当前位置:文档之家› 理论力学(大学)课件8.2 空间任意力系的平衡方程及常见的空间约束

理论力学(大学)课件8.2 空间任意力系的平衡方程及常见的空间约束

2、空间任意力系的平衡方程及

常见的空间约束

空间任意力系平衡的充要条件:空间任意力系的平衡方程:

00x

y z F F

F ===???00

x

y

z

M

M

M

===???空间任意力系平衡的充要条件:力系中各力在任一坐标轴上的投影的代数和等于零,以及各力对每一个坐标轴的力矩的代数和也等于零.

该力系的主矢、主矩分别为零.(1) 空间任意力系的平衡方程

(基本式)

常见的空间约束

00x

y z F F

F

===???00

x

y

z

M M M ===?

?

?

空间任意力系的平衡方程(基本式)

平衡方程除了基本式之外,还有四矩式、五矩

式、六矩式。

有几个力矩平衡方程,称之为几矩式。

各种形式应该根据实际情况灵活运用。

基本式以外的方程形式,通常不再给限定条件,一般的情况下只要列出的方程能求解出未知量即是未违反限制条件。

常见的空间约束

00

z

x

y

F M

M

===???空间平行力系的平衡方

各种力系的独立平衡方程个数

空间任意力系6个

空间汇交力系3个

空间平行力系3个

空间力偶系3个

平面任意力系3个

平面汇交力系2个

平面平行力系2个

平面力偶系2(1)个最一般情形:空间、任意

一级特殊情形(包含一种

特殊情况):空间问题+

特殊力系,或者任意力系

+平面情形

二级特殊情形(包含两种

特殊情况):平面问题+

特殊力系。

2、空间任意力系的平衡方程及

常见的空间约束

(2) 空间常见约束类型

柔索二力杆2、空间任意力系的平衡方程及

常见的空间约束

2、空间任意力系的平衡方程及

常见的空间约束

径向轴承圆柱铰链铁轨蝶铰链

球铰链

导向轴承

带有销子的夹板导轨

f. 6个未知约束量

空间固定端约束

分析实际的约束时,需要忽略一些次要因素,抓住主要因素,做一些合理的简化。比如导向轴承和径向轴承之间的区别;蝶铰链和止推轴承之间的区别。如果刚体只受平面力系的作用,则垂直于该平面的约束力和绕平面内两轴转动的约束力偶都应该为零,相应减少了约束量的数目。常见的空间约束

例1 车床主轴如图所示,已知车刀对工件的切削力为:径向切削力F x =4.25kN 纵向切削力F y =6.8kN ,主切削力(切向)F z =17kN ,方向如图。在直齿轮C 上有切向力F t 和径向力F r ,且F r =0.36F t 。齿轮C 的节圆半径R =50mm ,被切削工件的半径r =30mm,卡盘及工件等自重不计,其余尺寸如图所示。当主轴匀速转动时。

求:(1) 齿轮啮合力F t 及F r ;(2) 径向轴承A 和止推轴承B 的约束力;(3) 三爪卡盘E 在O 处对工件的约束力。B F B x

x

解: (1) 取主轴及工件组成的整体为研究对象,分析受力。?=0x

F 在Axyz 坐标系下,列平衡方程:

0t =-+-x Ax Bx F F F F ?=0y F 0

=-y By F F ?=0

z

F 0

r =+++z Az Bz F F F F ()0=?F M x ()0=?F M y 0

t =×-×r F R F z 0

3038876)76488(t =-+-+y x Bx F F F F 038876)76488(r =+-+-z Bz F F F ()0

=?F M z

又:,

36.0t r F F =kN

64.15kN 67.3kN 2.10r t ===Ax F F F 2、空间任意力系的平衡方程及

常见的空间约束

(2) 取工件为研究对象,建立Oxyz 坐标系,分析受力。

?=0

x F 0

=-x Ox F F ?=0

y F 0

=-y Oy F F ?=0

z

F

=+z Oz F F ()0=?F M x

100=+x Z M F ()0

=?F M y

30=+-y Z M F ()0

=?F M z

30100=+-z y x M F F 4.25kN, 6.8kN,17kN

Ox Oy Oz F F F ===-1.7kN m,0.51kN m,0.22kN m

x y z M M M =-×=×=-×空间任意力系有6个独立的平衡方程,可求解6个未知量,但其平衡方程不局限于本例的形式。为了使解题简便,每个方程中最好只包含一个未知量。为此,选投影轴时应尽量与其余未知力垂直;选取矩轴时应尽量与其余的未知力平行或相交。投影轴不必相互垂直,2、空间任意力系的平衡方程及

常见的空间约束

例2 已知均质水平长方板重为P ,用六根无重直杆支承,直杆两端各用球铰链与板和地面连接,板长宽分别为b ,a ,离地面高度为b.A 点作用水平力F=2P ,求各根杆的受力

解:取均质板为研究对象,各杆均为二力杆,如图。假设杆都受拉力,分析板的受力。

2

=×-×-a

P a F 0)(=?F M AB 0)(=?F M AE 05=F 0)(=?F M AC

04=F 0

)(=?F M BF

1=F 022=×-×-b F b

P Fb P

F 5.12=045cos 2

32=×-×-×-b F b P b F o 0

)(=?F M

FG 0)(=?F M BC

2、空间任意力系的平衡方程及

常见的空间约束

平面任意力系

第三章平面任意力系 一、目的要求 1?掌握平面任意力系向一点简化的方法,会应用解析法求主矢和主矩,熟知平面任意力系简化的结果。 2?深入理解平面力系的平衡条件及平衡方程的三种形式。 3?能熟练地计算在平面任意力系作用下单个刚体和物体系统平衡问题。 4?正确理解静定与静不定的概念,会判断物体系统是否静定。 5.理解简单桁架的简化假设,掌握计算其杆件内力的节点法和截面法及其综合作用。 二、基本内容 1.力的平移定理:可以把作用在刚体上点A的力F平行移到任一点B,但必须同时附加一个力偶,这个附加力偶矩等于原来的力F对新作用点B的矩。 2?平面力系的简化 步骤如下: ①选取简化中心0:题目指定点或自选点(一般选在多个力交点上) ②建立直角坐标系Oxy ③主矢:平面力系各力的矢量和,即 n n n F R’ 八F j = \ Xj \ Y j i =1i# i 二 其中 F Rx=^[ 大小:F R = J/)2 +0丫)2 , 丿 F Ry = 工丫丿方向:tan。=竺 - 也x| 其中:为F R与x轴所夹锐角,所在象限由工X、工丫符号确定,并画在简化中 心0上。 主矩:平面力系中各力对于任选简化中心之矩的代数和,即 n n M。》M o(F i)? (xY -y i X i) i =1i =1

