发电厂空冷技术的应用
- 格式:doc
- 大小:43.00 KB
- 文档页数:10
大型电厂空冷技术及其特点分析摘要:最近几年,纵观全球经济发展速度非常迅猛。
此时各个行业都取得了显著的成就。
然而我们在为取得的成就欣喜的同时,需要意识到的是,人类赖以生存的资源正在逐渐减少,其中水资源就是一个典型。
水资源的短缺导致电厂发展受到极大的阻碍,最终影响到广大群众日常生活的开展。
在此背景之下,空冷技术开始出现并且得到了大力的发展。
笔者具体阐述了空冷技术的构成情况以及具体的特征。
对于我们国家的大规模电厂来讲,合理的使用该技术能够节省资源,促进社会稳定发展,更好的创造经济价值。
关键词:大型电厂;空冷技术特点;发展;特点一、电厂空冷技术发展情况早在1939年,德国GEA公司就在德国鲁尔矿区1.5MW汽轮发电机组上应用了直接空冷系统。
50年代卢森堡杜德兰格钢厂13MW机组和意大利罗马电厂36MW机组分别投运了直接空冷系统。
1950年匈牙利海勒教授在第四届世界动力会议上首次提出了采用喷射式凝汽器和自然通风空冷塔的间接空冷系统(后称为海勒式空冷系统)。
1962年采用海勒式空冷系统的120MW机组在英国拉格莱电厂投运。
1968年西班牙乌特里拉斯电厂投运了采用尖屋顶式布置的机械通风型直接空冷系统的160MW机组。
至此,形成了直接和间接两种空冷系统并存的局面。
但在此阶段世界各地投运的空冷机组容量都比较小,多数在1MW~50MW,个别达到160MW和200MW,如:采用海勒式空冷系统的200MW级机组于1971年分别在拉兹丹电厂、匈牙利加加林电厂和南非格鲁特夫莱电厂投运。
自20世纪70年代末开始,空冷电厂的容量装机容量和单机容量都取得了长足的发展。
1977年美国怀俄达克矿区电厂330MW机组应用了机械通风型直接空冷系统;1985年联邦德国施梅豪森核电站300MW机组应用了表面式凝汽器配自然通风空冷塔的间接空冷系统。
80年代以来,空冷技术得到进一步发展,特别是在南非,可以说取得了突破性进展。
1987年,采用机械通风型直接空冷系统的665MW空冷机组在南非马丁巴电厂投运;1988年,采用表面式凝汽器和自然通风空冷塔间接空冷系统的686MW空冷机组在南非肯达尔电厂投运。
1000MW间接空冷火电机组九级回热技术摘要:我厂两台1000MW火电机组采用9级回热技术,使用后取得了以下成果:我厂1000MW 级间接空冷发电机组,原设计方案为常规回热级数8级。
经与上海汽轮机厂配合,本工程在现有汽轮机低压缸上增加1级回热拍汽,即由原8级回热系统改为9 级回热抽汽系统。
本工程热力系统增加1级回热,凝结水泵和低加疏水泵运行电耗略有增加,但可降低汽轮机热耗约11kJ/kWh。
经测算,综合热耗减少和厂用电率增加对供电标煤耗率的贡献,增加1级回热可降低供电标煤耗率约 0.4g/kWh,具有一定的节能效果。
经济性方面,增加1级回热,全厂设备初投资增加约1260万元,但全厂年运行费用可节约180万元,动态投资回收年限约12 年,具有一定的经济效益。
因此,本工程热力系统增加1级回热取得了一定的经济效益及环保效益。
关键词:间冷空冷机组、9级回热、前置蒸汽冷却器引言目前国内已投运的1000MW级汽轮机基本为常规8级回热,德国西门子公司为欧洲项目提供700~800MW等级的汽轮机方案有配9级回热的设计。
间接空冷系统与湿冷塔相比最大的优点是节水量显著,用水量为湿冷机组的1/4-1/5。
间接空冷系统与直接空冷系统相比,其耗电量相对较小,运行过程中凝汽器的背压较稳定,空冷塔基本无噪音,受风力和风向的影响很小,防冻能力好,机组冬季运行时背压可以降到很低,在凝汽器压力为8-10KPa下运行是相当安全的,有时可以在更低的背压下运行。
缺点是占地面积较大,一次性投资大。
故在风力大、风向变化快、缺水、离居民区较近、土地面积相对不受限制的地区应选择间接空冷系统。
我厂采用间接空冷技术,并在此基础上采用9级回热技术,进一步降低机组热耗率,符合国家节能减排的政策。
