当前位置:文档之家› 替代蒸汽甲烷转化的工艺

替代蒸汽甲烷转化的工艺

替代蒸汽甲烷转化的工艺
替代蒸汽甲烷转化的工艺

小型蒸汽锅炉安全操作规程

行业资料:________ 小型蒸汽锅炉安全操作规程 单位:______________________ 部门:______________________ 日期:______年_____月_____日 第1 页共13 页

小型蒸汽锅炉安全操作规程 蒸汽锅炉是生产、生活不可缺少的重要设备之一。锅炉房是我单位的一个要害部位。蒸汽锅炉在使用中具有高温、高压的特点。如管理不善,就会发生事故,造成人员伤亡,生产中断,给学校和国家带来严重损失。因此每个司炉及维修人员在工作中时刻保持高度责任心,保证锅炉正常运行,严格遵守。 一、司炉工必须持证上岗,严格遵守司炉工岗位制,发挥互助友爱的精神。 二、搞好锅炉及设备的保养,经常保持锅炉房整洁,注意力争节约煤、水、电。 三、在锅炉运行中保持规定压力、温度,不得超压。要注意辩别假水位。牢记管道系统,阀门分布位置及运行中的开阀状况。开闭阀门时应在手轮的侧面逐渐开或闭。时刻关注老锅炉运行失常和事故前兆,应了解其发生原因及预防处理方法。必要时采取紧急停炉和紧急处理。牢记配电盘各按钮作用,停炉时不留有余压并切断总电源。 四、鼓风机吸风口、引风机、连轴器传动部分附近,要特别小心注意安全生产,杜绝事故发生。司炉工必须坚守工作岗位,违者罚款处理。 五、认真选煤,防止易爆物〈如雷管等〉危险物品入炉。冬季刨煤防止冻煤层塌落砸伤。运煤防止碰、扭、压伤,使用工具平时排列整齐。 六、配电盘周围严禁堆放金属及易燃易爆物,并注意防尘,注意防火。要按时排污,及时清理除尘器里的烟灰。 七、锅炉运行中如发生故障或电火等情况时,应采取紧急措施,并立即报告班长。 第 2 页共 13 页

稠油油藏蒸汽驱的研究

稠油油藏蒸汽驱耐高温堵剂类型及汽窜封堵工艺的研究现状、存 在问题及对策 前言 中国稠油资源较为丰富,陆上稠油资源约占石油总资源量的20%以上。最新研究表明,我国稠油预测资源量197x10gt,己探明稠油地质储量18.1x10gt,己动用地质储量11.93x10gt,剩余未动用地质储量6.14x10gt。主要分布在西藏、青海、新疆、四川、内蒙、广西、浙江、贵州等地约250x10gt。目前己经建立了新疆油区、辽河油区、胜利油区和河南油区四大稠油开发生产区。 稠油热采的主要方法有蒸汽吞吐、蒸汽驱、火烧油层、热水驱等。其中蒸汽吞吐作为一种相对简单和成熟的热采技术己广泛应用于稠油开采中,成为稠油开采的主要方法。目前我国稠油开发方式所占比重为蒸汽吞吐(约占78%),蒸汽驱(约占10%)和常规水驱(12%)等。蒸汽吞吐是单井作业,对各种类型稠油油藏地质条件的适用范围较蒸汽驱广,经济上的风险比蒸汽驱开采小得多,因此蒸汽吞吐通常作为油田规模蒸汽驱开发之前的先导开发方式,以减少生产的阻力和增加注入能力。此外,对于井间连通性差、原油粘度过高以及含沥青砂,不适合蒸汽驱的油藏,仍将蒸汽吞吐作为一种独立的开发方式,因而它在稠油开发中占有重要的地位。 在热力开采过程中,受蒸汽超覆、平面指进和储层非均质性等因素影响,经过多轮次蒸汽吞叶开采的油井,其层间矛盾和平面矛盾口益突出,出现高低渗透层的吸汽差异:高渗透层为强吸汽层,低渗透层为弱吸汽层,甚至不吸汽。在高轮次吞叶阶段还会产生汽窜通道,导致井间汽窜干扰,而蒸汽驱开采必然加重这种趋势。目前,解决这一矛盾最有效的方法之一就是应用高温调剖剂技术,通过解决蒸汽在纵向上和平面上的吸汽不均问题,达到改善吸汽剖面,提高稠油动用程度及采收率的目的。所以此次调研将针对稠油油藏耐高温堵剂以及汽窜封堵工艺进行研究。 正文 1.耐高温堵剂的分类 根据封堵方法的不同,将油井调剖堵剂分为选择性堵剂和非选择性堵剂。其中,选择性堵剂有水基、油基、醇基堵剂;非选择性堵剂有水泥浆封堵、树脂堵剂、硅酸盐堵剂、冻胶堵剂。根据矿场实际,又将堵剂分为沉淀型无机盐类堵水化学剂、聚合物冻胶型堵水和调剖化学剂、颗粒型物理堵塞类调剖剂、泡沫类堵水和调剖化学剂、树脂类堵水化学剂、离子型堵水化学剂、耐高温堵水和调剖剂