一个力系的主矢与简化中心的选取无关;一般情况下,主矩与简化中心的选

取有关。 ④ 简化结果讨论 I a. 若F R =0, M o :平面力系与一力偶等效,此力偶为平面力系的合力 偶,其力偶矩用主矩M 。度量,这时主矩与简化中心的选择无关。 I b. 若F R =0, M 。=° :平面力系等效于作用线过简化中心的一个合力 F R , 且有F R =F R 。 I c. 若F R =°,M 。:平面力系简化结果为一合力F R ,其大小、方向与主 矢相同,作用线在距简化中心0为 丨F R I 处。 I d. F R M 。=0,则该力系为平衡力系。 3 ?平面力系的平衡条件和平衡方程 平面力系平衡的充分必要条件是该力系的主矢和对作用面内任意一点的主 矩同时为零。其解析表达式有三种形式,称为平衡方程。 1) 基本形式 ZX =0 * 龙丫 =0 |!M o (F )=0 2) 二矩式 3) 三矩式 饷 A (F )=0 ZM B (F )=0 I M C ( F )=0 特殊力系的平衡方程 1)共线力系:丐=0 fix =0 QY =0 ZM A (F )=0 ZM B (F )=0 附加条件为:A 、B 两点连线不垂直于x 轴 附加条件为:A 、B 、C 三点不共线 2)平面汇交力系:

北大考研辅导班-北大理论物理考研接收优秀应届本科毕业生推免硕士专业目录 (校本部)

北大考研辅导班-北大理论物理考研接收优秀应届本科毕业生推免硕士专业目录(校本部) 理论物理是研究物质的基本结构和基本运动规律的一门学科,它既是物理学的理论基础,又与物理学乃至自然科学其它领域很多重大基础和前沿研究密切相关。展望二十一世纪,理论物理的发展将会有很好的前景。北京大学(原)理论物理研究室和(现)理论物理研究所是原高教部确定的全国高校理论物理学科的第一个研究室和研究所。北大理论物理是原国家教委确定的第一批重点学科之一。北大理论物理学科有优良的传统,王竹溪、彭桓武、胡宁、杨立铭等著名老一辈理论物理学家曾在这里长期执教。建国以来,北大理论物理专业为国家培养了两弹一星功臣于敏、周光召和15位中国科学院院士(于敏、周光召、冼鼎昌、甘子钊、苏肇冰、吴杭生、徐至展、霍裕平、张宗烨、陈难先、杨国桢、雷啸林、夏建白、周又元、赵光达)、3位第三世界科学院院士(苏肇冰、冼鼎昌、陈创天),以及许多在我国教育和科学研究领域有突出贡献的优秀专家学者。本学科点覆盖面广,优势突出。在理论物理的主流前沿方向上具有坚实的研究基础和较强的实力。本学科点队伍整齐、实力雄厚,凝聚了一批学术造诣精深和富有创造精神的专家学者,其中中科院院士二人,长江学者一人和国家杰出青年基金获得者三人。这一研究集体已作出在国际上有较大影响工作,目前继续招收研究生的研究方向主要有: 1.粒子物理理论 具体包括强子物理(如粲偶素物理、自旋物理、格点规范等)、标准模型和超出标准模型的新物理(如CP破坏、辐射修正、超对称的量子效应等)等。该方向研究集体是目前国家自然科学基金资助的全国唯一一个理论物理方面的“创新研究群体”。 2.原子核理论 具体包括如原子核内的夸克自由度、极端条件下的核结构、原子核的代数模型及微观基础、原子核的集体运动模式及其相变、超重核的结构及合成反应、核天体物理、相对论性重离子碰撞、强相互作用物质的成分、形态、相及相变等。 3.场论和宇宙学 包括如弦理论、共形场论、非对易几何、宇宙甚早期演化及宇宙结构等。 4.凝聚态理论和统计物理 包括介观体系输运性质和强关联系统统计模型、高温超导理论、强电磁场等极端条件下凝聚态物质的性质等。 5.计算物理及其应用 包括多粒子系统的研究方法、对称性理论和方法、模拟计算方法等。自1996年以来,本学科点在国际权威学术期刊发表高水平学术论文多篇,其中有一批在国际上有相当影响的工作。按照SCI和 SLAC-SPIRES的检索结果,本学科成员的论文被他人引用几千次,这充分说明了这些工作的原创性和影响力。本学科成员1996年以来出版专著和教材20余部。获得国家自然科学三等奖1项、国家优秀教材奖12项(其中一等奖3项)。承担了量子力学、电动力学、热力学与统计物理、理论力学、数学物理方法等本科生主干基础课和高等量子力学、量子场论、量子规范场论、量子场论专题、微分几何与拓扑学、粒子物理、广义相对论、宇宙学、中高能原子核理论、计算物理等十多门研究生核心课程的教学

清华大学-理论力学-习题解答-2-03

2-3 圆盘绕杆AB 以角速度rad/s 转动,AB 杆及框架则绕铅垂轴以角速度 100=?10=ωrad/s 转动。已知mm ,当140=R °=90θ,rad/s ,时,试求圆盘上两相互垂直半径端点C 点及D 点的速度和加速度。 5.2=θ 0=θ 解:圆盘的运动是由三个定轴转动组成的复合运动,且三个轴交于O 点。取O 点为基点,建立动坐标系Oxyz ,Oxyz 绕铅垂轴以角速度ω转动,则牵连角速度e ω=?ωk 。圆盘相对于动坐标系的运动是由框架绕Ox 轴的转动和圆盘绕Oy 轴的转动组成,则圆盘的相对角速度为: r θ =?+?ωi j 所以圆盘的绝对角速度为: r θω′=?+??e ω=ω+ωi j k C 点及 D 点的矢径分别为: 0.140.5()C m =?+r i j 0.50.14()D m =+r j k 由公式可得C 点及D 点的速度: =×v ωr 5 1.412.75(/)C C m s ′=×=++v ωr i j k 190.35 1.25(/)D D m s ′=×=+?v ωr i j k 下面来求加速度。首先求圆盘相对于动系的相对角加速度ε,在动系中,我们可以步将 框架绕Ox 轴的转动看作牵连运动,牵连加速度为r 1e θ=?ωi 1r ,牵连角加速度为ε;将圆盘绕Oy 轴的转动看作相对运动,相对角速度为1e = θ =?j 0ωθ ,相对角加速度为。则根据角加速度合成公式并由此时1r 0==ε? e e r r =+×+εεωωε= 可得: 211250(/)r e r rad s θ =×=?×?=?εωωi j k 接下来求圆盘的绝对角加速度,再次利用角加速度合成公式,并由0e =ε可得: 2100025250(/)e r r rad s ′=×+=+?εωωεi j k 利用公式a 可得C 点及D 点的加速度 : (=×+××εr ωωr )