实施背景1.国内三大主机制造厂1000MW级一次再热汽轮机均为四缸四排汽,一个单流高压缸、一个双流中压缸和两个双流低压缸。
以东汽为例,在其已投运的华润贺州2×1000MW项目中,中压缸为2级抽汽,低压缸为4级抽汽,分缸排汽供给除氧器用汽,低压缸抽汽供给4级低压加热器。
空冷系统简介1 空冷系统简介1.1 空冷技术方案介绍在火力发电厂中采用的空冷系统形式有:直接空冷系统、混凝式间接空冷系统、表凝式间接空冷系统。
直接空冷系统是将汽轮机排汽由管道送入称之为空冷凝汽器的钢制散热器中,直接由空气冷却。
混凝式空冷系统由于有水轮机和喷射式凝汽器等系统设备,设备多系统复杂,使得整套系统实行自动控制较难;而表凝式间接空冷系统与常规的湿冷系统比较接近,也是通过两次换热,以循环冷却水作为中间冷却介质,循环冷却水由水泵加压后,进入凝汽器冷却汽轮机排汽,热水进入自然通风冷却塔由空气冷却。
表凝式间接空冷系统与湿冷系统不同之处是在冷却塔内(外)布置着钢(铝)制散热器,热水与空气不接触,进行表面对流散热。
直接空冷系统直接空冷系统主要由排汽装置、大排汽管道(包括大直径膨胀节、大口径蝶阀等)、钢制空冷凝汽器、风机组(包括轴流风机、电动机、减速机、变频器等)、凝结水系统、抽真空系统(包括水环式真空泵)、清洗系统等设备构成。
空冷凝汽器布置在汽机房A列外的高架空冷平台上。
直接空冷系统是将汽轮机排出的乏汽,通过排汽管道引入钢制空冷凝汽器中,由环境空气直接将其冷却为凝结水,多采用机械通风方式。
其特点是:设备较少,系统简单,调节灵活,占地少,防冻性能好,冷却效率高;直接空冷受环境风的影响较大,运行费用较高,煤耗较大,风机群产生一定噪声污染,厂用电较高。
表凝式间接空冷系统表凝式间接空冷系统是指汽轮机排汽以水为中间介质,将排汽与空气之间的热交换分两次进行:一次为蒸汽与冷却水之间在表面式凝汽器中换热;一次为冷却水和空气在空冷塔里换热。
该系统主要由表面式凝汽器与空冷塔构成,采用自然通风方式。
表凝式间接空冷与直接空冷相比,其特点是:冬季运行背压较低,所以煤耗较低;由于采用了表面式凝汽器,循环冷却水和凝结水分成两个独立系统,其水质可按各自的水质标准和要求进行处理,使水处理系统简单、便于操作;表凝式间接空冷塔基本无噪声,满足环保要求;空冷塔占地大,冬季运行防冻性能较差。
浅谈火力发电厂间接空冷系统控制技术摘要:在火力电厂中,锅炉将水加热成为高压高温的蒸汽,然后推动汽轮机工作促使发电机发电。
将汽轮机做工之后的废汽排入到冷凝器中,和冷却水进行热交换之后凝结成水,再利用给水泵进入到锅炉中循环使用。
而间接空冷系统的主要作用就是将废热冷却水在间冷塔中和空气进行热交换,以此来将废热传输至空气中。
本文主要分析了火力发电厂间接冷却系统的工作原理,然后对其各种工况进行了详细的说明。
关键词:火力发电厂;间接空冷系统;控制技术0.引言本文主要就是以某一个火力发电厂的间接空冷系统为例来进行分析,该火力发电厂主要就是采用表凝式间接空冷系统。
启动给水泵小汽机和主机气轮机排气都是会进入到主机表面式凝汽器,而在表面式凝汽器中循环冷却水也是能够进行完热交换,之后再经由循环水泵将循环冷却水送到间接空冷系统中,然后借助于间接空冷系统进行统一的冷却,而循环水泵则是应该布置在空冷塔附近。
在空冷塔进风口处的圆周上三角垂直布置空冷散热器,每一个冷却三角进风口处都有布置能够调开度的百叶窗。
1.火力发电厂循环水泵系统分析本工程在1号机组和2号机组这两者之间设置一座间接空冷塔,循环水泵的位置在塔热水入口侧。
两台机组共用一个循环水泵房,其位置就在冷却塔的附近。
每一台机组都配备三台循环水泵,循环水泵主要就是利用定速电机来进行工作[1]。
两台机组间冷系统主要就是通过单元制的模式进行运行,每一台机组在任何的情况下都是必须得投入最少两台循环水泵,这主要就是因为本项目的循环水泵是使用定速电机。
单台泵在实际的运行过程中系统总水阻比较低,泵运行点和设计点也是偏离较大,进而循环水泵电机则是存在着较大的过载风险。