天然气蒸汽转化制氢

1、国外天然气制氢的工业技术进展 目前,拥有天然气制氢技术的国外公司主要合法国的德希尼布(Technip),德国的鲁奇(Lurgi)、林德(Linde)和伍德(Uhde),英国的福斯特惠勒(Foster Wheeler)及丹麦的托普索(Topsoe)等,综合能耗基本在11.30-12.56GJ/1000m3H2。天然气制氢主要采用白热转化法和蒸汽转化法两种工艺,以Technip、Uhde、Linde三种蒸汽转化工艺为代表的蒸汽转化法最具优势,装置上应用最多。采用Technip 工艺在加拿大建没的最大的单系列制氢装置规模已达23.6×104m3/h。 天然气制氢的工艺流程由原料气处理、蒸汽转化、CO变换和氢气提纯四大单元组成: ①料气处理单元主要是天然气的脱硫,采用Co-Mo催化剂加氢串ZnO 的脱硫工艺。对于大规模的制氢装置内于原料气的处理量较大,因此在压缩原料气时,可选择较大的离心式压缩机。离心式压缩机可选择电驱动、蒸汽透平驱动和燃气驱动。 ②蒸汽转化单元核心是转化炉,拥有天然气制氢技术的各大公司转化炉的型式、结构各有特点,上、下集气管的结构和热补偿方式以及转化管的固定方式也不同。虽然对流段换热器设置不同,但是从进/出对流段烟气温度数据可知,烟道气的热回收率相差不大。在近期的工艺设置上,各公司在蒸汽转化单元都采用了高温转化,采用较高转化温度和相对较低水碳比的工艺操作参数设置有利于转化深度的提高,从而节约原料消耗。 ③ CO变换单元按照变换温度分,变换工艺可分为高温变换(350~400℃)和中温变换(低于300~350℃)。近年来,由于注意对资源的节约,在变换单元的工艺设置上,一些公司开始采用CO高温变换加低温变换的两段变换工艺设置,以近一步降低原料的消耗。 ④氢气提纯单元各制氢公司在工艺中已采用能耗较低的变压吸附(PSA)净化分离系统代替了能耗高的脱碳净化系统和甲烷化工序,实现节能和简化流程的目标,在装置出口处可获得纯度高达99.9%的氢气。各制氢公司采用的PSA 系统均是从PSA专利商处购买相关的设计和设备,国外主要PSA技术供应商有UOP、Linde、Air Liquide和Air Products公司。 配合上述工艺过程,天然气制氢技术中应用了加氢催化剂、脱硫剂、预转化

甲烷化工艺设计培训资料

合肥学院 Hefei University 化工工艺课程设计 设计题目:甲烷化工艺设计 系别:化学与材料工程系 专业:化学工程与工艺 学号: 姓名: 指导教师: 2016年6月

目录 设计任务书 (1) 第一章方案简介 (3) 1.1甲烷化反应平衡 (3) 1.2甲烷化催化剂 (3) 1.3反应机理和速率 (4) 1.4甲烷化工艺流程的选择 (6) 第二章工艺计算 (7) 2.1 求绝热升温 (7) 2.2 求甲烷化炉出口温度 (7) 2.3 反应速率常数 (7) 2.4 求反应器体积 (8) 2.5 换热器换热面积 (9) 第三章设备计算 (9) 3.1 甲烷化反应器结构设计 (11) 3.2 计算筒体和封头壁厚 (11) 3.3 反应器零部件的选择 (12) 3.4 物料进出口接管 (13) 3.5 手孔及人孔的设计 (15) 设计心得 (16) 参考文献及附图 (17)