平面一般力系的平衡 作业及答案

平面一般力系的平衡 一、 判断题: 1.下图是由平面汇交力系作出的力四边形,这四个力构成力多边形封闭,该力系一定平衡。( ) 图 1 2.图示三个不为零的力交于一点,则力系一定平衡。( ) 图 2 3.如图3所示圆轮在力F和矩为m的力偶作用下保持平衡,说明力可与一个力偶平衡。( ) 4.图4所示力偶在x轴上的投影ΣX=0,如将x轴任转一角度 轴,那么Σ =0。( ) 图 3 图 4

5.如图5所示力偶对a的力矩Ma(F,F')=F·d,如将a任意移到b,则力矩Mb(F,F')将发生变化。( ) 图 5 图 6 6.图6所示物体的A、B、C、D四点各有一力作用,四个力作出的力多边形闭合,则此物体处于平衡状态。( ) 7.如果两个力偶的力偶矩大小相等,则此两个力偶等效。( ) 8.图示构件A点受一点力作用,若将此力平移到B点,试判断其作用效果是否相同( ) 图 7 图 8 9.图8所示梁,若求支反力 时,用平面一般力系的平衡方程不能全部求出。 ( ) 10.图9所示物体接触面间静摩擦系数是f,要使物体向右滑动。试判断哪种施力方法省力。( ) 图 9 图 10 11.力在坐标轴上的投影和该力在该轴上分力是相同的。( )

12.如果将图10所示力F由A点等效地平移到B点,其附加力矩M =Fa ( )。 13.平面任意力系,其独立的二力矩式平衡方程为 ∑Fx=0, ∑M A =0, ∑M B=0,但要求矩心A、B的连线不能与x轴垂直。( ) 二、选择题 1.同一个力在两个互相平行的同向坐标轴上的投影( )。 A.大小相等,符号不同 B.大小不等,符号不同 C.大小相等,符号相同 D.大小不等,符号相同 2.图11所示圆轮由O点支承,在重力P和力偶矩m作用下处于平衡。这说明( )。 图 11 A. 支反力R0与P平衡 B. m与P平衡 C. m简化为力与P平衡 D. R0与P组成力偶,其m(R0,P)=-P·r与m平衡 3. 图12所示三铰刚架,在D角处受一力偶矩为m的力偶作用, 如将该力力偶移到E角出,支座A、B的支反力 ( )。 图12 A.A、B处都变化 B.A、B处都不变 C.A处变,B处不变

同济大学理论力学课程考核试卷(B卷)

同济大学课程考核试卷(B 卷) 2007 — 2008学年第 2学期 命题教师签名: 审核教师签名: 课号:45003900 课名:理论力学 考试考查:考试 此卷选为:期中考试( )、期终考试(√)、重考( )试卷 一、 填空题(每题5分,共30分) 一空间任意力系向一点A 简化后,得主矢0≠R F ,0≠A M ,则最终可简化为合力的条件为 ;最终可简化为力螺旋的条件为 ;合力或力螺旋的位置是否过点A 。 2. 物块重力为P =50N ,与接触面间的静摩擦角? f ?=30,受水平力F 的作用,当F =50N 时物块处于 ________________(只要回答处于静止或滑动)状态。当F =_____________N 时,物块处于临界状态。 3. 半径为R 的圆轮,沿直线轨道作纯滚动, 若轮心O 为匀速运动,速度为v ,则B 点加速度的大小为___________,方向____________。 4. 已知OA =AB =L ,ω=常数,均质连杆AB 的质量为m ,曲柄OA ,滑块B 的质量不计。则图示瞬时,相对于杆AB 的质心C 的动量矩的大小为___________________________________________。 5. 均质圆盘半径为R ,质量为m ,沿斜面作纯滚动。已 知轮心加速度a O ,则圆盘各质点的惯性力向O 点简化的结果是:惯性力系主矢量的大小为_______________________; 惯性力系主矩的大小为______________________________ (方向应在图中画出)。

6. 某摆锤的对称面如图所示,质心为C ,转轴为O 。受冲击时轴承O 的碰撞冲量为零的条件是______________________________。 二、计算题(15分) 如图所示结构,已知:q =20N /m ,M=20N ·m ,F =20N ,L =1m ,B ,D 为光滑铰链。试求: (1)固定铰支座A 的约束力; (2)固定端C 的约束力。 三、计算题(10分) 在图示机构中,已知:AC=BC=EC=FC=FD=DE=L ,力1F 及 角。试用虚位移原理求机构平衡时,2F 力大小。

清华大学版理论力学课后习题答案大全

第6章 刚体的平面运动分析 6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0?= 0。试求动齿轮以圆心A 为基点的平面运动方程。 解:?cos )(r R x A += (1) ?sin )(r R y A += (2) α为常数,当t = 0时,0ω=0?= 0 22 1t α?= (3) 起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过 θ??+=A 因动齿轮纯滚,故有? ? =CP CP 0,即 θ?r R = ?θr R = , ??r r R A += (4) 将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为: ??? ? ?? ??? +=+=+=22 2212sin )(2cos )(t r r R t r R y t r R x A A A α?αα 6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。试以杆与铅垂 线的夹角 表示杆的角速度。 解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。则角速度杆AB 为 6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。试问当拖车以速度v 前进时, 轮A 与垫滚B 的角速度A ω与B ω有什么关系?设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。 解:R v R v A A ==ω R v R v B B 22==ω B A ωω2= 6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。设杆BC 在水平位置时,滚子的角速度=12 rad/s ,=30,=60,BC =270mm 。试求该瞬时杆BC 的角速度和点C 的速度。 习题6-1图 A B C v 0 h 习题6-2图 P AB v C A B C v o h 习题6-2解图 习题6-3解图 习题6-3图 v A = v v B = v