如果在冬季的时候单台循环水泵运行,那当运行泵出现故障的时候将会使得管束出现冰冻的情况,如下图1:当两台机组在夏季并且不同负荷情况下运行的时候,空冷塔内的热空气气流将会产生相互作用,这样也就会使得高负荷机组的空冷散热器冷却能力下降。
发电厂空冷技术的应用————————————————————————————————作者:————————————————————————————————日期:目录前言第一章概论1.1 空冷技术的概述及分类‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1.2 空冷技术的发展及在我国的应用‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1.3 空冷技术的采用对整个发电厂生产工艺流程的影响‥‥‥‥‥‥‥‥‥‥第二章发电厂空冷系统设备2。
1 直接空冷系统‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥2.2 海勒式间接空冷系统‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥2.3 哈蒙氏间接空冷系统‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥2。
4 三种空冷系统的主要设备特征和技术参数比较‥‥‥‥‥‥‥‥‥‥‥‥第三章直接空冷系统的运行和维护3.1 冷却风机‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥3.2 直接空冷散热器的防冻‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥3.3 直接空冷散热器的热风再循环‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥第四章空冷系统与湿冷系统的比较4.1 空冷和湿冷系统的经济性比较‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥4。
2 空冷系统的应用的评价‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥结束语参考文献前言随着世界各国经济的迅速发展和人类物质文化生活水平的不断提高,大型火力发电厂及大容量单元机组的投运面临着更为迫切、严格的要求,即在要求电力工业高速发展的同时,对发电厂的耗水量、烟尘排放量、冷却水废热造成的大气和自然水资源污染、生态平衡破坏规定了严格的限制标准。
因此,人类在大规模开发能源、发展电力工业的同时,必须采取有效措施,缓解用水矛盾,控制消除污染后果,走可持续发展的道路。
发电厂汽轮机排汽空气冷却技术的应用和发展,为在严重缺水的煤矿和电力负荷中心区域建设大型火力发电厂开辟了一条节水、经济、安全、可靠的途径,也为水资源丰富区域保持生态平衡、避免江河水资源污染创造了有利条件。
百万空冷机组节能技术应用2015.1.8目录本工程节能技术考虑方向01.主机选型节能技术应用02.烟风系统节能技术应用03.热力系统节能技术应用04.结束语05.工程背景☐电厂规划四期工程,4×360MW+ 2×1100MW+ 2×1100MW+2×1100MW间冷☐规划总容量8040MW一期4x360MW本期2x1100MW三期2x1100MW四期2x1100MW间冷新疆农六师煤电有限公司超超临界空冷机组工程燃煤由新疆准东矿区的神华煤矿和天龙煤矿供应,具有典型的高钠低熔点特性。
本工程位于新疆五家渠工业区,气候特点为:日照充足,热量丰富,气温变化大,降水少,蒸发大,气候干燥;春季增温快,夏季干热;秋季凉爽;冬季寒冷漫长。
为自备电厂,要求可靠性高,存在孤网运行和黑启动可能。
国家能源政策要求及企业追求效益需求,本工程建设高效节能机组。
工程背景充分利用国产机组的制造能力,选择高参数机组。
根据空冷机组特点,合理确定机组容量。
根据煤质特点,合理选择炉型参数,保证锅炉效率。
优化烟风道布置及部件,改进阻力计算方法,降低设备电耗。