设计任务书 1.1设计题目:甲烷化工艺设计 1.2设计条件及任务 1.2.1进气量:24000Nm3/h 1.2.3出口气体成分“CO≤5ppm,CO2≤5ppm” 1.3设计内容 变换工段在合成氨生产起的作用既是气体的净化工序,又是原料气的再制造工序,经过变换工段后的气体中的CO含量大幅度下降,符合进入甲烷化或者铜洗工段气质要求。 1.3.1选定流程 1.3.2确定甲烷化炉的工艺操作条件 1.3.3确定甲烷化炉的催化剂床体积、塔径及床层高度 1.3.4绘图:(1)工艺流程图;(2)甲烷化炉的工艺条件图 1.4设计说明书概要 1.4.1目录:设计任务书,概述,热力计算,结构设计与说明,设计总结,附录,致谢,参考文献,附工艺流程图及主体设备图一张(要求工艺流程图出A2以上的图,要求主体设备用AutoCAD出A2以上的图) 1.4.2概述 1.4.3热力计算(包括选择结构,传热计算,压力核算等) 1.4.4结构设计与说明 1.4.5设计总结 1.4.6附录

甲烷水蒸汽转化

天然气转化

天然气转化 甲烷水蒸汽转化(sMR) 甲烷水蒸汽转化工艺(SMR)作为传统的甲烷制合成气过程(图1一2),主要涉及下述反应: CH4+H2O!3H2+COvH298K=206.29kJ/mol 这是一个强吸热过程,转化一般要在高温下进行(>1073K)"产物中HZ/Co约为3:1,为防止催化剂积炭,通常需要通入过量的水蒸汽,依合成气用途,原料气 中HZO/CH4典型的摩尔比为2-5;并且为保持较高的生产速率,工业生产中压力通常高3.OMPa。该反应过程的缺点是能耗高,设备庞大复杂!占地面积大,投资和操作费用昂贵。 联合转化工艺(SM侧oZR) 联合重整工艺流程如图1-3所示,将SMR反应器出口的混合气送入二级氧化反应器内,未完全消耗的甲烷(在SMR出口处CH;转化率为90-92%)与0:发生部分

氧化反应后,再进一步通过催化剂床层进行二次重整反应,生成的合成气HZ/CO 比在2.5~4.0,随后利用水汽转化(WGS)反应(见式4),调整产品中H:和CO比例,来满足下游合成的利用。该工艺有效地减小了SRM的规模,降低了能耗,但不足之处是仍需两个反应器。 CH4+HZO03H2+COvH29sK=一4IkJ/mol 中国石化集团四川维尼纶厂目前在运行的甲醇装置有两套,一为1996年建成投产的直接以天然气为原料的10万t/a甲醇装置,另一为2011年整合建成投产的以乙炔尾气为原料的77万t/a甲醇装置。前者采用成熟的管式转化炉生产合成气,并利用德国Lurgi合成工艺技术生产甲醇;后者利用英国Davy公司合成工艺生产甲醇,并在合成环路驰放气的处理上采用了膜分离与ATR 转化工艺技术,以提高装置产能和降低综合能耗。10万t/a甲醇装置通过天然气蒸汽转化制取合成气,故合成气具有氢多、碳少、惰性气体(CH4、N2、Ar 等)含量低的特点,其气质组成有利于甲醇合成反应。77万t/a 甲醇装置以乙炔尾气为原料,由于乙炔尾气属于天然气部分氧化法制乙炔工艺的副产气,因而具有氢少、碳多、惰性气体含量偏高的特点,属于乏氢气质,需对系统进行补氢。为深度利用甲醇合成环路驰放气和提高装置产能,工艺上增设了膜分离与ATR转化流程,但伴随而来的是驰放气中大量惰性气体随 ATR 转化气循环返回合成系统并累积,导致合成环路惰性气体的体积分数长期高达25%~30%,这也是该套装置甲醇产品质量不易控制、部分物耗能耗指标达不到设计值且制约甲醇产量进一步提高的主要原因。针对如何利用天然气制合成气来降低乙炔尾气甲醇装置合成环路的惰性气体含量,提高甲醇产量,使装置运行更加优化与合理,本文通过现场调查以及对相关数据的计算、分析和研究,提出可工程实施的优化运行方案。