重庆大学理论力学教案考点

重庆大学 《理论力学》课程 教案 2006版 机械、土木等多学时各专业用 2006年8月 使用教材:《理论力学》,张祥东主编,重庆大学出版社2006年第二版《理论力学》,哈尔滨工业大学,高等教育出版社2004年 《Engineering Mechanics理论力学》,杨昌棋等缩编,重庆 大学出版社2005年

参考文献 [1]同济大学理论力学教研室,理论力学,同济大学出版社,2001年 [2]乔宏洲,理论力学,中国建筑工业出版社,1997年 [3]华东水利学院工程力学教研室,理论力学,高等教育出版社,1984年[4]理论力学(第六版)哈尔滨工业大学理力教研室编. 普通高等教育“十五”国家级规划教材高等教育出版社.2002年8月[5]理论力学(第3版)郝桐生编.教育科学“十五”国家规划课题研究成果高等教育出版社.2003年9月 [6]理论力学(第1版)武清玺冯奇主编. 教育科学“十五”国家规划课题研究成果高等教育出版社.2003年8月 第1篇静力学 第1章静力学基本知识与物体的受力分析 一、目的要求 1.深入地理解力、刚体、平衡和约束等基本概念。 2.深入地理解静力学公理(或力的基本性质)。 3.明确和掌握约束的基本特征及约束反力的画法。

4.熟练而正确地对单个物体与物体系统进行受力分析,画出受力图。 二、基本内容 1.重要概念 1)平衡:物体机械运动的一种特殊状态。在静力学中,若物体相对于地面保持静止或作匀速直线平动,则称物体处于平衡。 2)刚体:在力作用下或运动过程中不变形的物体。刚体是理论力学中的理想化力学模型。 3)约束:对非自由体的运动预加的限制条件。在刚体静力学中指限制研究对象运动的物体。约束对非自由体施加的力称为约束反力。约束反力的方向总是与约束所能阻碍的物体的运动或运动趋势的方向相反。 4)力:物体之间的一种相互机械作用。其作用效果可使物体的运动状态发生改变和使物体产生变形。前者称为力的运动效应或外效应,后者称为力的变形效应或内效应,理论力学只研究力的外效应。力对物体作用的效应取决于力的大小、方向、作用点这三个要素,且满足平行四边形法则,故力是定位矢量。 5)力的分类: 集中力、分布力(体分布力、面分布力、线分布力) 主动力、约束反力 6)力系:同时作用于物体上的一群力称为力系。按其作用线所在的位置,力系可以分为平面力系和空间力系;按其作用线的相互关系,力系分为共线力系、平行力系、汇交力系和任意力系等等。 7)等效力系:分别作用于同一刚体上的两组力系,如果它们对该刚体的作用效果完全相同,则此两组力系互为等效力系。 8)平衡力系:若物体在某力系作用下保持平衡,则称此力系为平衡力系。 9)力的合成与分解:若力系与一个力F R等效,则力F R称为力系的合力,而力系中的各力称为合力F R的分力。用一个比原力系简单但作用效果相同的力系代替原力系称为力系的合成(简化);反之,一个力F R用其分力代替,称为力的分解。 2.静力学公理及其推论 公理1:力的平行四边形法则 给出了最简单的力系的简化规律,也是较复杂力系简化的基础。另外,它也给出了将一个力分解为两个力的依据。

同济大学理论力学07-08试卷a

同济大学试卷统一命题纸 (A 卷) 20 07-2008学年第一学期 课号:12500400 课名:理论力学 此卷选为:期中考试( )、期终考试(√)、补考( )试卷 年级 专业 重修 学号 姓名 得分 一、填空题(每小题5分,共30分) 1.边长为2a 的匀质正方形簿板,截去四分之一后悬挂在点A ,今欲使边BC 保持水平,则点A 距右端的距离x =_______________。 2. 已知:力F =100N ,作用位置如图,则 F x =___________________________; F y =__________________ __ ; M z =___________________ _。 3. 已知力P =40kN ,F =20kN ,物体与地面间的静摩擦因数f s =0.5,动摩擦因数f d =0.4,则物体所受的摩擦力的大小为________________。 4. 边长为L 的等边三角形板在其自身平面内运动,已知点A 相对 于点B 的加速度AB a 的大小为a ,方向平行于边CB ,则此瞬时三角形板的角加速度 =__________________。 5.一匀质杆置于光滑水平面上,C 为其中点,初始静止,在图示各受力情况下,图(a )杆作____________;图(b )杆作____________;图(c )杆作__________。

6. 半径为R 的圆盘沿水平地面作纯滚动。一质量为m ,长 为R 的匀质杆OA 如图固结在圆盘上,当杆处于铅垂位置瞬时, 圆盘圆心有速度v ,加速度a 。则图示瞬时,杆OA 的惯性力系向杆中心C 简化的结果为____________________________(须将结果画在图上)。 二、计算题(15分) 在图示机构中,已知:匀质轮O和匀质轮B的质量均为m 1,半径均为r ,物 C的质量为m 2,物A的质量为m 3,斜面倾角β=30?;系统开始静止,物A与斜面间摩擦不计,绳与滑轮间不打滑,绳的倾斜段与斜面平行;在O轮上作用力偶矩为M的常值力偶。试求: (1)物块A下滑的加速度a A ; (2)连接物块A的绳子的张力(表示成a A 的函数); (3)ED段绳子的张力(表示成a A 的函数)。

重庆大学理论力学教(学)案考点

大学 《理论力学》课程 教案 2006版 机械、土木等多学时各专业用 2006年8月 使用教材:《理论力学》,祥东主编,大学2006年第二版 《理论力学》,工业大学,高等教育2004年 《Engineering Mechanics理论力学》,昌棋等缩编, 大学2005年