进行热力系统和设备优化。
合理选择汽水管道管径。
节能技术考虑方向目录本工程节能技术考虑方向01.主机选型节能技术应用02.烟风系统节能技术应用03.热力系统节能技术应用04.结束语05.机组参数选择本工程主机选型阶段,上海、东方、哈尔滨三大主机厂已设计、制造的1000MW超超临界湿冷机组是成功的,针对本工程的百万超超临界空冷机组,采用1000MW湿冷汽轮机组的高中压缸模块和适合空冷机组的低压缸结构以及专用的末级叶片,其技术方案均是可行的。
哈汽厂采用泰州1000MW超超临界空冷机组高中压缸模块+600MW两缸两排汽空冷低压缸,采用780mm末级叶片。
东汽厂的东方‐日立型1000MW空冷机组设计方案为采用1000MW湿冷机组的高中压积木块+30”的空冷积木块,末级叶片采用863mm或762mm。
目录前言第一章ﻩ概论1.1空冷技术的概述及分类‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1.2 空冷技术的发展及在我国的应用‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥1.3空冷技术的采用对整个发电厂生产工艺流程的影响‥‥‥‥‥‥‥‥‥‥第二章发电厂空冷系统设备2.1直接空冷系统‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥2.2 海勒式间接空冷系统‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥2.3哈蒙氏间接空冷系统‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥2.4三种空冷系统的主要设备特征和技术参数比较‥‥‥‥‥‥‥‥‥‥‥‥第三章直接空冷系统的运行和维护3.1 冷却风机‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥3.2 直接空冷散热器的防冻‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥3.3 直接空冷散热器的热风再循环‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥第四章空冷系统与湿冷系统的比较4.1空冷和湿冷系统的经济性比较‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥4.2 空冷系统的应用的评价‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥‥结束语参考文献前言随着世界各国经济的迅速发展和人类物质文化生活水平的不断提高,大型火力发电厂及大容量单元机组的投运面临着更为迫切、严格的要求,即在要求电力工业高速发展的同时,对发电厂的耗水量、烟尘排放量、冷却水废热造成的大气和自然水资源污染、生态平衡破坏规定了严格的限制标准。
因此,人类在大规模开发能源、发展电力工业的同时,必须采取有效措施,缓解用水矛盾,控制消除污染后果,走可持续发展的道路。
发电厂汽轮机排汽空气冷却技术的应用和发展,为在严重缺水的煤矿和电力负荷中心区域建设大型火力发电厂开辟了一条节水、经济、安全、可靠的途径,也为水资源丰富区域保持生态平衡、避免江河水资源污染创造了有利条件。
因此,发电厂空冷技术在世界范围内得到了广泛的应用。
特别是我国,走和谐、可持续发展道路,节约用水,避免污染,提高水资源利用率,已成为新世纪电力工业发展的重大课题。
华北、西北富煤而缺水地区,发电厂采用空冷技术已成为必然,其他水资源相对充沛地区,发电厂采用空冷技术的问题也将会收到高度的重视。
为了推广空冷技术在电厂的应用,特做此设计以供大家参考。
第一章概论第一节空冷技术概述及分类发电厂空冷技术从提出到现在约有50年的历史,并在国际上有了迅速发展,目前已出现单机容量686MW的空冷机组。
