲乙丙丁
2、完成检测指标成绩( )
______月________日。
第 2 章 有理数 2.1 有理数华东师大版数学七年级上册课后习题答案1、正数和负数练习 1. 略2. 8844 表示海平面以上 8844 米,-155 表示海平面以下 155 米。
海平面的高度用 0(米)表示。
3. 正数:+6,54, 22 ,0.0017负数:-21,-3.14,-9994. 不对,因为一个数不是正数,还可能是 0,而 0 不是负数。
2、有理数练习1. 举例略,这些数都是有理数。
2. 只有一个,是 0。
习题 2.11. 整数:1,-789,325,0,-20;分数:- 0.10 510.10,100.1,- 5% ; ,, 8正数:1 5 ; ,,325,10.10,100.1 8负数:-0.10,-789,-20,-5%。
, 2. 本题是开放性问题,答案不唯一,例如:重叠部分填:1, 2,3…(注意要添上省略号);左圈内填:0.1,0.2,0.3;右圈内填 0,-1,-2。
两个圈的重叠部分表示正整数的集合。
3. 按照第 2 题的不同填法本题有不同的答案。
4. (1)1,-1,1;第 10 个数,第 100 个数,第 200 个数, 第 201 个数分别为-1,-1,-1,1。
(2)9,-10,11;第 10 个数,第 100 个数,第 200 个数, 第 201 个数分别为-10,-100,-200,201。
(3) 1,- 1 1 ;第 10 个数,第 100 个数,第 200 个数,8 9 10 11 1 1第 201 个数分别为 , , ,- 。
10 100 200 2012.2 数轴 1. 数轴练习1(1)正确,符合数轴的定义;(2) 不正确,单位长度不一致; (3) 不正确,负数标注错误。
2. -3 位于原点左边,距离原点 3 个单位长度; 4.2 位于原点右边,距离原点 4.2 个单位长度; -1 位于原点左边,距离原点 1 个单位长度;1位于原点右边,距离原点 12 2个单位长度。