参考文献 [1]同济大学理论力学教研室,理论力学,同济大学,2001年 [2]乔宏洲,理论力学,中国建筑工业,1997年 [3]华东水利学院工程力学教研室,理论力学,高等教育,1984年 [4]理论力学(第六版)工业大学理力教研室编. 普通高等教育“十五”国家级规划教材高等教育.2002年8月 [5]理论力学(第3版)郝桐生编.教育科学“十五”国家规划课题研究成果高等教育.2003年9月 [6]理论力学(第1版)武清玺奇主编. 教育科学“十五”国家规划课题研究成果高等教育.2003年8月 第1篇静力学 第1章静力学基本知识与物体的受力分析 一、目的要求 1.深入地理解力、刚体、平衡和约束等基本概念。 2.深入地理解静力学公理(或力的基本性质)。 3.明确和掌握约束的基本特征及约束反力的画法。 4.熟练而正确地对单个物体与物体系统进行受力分析,画出受力图。

二、基本容 1.重要概念 1)平衡:物体机械运动的一种特殊状态。在静力学中,若物体相对于地面保持静止或作匀速直线平动,则称物体处于平衡。 2)刚体:在力作用下或运动过程中不变形的物体。刚体是理论力学中的理想化力学模型。 3)约束:对非自由体的运动预加的限制条件。在刚体静力学中指限制研究对象运动的物体。约束对非自由体施加的力称为约束反力。约束反力的方向总是与约束所能阻碍的物体的运动或运动趋势的方向相反。 4)力:物体之间的一种相互机械作用。其作用效果可使物体的运动状态发生改变和使物体产生变形。前者称为力的运动效应或外效应,后者称为力的变形效应或效应,理论力学只研究力的外效应。力对物体作用的效应取决于力的大小、方向、作用点这三个要素,且满足平行四边形法则,故力是定位矢量。 5)力的分类: 集中力、分布力(体分布力、面分布力、线分布力) 主动力、约束反力 6)力系:同时作用于物体上的一群力称为力系。按其作用线所在的位置,力系可以分为平面力系和空间力系;按其作用线的相互关系,力系分为共线力系、平行力系、汇交力系和任意力系等等。 7)等效力系:分别作用于同一刚体上的两组力系,如果它们对该刚体的作用效果完全相同,则此两组力系互为等效力系。 8)平衡力系:若物体在某力系作用下保持平衡,则称此力系为平衡力系。 9)力的合成与分解:若力系与一个力F R等效,则力F R称为力系的合力,而力系中的各力称为合力F R的分力。用一个比原力系简单但作用效果相同的力系代替原力系称为力系的合成(简化);反之,一个力F R用其分力代替,称为力的分解。 2.静力学公理及其推论 公理1:力的平行四边形法则 给出了最简单的力系的简化规律,也是较复杂力系简化的基础。另外,它也给出了将一个力分解为两个力的依据。 公理2:二力平衡条件

清华大学版理论力学课后习题答案大全_____第6章刚体平面运动分析汇总

6章 刚体的平面运动分析 6-1 图示半径为r 的齿轮由曲柄OA 带动,沿半径为R 的固定齿轮滚动。曲柄OA 以等角加速度α绕轴O 转动,当运动开始时,角速度0ω= 0,转角0?= 0。试求动齿轮以圆心A 为基点的平面运动方程。 解:?c o s )(r R x A += (1) ?sin )(r R y A += (2) α为常数,当t = 0时,0ω=0?= 0 22 1t α?= (3) 起始位置,P 与P 0重合,即起始位置AP 水平,记θ=∠OAP ,则AP 从起始水平位置至图示AP 位置转过 θ??+=A 因动齿轮纯滚,故有? ? =CP CP 0,即 θ?r R = ?θr R = , ??r r R A += (4) 将(3)代入(1)、(2)、(4)得动齿轮以A 为基点的平面运动方程为: ??? ? ?? ??? +=+=+=22 2212sin )(2cos )(t r r R t r R y t r R x A A A α?αα 6-2 杆AB 斜靠于高为h 的台阶角C 处,一端A 以匀速v 0沿水平向右运动,如图所示。试以杆与铅垂线的夹角θ 表示杆的角速度。 解:杆AB 作平面运动,点C 的速度v C 沿杆AB 如图所示。作速度v C 和v 0的垂线交于点P ,点P 即为杆AB 的速度瞬心。则角速度杆AB 为 h v AC v AP v AB θθω2 000cos cos === 6-3 图示拖车的车轮A 与垫滚B 的半径均为r 。试问当拖车以速度v 前进时,轮A 与垫滚B 的角速度A ω与B ω有什么关系?设轮A 和垫滚B 与地面之间以及垫滚B 与拖车之间无滑动。 解:R v R v A A == ω R v R v B B 22==ω B A ωω2= 6-4 直径为360mm 的滚子在水平面上作纯滚动,杆BC 一端与滚子铰接,另一端与滑块C 铰接。设杆BC 在水平位置时,滚子的角速度ω=12 rad/s ,θ=30?,?=60?,BC =270mm 。试求该瞬时杆BC 的角速度和点C 的速度。 习题6-1图 习题6-2图 习题6-2解图 习题6-3解图 习题6-3图 v A = v v B = v ωA ωB

同济大学--理论力学期中考2009.10

同济大学课程期中考核试卷(A 卷) 课号: 课名:理论力学 考试考查:考查 此卷选为:期中考试( ),期终考试( ),重考( )试卷 年级 专业 学号 姓名 得分 (一)、概念题(每题5分) (1)图示系统受力F 作用而平衡。若不计各物体重量,试分别画出杆AC ,CB 和圆盘C 的示力图,并说明C 处约束力间的关系。 (2)半径r =100mm ,重P =100N 的滚子静止于 水平面上,滑动摩擦因数f =0.1,滚动摩擦系数δ=0.5mm ,若作用在滚子上的力偶的矩为mm N 30?=M ,则滚子受到的滑动摩擦力的大小为__________,滚子受到的滚动摩擦力偶矩的大小为_____________。 (3)直角刚杆AO =2m ,BO =3m ,已知某瞬时A 点的速度v A =6m/s ,而B 点的加速度与BO 成?=60θ角。则该瞬时刚杆的角速度 =_____ ________rad/s ,角加速度 =____________rad/s 2。 (1)3; (2)3; (3)53; (4)93。 (4)小球M 沿半径为R 的圆环以匀速v r 运动。圆环沿直线以匀角速度ω顺时针方向作纯滚动。取圆环为动参考系,则小球运动到图示位置瞬时:(1)牵连速度的大小为_______________;(2)牵连加速度的大小为______________;(3)科氏加速度的大小为________________(各矢量的方向应在图中标出)。