在干旱地区,空冷技术发展尤为迅速,并出现了多种类型,如直接空冷、干湿联合冷却机组等。
发电厂空冷技术已成为当前发电厂建设中的一个热门课题。
当前用于发电厂的空冷系统主要有三种,即直接空冷、表面式凝汽器间接空冷系统和混合式凝汽器间接空冷系统。
直接空冷多采用机械通风方式,20世纪90年代以来,比利时哈蒙—鲁姆斯公司提出采用自然通风,两种间接空冷多采用自然通风。
一、海勒式间接空冷系统海勒式间接空冷系统(如图1-1所示)主要由喷射式凝汽器和装有福哥型散热器的空冷塔构成。
由外表面经过防腐处理的圆形铝管、套以铝制翘片的管束所组成的“∧”形排列的散热器,称为缺口冷却三角,在缺口处装上百叶窗就成为一个冷却三角。
系统中的冷却水都是高纯度的中性水(PH=6.8~7.2)。
中性冷却水进入凝汽器直接与汽轮机排气混合,并将其冷凝。
受热后的冷却水绝大部分由冷却水循环被送至空冷塔散热器,经与空气对流换热冷却后通过调压水轮机将冷却水再送至喷射式凝汽器进入下一个循环。
受热的循环冷却水中的极少部分经凝结水精处理后送至汽轮机回热系统。
该系统中的调压水轮机有两个功能:①通过调压水轮机导叶开度来调节喷射式凝汽器前的水压,保证形成微薄且均匀的垂直水膜,减少排气通道阻力,使冷却水与排气充分接触换热;②回收能量,减少冷却水循环的功率消耗。
调压水轮机在此空冷系统中的连接方式有两种:一种是在许多空冷电厂已采用过的立式水轮机与立式异步交流发电机连接,另一种连接是卧式水轮机与卧式冷却水循环泵、卧式电动机的同轴连接。
后一种连接方式可以在工程中使用,但目前尚未见投运的实例。
海勒式间接空冷系统的优点是:①以微正压的低压水系统运行,较易掌握,可与中背压汽轮机配套;②冷却系统消耗动力稍低,厂用电稍少,约为90%;③基建投资中等,为120%;④占地面积中等,为156%。
其缺点是:①铝制空冷散热器耐冲洗、耐抗冻性能差;②空冷散热器在塔外布置,易受大风影响其带负荷的能力;③设备系统复杂,且有薄弱环节。
海勒式间接空冷系统适合与气候温和、无大风地区,带基本负荷。
二哈蒙氏间接空冷系统哈蒙氏间接空冷系统如图1-2所示。
这种空冷系统是在海勒式间接空冷系统运行实践基础上发展起来的。
鉴于海勒式间接空冷系统采用的喷射式凝汽器,其运行端差实际值和表面是凝汽器端差相比较没有明显减少。
在喷射式凝汽器中,循环冷却水与锅炉给水是连通的,由于锅炉给水品质控制严格,系统中要求设凝结水精处理装置;对高参数、大容量的火电机组,给水水质控制和处理尤为困难,于是在单机容量300和600MW级火电机组发展了哈蒙氏间接空冷系统与直接空冷系统。
哈蒙氏间接空冷系统由表面是凝汽器与空冷塔构成。
该系统与常规的湿冷系统基本相仿,不同之处是用空冷塔代替湿冷塔,用不锈钢管凝汽器代替铜管凝汽器,用除盐水代替循环水,用密闭式循环冷却水系统代替开敞式循环冷却水系统。
在哈蒙氏间接空冷系统回路中,由于冷却水在温度变化时体积发生变化,故需设置膨胀水箱。
膨胀水箱顶部和充氮系统连接,使膨胀水箱水面上充满一定压力的氮气,这样即可对冷却水容积膨胀起到补充作用,又可避免冷却水和空气接触,保持冷却水质不变。
在空冷塔底部设有储水箱,并设置两台输水泵可向冷却塔中的空冷散热器充水。
空冷散热器及管道满水后,系统即可启动投运。
哈蒙氏空冷系统的散热器有椭圆形钢管外缠绕椭圆形翘片或套嵌矩形钢翅片的管束组成,椭圆形钢管及翅片外表面进行整体热镀锌处理。
该系统采用自然通风方式冷却,将散热器装在自然通风冷却塔中。
哈蒙氏间接空冷系统类似于湿冷系统,其优点是:①节约厂用电,设备少,冷却水系统与汽水系统分开,两者水质可按各自要求控制;②冷却水量可根据季节调整,在高寒地区,冷却水系统中可充以防冻液防冻;③空冷散热器在塔内布置,其带负荷能力基本上不受大风影响。
其缺点是:①空冷塔占地大,基建投资多,约为126%;②发电煤耗多,约为105%;③系统中需要两次换热,且都属于表面式换热,使全厂热效率有所降低。
哈蒙氏间接空冷系统适用于核电站、热电站和调峰大电厂。
三、直接空冷系统直接空冷系统又称空气冷凝系统。