(二)、 (10分)图示桁架中,杆(1)的内力为___________________________;杆(2)的内力为________________________。 (20分)图示结构由不计自重的折梁AC与直梁CD构成。已知:q C=2kN/m,(三)、 F=12kN,m = M,θ =300,L=6m。试求支座A、B的约束力。 10? kN

平面任意力系习题

第三章 习题3-1.求图示平面力系的合成结果,长度单位为m。 解:(1) 取O点为简化中心,求平面力系的主矢: 求平面力系对O点的主矩: (2) 合成结果:平面力系的主矢为零,主矩不为零,力系的合成结果是一个合力偶,大小是260Nm,转向是逆时针。 习题3-2.求下列各图中平行分布力的合力和对于A点之矩。 解:(1) 平行力系对A点的矩是:

取B点为简化中心,平行力系的主矢是: 平行力系对B点的主矩是: 向B点简化的结果是一个力R B和一个力偶M B,且: 如图所示; 将R B向下平移一段距离d,使满足: 最后简化为一个力R,大小等于R B。其几何意义是:R的大小等于载荷分布的矩形面积,作用点通过矩形的形心。 (2) 取A点为简化中心,平行力系的主矢是: 平行力系对A点的主矩是:

向A点简化的结果是一个力R A和一个力偶M A,且: 如图所示; 将R A向右平移一段距离d,使满足: 最后简化为一个力R,大小等于R A。其几何意义是:R的大小等于载荷分布的三角形面积,作用点通过三角形的形心。 习题3-3.求下列各梁和刚架的支座反力,长度单位为m。

解:(1) 研究AB杆,受力分析,画受力图: 列平衡方程: 解方程组: 反力的实际方向如图示。 校核:

结果正确。 (2) 研究AB杆,受力分析,将线性分布的载荷简化成一个集中力,画受力图: 列平衡方程: 解方程组: 反力的实际方向如图示。 校核: 结果正确。 (3) 研究ABC,受力分析,将均布的载荷简化成一个集中力,画受力图:

列平衡方程: 解方程组: 反力的实际方向如图示。 校核: 结果正确。 习题3-4.重物悬挂如图,已知G=1.8kN,其他重量不计;求铰链A的约束反力和杆BC所受的力。

重庆大学理论力学选择题集

《理论力学》选择题集 编著 2004年12 月

1-1.两个力,它们的大小相等、方向相反和作用线沿同一直线。这是 (A)它们作用在物体系统上,使之处于平衡的必要和充分条件; (B)它们作用在刚体系统上,使之处于平衡的必要和充分条件; (C)它们作用在刚体上,使之处于平衡的必要条件,但不是充分条件; (D)它们作用在变形体上,使之处于平衡的必要条件,但不是充分条件; 1-2. 作用在同一刚体上的两个力F1和F2,若F1 = - F2,则表明这两个力 (A)必处于平衡; (B)大小相等,方向相同; (C)大小相等,方向相反,但不一定平衡; (D)必不平衡。 1-3. 若要在已知力系上加上或减去一组平衡力系,而不改变原力系的作用效果,则它们所作用的对象必需是 (A)同一个刚体系统; (B)同一个变形体; (C)同一个刚体,原力系为任何力系; (D)同一个刚体,且原力系是一个平衡力系。 1-4. 力的平行四边形公理中的两个分力和它们的合力的作用范围 (A)必须在同一个物体的同一点上; (B)可以在同一物体的不同点上; (C)可以在物体系统的不同物体上; (D)可以在两个刚体的不同点上。 1-5. 若要将作用力沿其作用线移动到其它点而不改变它的作用,则其移动范围 (A)必须在同一刚体内; (B)可以在不同刚体上; (C)可以在同一刚体系统上; (D)可以在同一个变形体内。 1-6. 作用与反作用公理的适用范围是 (A)只适用于刚体的内部; (B)只适用于平衡刚体的内部; (C)对任何宏观物体和物体系统都适用; (D)只适用于刚体和刚体系统。 1-7. 作用在刚体的同平面上的三个互不平行的力,它们的作用线汇交于一点,这是刚体平衡的 (A)必要条件,但不是充分条件; (B)充分条件,但不是必要条件; (C)必要条件和充分条件; (D)非必要条件,也不是充分条件。 1-8. 刚化公理适用于 (A)任何受力情况下的变形体; (B)只适用于处于平衡状态下的变形体; (C)任何受力情况下的物体系统;

2第二章 力系的简化和平衡方程习题+答案

第二章力系的简化和平衡方程 一、填空题 1、在平面力系中,若各力的作用线全部,则称为平面汇交力系。 2、求多个汇交力的合力的几何法通常要采取连续运用力法则来求得。 3、求合力的力多边形法则是:将各分力矢首尾相接,形成一折线,连接其封闭边,这一从最先画的分力矢的始端指向最后面画的分力矢的的矢量,即为所求的合力矢。 4、平面汇交力系的合力作用线过力系的。 5、平面汇交力系平衡的几何条件为:力系中各力组成的力多边形。 6、平面汇交力系合成的结果是一个合力,这一个合力的作用线通过力系的汇交点,而合力的大小和方向等于力系各力的。 7、若平面汇交力系的力矢所构成的力多边形自行封闭,则表示该力系的等于零。 8、如果共面而不平行的三个力成平衡,则这三力必然要。 9、在平面直角坐标系内,将一个力可分解成为同一平面内的两个力,可见力的分力是量,而力在坐标轴上的投影是量。 10、合力在任一轴上的投影,等于各分力在轴上投影的代数和,这就是合力投影定理。 11、已知平面汇交力系合力R在直角坐标X、Y轴上的投影,利用合力R与轴所夹锐角a的正切来确定合力的方向,比用方向余弦更为简便,也即tg a= | Ry / Rx | 。 12、用解析法求解平衡问题时,只有当采用坐标系时,力沿某一坐标的分力的大小加上适当的正负号,才会等于该力在该轴上的投影。 13、当力与坐标轴垂直时,力在该坐标轴上的投影会值为;当力与坐标轴平行时,力在该坐标轴上的投影的值等于力的大小。 14、平面汇交力系的平衡方程是两个的方程,因此可以求解两个未知量。 15、一对等值、反向、不共线的平行力所组成的力系称为_____。 16、力偶中二力所在的平面称为______。 17、在力偶的作用面内,力偶对物体的作用效果应取决于组成力偶的反向平行力的大小、力偶臂的大小及力偶的______。 18、力偶无合力,力偶不能与一个_____等效,也不能用一个______来平衡. 19、多轴钻床在水平工件上钻孔时,工件水平面上受到的是_____系的作用。 20、作用于物体上并在同一平面内的许多力偶平衡的必要和充分条件是,各力偶的_____代数和为零。 21、作用于刚体上的力,可以平移到刚体上的任意点,但必须同时附加一力偶,此时力偶的_____等于_____对新的作用点的矩。 22、一个力不能与一个力偶等效,但是一个力却可能与另一个跟它_____的力加一个力偶等效。 23、平面任意力系向作用面内的任意一点(简化中心)简化,可得到一个力和一个力偶,这个力的力矢等于原力系中所有各力对简化中心的矩的_____和,称为原力系主矢;这个力偶的力偶矩等于原力系中各力对简化中心的矩的和,称为原力对简化中心的主矩。 24、平面任意力系向作用面内任一点(简化中心)简化后,所得的主矢与简化中心的位置____,而所得的主矩一般与简化中心的位置______。 25、平面任意力系向作用面内任一点和简化结果,是主矢不为零,而主矩不为零,说明力系无论向哪一点简化,力系均与一个_____等效。 26、平面任意力系向作用面内任一点简化结果,是主矢不为零,而主矩为零,说明力系与通过简化中心的一个______等效。 27、平面任意力系向作用面内任一点简化后,若主矢_____,主矩_____,则原力系必然是平衡力系。 28、平面任意力系向作用面内的一点简化后,得到一个力和一个力偶,若将其再进一步合成,则可得到一个_____。 29、平面任意力系只要不平衡,则它就可以简化为一个______或者简化为一个合力。 30、对物体的移动和转动都起限制作用的约束称为______约束,其约束反力可用一对正交分力和一个力偶来表示。 31、建立平面任意力系的二力矩式平衡方程应是:任取两点A、B为矩心列两个力矩方程,取一轴X轴为投影列一个投影方程,但A、B两点的连线应_____于X轴。

清华大学2004至2005年理论力学本科期末考试试卷

清华大学2004至2005年理论力学本科期末考试试卷 考试课程:理论力学 2004 年 1 月 班级姓名学号成绩 一、填空题( 20 分,每小题 5 分) 1. 平面内运动的组合摆,由杆OA、弹簧及小球m组成(如图 1 示)。此系统的自由度数是 3 。 2. 质量为m1的杆OA 以匀角速度ω绕O 轴转动,其A 端用铰链与质量为 m、半径为r的均质小圆盘相连,小圆盘在半径为的固定2 圆盘的圆周表面作纯滚动,如图 2 所示。系统对O 轴的动量矩的大小为 系统的动能为。

3. 图 3 所示半径为R 的圆环在力偶矩为M 的力偶作用下以角速度ω匀速转动,质量为m的小环可在圆环上自由滑动。系统为理想、完整、非定常、双面约束系统,自由度数为 1 。 4.均质细杆AB 长L,质量为m,与铅锤轴固结成角α = 30°,并以匀角速度ω转动,如图 4 所示。惯性力系的合力的大小等于 。

二、判断题(每题 2 分,共 20 分):请在每道题前面的括号内画×或√ ( √ )1. 在定常约束下质系的一组无穷小真实位移就是虚位移。( √ )2. 任意力系都可以用三个力等效代替。 ( × )3. 首尾相接构成封闭三角形的三个力构成平衡力系。 ( √ )4. 速度投影定理既适用于作平面运动的刚体,也适用于作一般运动的刚体。 ( √ )5. 如果一个两自由度系统的第二类拉格朗日方程存在两个独立的第一积分, 则其中至少有一个是广义动量积分。 ( × )6. 如果刚体的角速度不为零,在刚体或其延拓部分上一定存在速度等于零的点。 ( × )7. 作定轴转动的刚体的动量矩向量一定沿着转动轴方向。( √ )8. 刚体只受力偶作用时,其质心的运动不变。 ( × )9. 如果系统存在广义能量积分,不一定机械能守恒;而如果

2016同济大学理论力学期中试题及答案

1.沿长方体的不相交且不平行的棱边作用三个大小相等的力,问边长 a ,b ,c 满足什么条件,该力系才能简化为一个力。 解:向O 点简化: R F ' 的投影:F F F F F F Rz Ry Rx ='='=',, k F j F i F F R ++='∴ [3分] 主矩O M 投影:0,,=-=-=O z O y O x M aF M cF bF M ()j aF i cF bF M O --=∴ [6分] ∵当0=?'O R M F 时才能合成为力, ∴应有()()[] 0=--?++j aF i cF bF k F j F i F 即()00==-FaF cF bF F 或 ∴b=c ,或a=0时,力系才能合成为一个力。 [10分]

2. 图示不计自重的水平梁与桁架在B 点铰接。已知:载 荷1F 、F 均与BH 垂直,F 1=8kN ,F=4kN ,M=6m kN ?, q=1kN/m ,L=2m 。试求: (1)支座A 、C 的约束力; (2)杆件1、2、3的内力。 解: (1)取AB 杆为研究对象 () ∑=0F M B 02 12 =+-M LF qL Ay kN 4=Ay F (2)取整体为研究对象 () ∑=0F M C 02sin 2 sin cos 2cos 21112=-?-?--?+?++ L F L F L F L F L F L F qL M Ay Ax θθθθ

kN 37.5=Ax F ∑=0x F 0cos 2cos 1=--+θθF F F F Cx Ax 0=∑y F 0sin 2sin 1=---+θθF F qL F F Cy Ay kN .F Cx 948= kN 165.F Cy =[6分] (3)取D 点为研究对象 ∑=0x F 01=F [7分] (4)取H 点为研究对象 ∑=0x F 0cos 5=--θF F kN 525-=F [8分] (5)取C 点为研究对象 ∑=0x F 0sin 35=++θF F F Cx kN 12.103-=F 0=∑y F 0cos 32=++θF F F Cy kN 90.32=F [10分]