直接空冷是指汽轮机的排气直接由空气来冷凝,空气与蒸汽间进行热交换,所需的冷却空气通常由机械通风方式供应。
直接空冷的凝气设备称为空冷凝汽器,它是由外表面镀锌的椭圆形钢管外套矩形钢翅片的若干个管束组成的,这些管束亦称为散热器。
直接空冷系统的流程如图1-3所示。
汽轮机的排汽通过粗大的排汽管道送到室外的空冷凝汽器内,轴流冷却风机是空气流过散热器外表面,将排汽冷凝成水,凝结水再经泵送回到汽轮机的回热系统。
直接空冷系统是将汽轮机排出的乏汽由管道引入空冷凝汽器的钢制散热器中,由环境空气直接将其冷却为凝结水,减少了常规二次换热所需要的中间冷却介质,换热温差大。
空冷凝汽器分主凝汽器和分凝汽器两部分,主凝汽器多设计成汽水顺流式,它是空冷凝汽器的主体可冷凝75%~80%的蒸汽;分凝汽器则设计成汽水逆流式,形成空冷凝汽器的抽空气区域,设置逆流管束主要是为了能够比较顺畅的将系统内的空气和不不凝结气体排出,避免运行中在空冷凝汽器内的某些部位形成死区,冬季形成冻结的情况。
空气区的抽真空系统是直接空冷的关键。
在汽轮机启动和正常运行时,要使汽轮机低压缸尾部、空冷凝汽器、排气管道及凝结水箱等设备内部形成真空,通常采用的抽空气设备是蒸汽抽气器。
本系统的作用是在机组启动时将一些汽水管道系统和设备中积集的空气抽掉,一边加快机组启动速度,以及在正常运行时及时抽掉蒸汽和疏水中以及泄漏入真空系统的空气和其它不凝结气体,以维持凝汽器真空和减少设备等腐蚀。
抽真空系统中设有破坏阀门,当需要破坏系统真空时,可开启真空破坏阀。
在直接空冷系统中,空冷凝汽器的布置与风向、风速及电厂主厂房朝向都有密切关系。
中、小型机组可直接在汽轮机房屋顶布置空冷凝汽器,大型机组的空冷凝汽器通常在紧靠机房A列柱外侧与主厂房平行的纵向平台上布置若干单元组,其总长度与主厂房长度基本一致。
每个单元组由多个主凝汽器与一个分凝汽器组成“人”字形排列结构,并在每个单元机组下部设置一台大直径轴流风机。
直接空冷系统的其他的主要特点还有:⑴汽轮机背压变幅大。
汽轮机排汽直接由空气冷凝,其背压随空气温度变化而变化。
我国北方地区一年四季乃至昼夜温差都较大,故要求汽轮机要有较宽的背压运行范围。
⑵真空系统庞大。
汽轮机排汽要由大直径的管道引出,用空气作为直接冷却介质,通过钢制散热器进行表面热交换,冷凝排汽需要较大的冷却面积,故而真空系统庞大。
⑶耗能大。
直接空冷系统所需的空气由大直径风机提供,风机需要耗能,根据国外资料,直接空冷系统自耗电占机组发电容量的1.5%左右。
⑷电厂整体占地面积小。
由于空冷凝汽器一般都布置在汽机房顶或汽机房前的高架平台上,平台下仍可布置电气设备等,空冷凝汽器占地得到综合利用,使电厂整体占地面积减少。
⑸冬季防冻措施比较灵活可靠。
间接空冷系统的主要防冻手段是设置百叶窗来调节和隔绝进入散热器的空气量,若百叶窗关闭不严或驱动机构出现机械或电气故障,将导致散热器冻结。
而直接空冷系统可通过改变风机转速、停运风机或使风机反转来调节空冷凝汽器的进气量,利用吸热风来防止空冷凝汽器的冻结,调节相对灵活,效果好且可靠。
已有运行经验证明。
⑹凝结水溶氧量高。
由于直接空冷机组的真空系统庞大,易出现负压系统氧气吸入,又由于机组背压偏高,易出现凝结水过冷度偏大,进一步加大了凝结水中溶解氧的含量。
直接空冷的缺点是:①风机群噪声污染环境。
②风机群消耗动力大约为100%,维修工作量大。
③热风抽吸到进风口,影响冷却效果。
④系统的负压区域大,制造、施工必须精心,以维持高度的严密性。
⑤发电煤耗多,约为103%。
直接空冷适用于各个环境条件和各类燃煤电厂,要求煤价低廉,最好带基本负荷。
第二节空冷技术的发展及在我国的应用一、直接空冷凝汽器系统的发展循环冷却系统是电力生产过程中的一个重要环节,做过功的汽轮机乏汽需要在凝汽器中冷却凝结,然后重新循环。
常规湿冷机组是采用自然通风冷却塔形式,以水为冷却介质,其中循环水损失(蒸发损失、风吹损失和排污损失)约占电厂耗水量的80%;而空冷机组是以空气为冷却介质,其中间接空冷系统主要有带喷射式凝汽器的海勒式系统,带表面式凝汽器的哈蒙氏系统和直接空冷系统。