清华大学版理论力学课后习题答案大全_____第12章虚位移原理及其应用习题解

解:如图(a ),应用虚位移原理: F 1 ?術 F 2 ? 8r 2 = 0 书鹵 / 、 8r 1 8r 2 tan P 如图(b ): 8 廿y ; 8 厂乔 8r i 能的任意角度B 下处于平衡时,求 M 1和M 2之间的关系 第12章 虚位移原理及其应用 12-1图示结构由8根无重杆铰接成三个相同的菱形。 试求平衡时, 解:应用解析法,如图(a ),设0D = y A = 2l sin v ; y^ 61 sin v S y A =21 cos :心; 溉=61 COST 心 应用虚位移原理: F 2 S y B - R ? S y A =0 6F 2 —2R =0 ; F i =3F 2 习题12-1图 F 2之值。已知:AC = BC 12-2图示的平面机构中, D 点作用一水平力F t ,求保持机构平衡时主动力 =EC = DE = FC = DF = l 。 解:应用解析法,如图所示: y A =lcos ) ; x D =3lsin v S y A - -l sin^ 心;S x D =3I COS ^ & 应用虚 位移原理: —F 2 ? S y A - F I 8x^0 F 2sin J - 3F t cos ^ - 0 ; F 2 = 3F t cot^ 12-3图示楔形机构处于平衡状态,尖劈角为 小关系 习题12-3 B 和3不计楔块自重与摩擦。求竖向力 F 1与F 2的大 F i F 2| (a ) (b) F i 8i - F 2 12-4图示摇杆机构位于水平面上,已知 OO i = OA 。机构上受到力偶矩 M 1和M 2的作用。机构在可

清华大学版理论力学课后习题答案大全第12章虚位移原理和应用习题解

第12章 虚位移原理及其应用 12-1 图示结构由8根无重杆铰接成三个相同的菱形。试求平衡时,主动力F 1与F 2的大小关系。 解:应用解析法,如图(a ),设OD = l θsin 2l y A =;θsin 6l y B = θθδcos 2δl y A =;θθδcos 6δl y B = 应用虚位移原理:0δδ12=?-?A B y F y F 02612=-F F ;213F F = 12-2图示的平面机构中,D 点作用一水平力F 1,求保持机构平衡时主动力F 2之值。已知:AC = BC = EC = DE = FC = DF = l 。 解:应用解析法,如图所示: θcos l y A =;θsin 3l x D = θθδsin δl y A -=;θθδcos 3δ l x D = 应用虚位移原理:0δδ12=?-?-D A x F y F 0cos 3sin 12=-θθF F ;θcot 312F F = 12-3 图示楔形机构处于平衡状态,尖劈角为θ和β,不计楔块自重与摩擦。求竖向力F 1与F 2的大小关系。 解:如图(a ),应用虚位移原理:0δδ2211=?+?r F r F 如图(b ): β θtan δδtan δ2 a 1r r r ==;12 δ tan tan δr r θ β = 0δtan tan δ1211=? -?r θβF r F ;θ β tan tan 21?=F F 12-4 图示摇杆机构位于水平面上,已知OO 1 = OA 。机构上受到力偶矩M 1和M 2的作用。机构在可能的任意角度θ下处于平衡时,求M 1和M 2之间的关系。 习题12-1图 (a ) 习题12-2解图 习题12-3 (a ) r a (b )

平面一般力系平衡方程的其他形式

第九讲内容 一、平面一般力系平衡方程的其他形式 前面我们通过平面一般力系的平衡条件导出了平面一般力系平衡方程的基本形式,除了这种形式外,还可将平衡方程表示为二力矩形式及三力矩形式。 1.二力矩形式的平衡方程 在力系作用面内任取两点A 、B 及X 轴,如图4-13所示,可以证明平面一般力系的平衡方程可改写成两个力矩方程和一个投影方程的形式,即 ?? ? ?? =∑=∑=∑000B A M M X (4-6) 式中X 轴不与A 、B 两点的连线垂直。 证明:首先将平面一般力系向A 点简化,一般可得到过A 点的一个力和一个力偶。若0A =M 成立,则力系只能简化为通过A 点的合力R 或成平衡状态。如果0B =∑M 又成立,说明R 必通过B 。可见合力R 的作用线必为AB 连线。又因0=∑X 成立,则0X =∑=X R ,即合力R 在X 轴上的投影为零,因AB 连线不垂直X 轴,合力R 亦不垂直于X 轴,由0X =R 可推得0=R 。可见满足方程(4-6)的平面一般力系,若将其向A 点简化,其主矩和主矢都等于零,从而力系必为平衡力系。 2.三力矩形式的平衡方程 在力系作用面内任意取三个不在一直线上的点A 、B 、C ,如图4-14所示,则力系的平衡方程可写为三个力矩方程形式,即

?? ? ?? =∑=∑=∑000C B A M M M (4-7) 式中,A 、B 、C 三点不在同一直线上。 同上面讨论一样,若0A =∑M 和0B =∑M 成立,则力系合成结果只能是通过A 、B 两点的一个力(图4-14)或者平衡。如果0C =∑M 也成立,则合力必然通过C 点,而一个力不可能同时通过不在一直线上的三点,除非合力为零,0C =∑M 才能成立。因此,力系必然是平衡力系。 综上所述,平面一般力系共有三种不同形式的平衡方程,即式(4-5)、 式(4-6)、式(4-7),在解题时可以根据具体情况选取某一种形式。无论采用哪种形式,都只能写出三个独立的平衡方程,求解三个未知数。任何第四个方程都不是独立的,但可以利用这个方程来校核计算的结果。 【例4-7】 某屋架如图4-15(a )所示,设左屋架及盖瓦共重 kN 31=P ,右屋架受到风力及荷载作用,其合力kN 72=P ,2P 与BC 夹角 为?80,试求A 、B 支座的反力。 【解】 取整个屋架为研究对象,画其受力图,并选取坐标轴X 轴和Y 轴,如图4-15(b )所示,列出三个平衡方程 kN 39.2342.0770cos 0 70cos 02A 2A =?=?==?-=∑P X P X X 30tan 470cos 1270sin 416 0221B A =????+??-?-?=∑P P P Y M

相关主题
文本预览
相关文档 最新文档