6吨蒸汽锅炉安全操作规程

6吨蒸汽锅炉 安全操作规程 编号: 审核: 审批: 内蒙古东岳金峰氟化工有限公司 2011年10月

目录 目录 (2) 第一章设备规范 (4) 一.锅炉机组特征 (4) 二.相关参数 (5) 三.水质指标 (6) 四.风机规格 (6) 五.炉排特征 (7) 第二章锅炉机组的启动 (7) 第一节启动前的检查与准备 (7) 第二节锅炉上水 (7) 第三节点火与升压 (8) 一.点火: (8) 二.机组启动 (8) 三.升压 (9) 第四节供汽 (9) 一.暖管 (9) 二.供汽 (10) 第三章锅炉的运行 (10) 第一节水位调节 (10) 第二节汽压调节 (11) 第三节燃烧调整 (11)

一.燃烧指标 (11) 二.燃烧调整 (12) 第四节清灰 (13) 第五节排污 (13) 一.排污目的 (13) 二.定期排污 (13) 三.排污注意事项 (14) 第六节运行中的注意事项 (14) 第四章锅炉的停炉与保养 (15) 第一节锅炉的停炉 (15) 一.压火停炉 (15) 二.正常停炉 (16) 三.紧急停炉 (17)

第一章设备规范一.锅炉机组特征 1. 锅炉型号:DZL6-1.25-AⅡ 2. 上煤方式:煤斗上煤 上煤机型号:FS6 煤斗容量:0.18m3 提升重量:250kg 提升速度:0.12m/s 配套功率:1.1KW 减速机型号:SGC1.6 减速比:1:44 3. 排渣方式:螺旋除渣 除渣机型号:LX-6; 功率:1.5KW ; 输出转速:4.87 r/min 4. 除尘方式:陶瓷多管除尘 除尘器型号:XTD-Q-6 ; 处理烟气量:18000m3 /h; 除尘效率:95% 5. 省煤方式:省煤器换热 省煤器型号:SMQ 受热面积:31.68m2烟气流通面积:1.51m2 工作压力:1.6MPa 试验压力:2.5MPa 6. 给水设备:清水离心多级泵

锅炉焊接作业指导书

河南新瑞生化有限公司热电厂安装工程YG-75/5.29-M12循环流化床锅炉 锅炉焊接作业指导书 编制: 审核: 批准: 中建七局安装工程公司 二O一一年月日

一、工程概况 新瑞生化工业有限公司热电厂安装工程YG-75/5.29-M12循环流化床锅炉,是新瑞热力站的重要组成设备,锅炉为单汽包自然循环流化床锅炉,济南锅炉厂设计制造,锅炉焊接工程有以下部分组成: 1、钢架: 钢架由Z1、Z2、Z3和Z4立柱及拉杆(梁)组成,其中立柱分上、中、下三段到货,现场组对焊接。 顶板由顶板大梁、连接横梁组成。 钢架材质为Q235A和Q235A/F。 2、水管系统:前、后、左、右四面水冷壁组成。 前水冷壁由上、下集箱和50根Φ60×5上升管组成,材质为20-GB5310. 左、右侧水冷壁由上、下集箱和30根Φ60×5上升管组成,材质为20-GB5310. 后水冷壁由上集箱、鼻区集箱、下集箱和50根Φ60×5上升管组成,材质为20-GB5310. 膜式壁鳍片扁钢材质为Q235A、F。 3、汽水系统: 给水管道由给水泵至给水操作台(Φ108×5、20-GB5310)、给水操作台至混合集箱至省煤器(Φ108×5、20-GB5310)和过热蒸汽取样(Φ18×2、15CrMo)等管道组成。 排污管由汽包连续和定期排污(Φ32×3、20-GB5310)、水冷壁下集箱定期排污、混合集箱排污管道组成。 疏放水管道由混合集箱疏放水(Φ25×2.5、20-GB5310)、高温过热器进出口集箱疏放水、低温过热器进出口集箱疏放水、减温器疏放水和集汽集箱疏放水管道组成。 4、下降管与供水管:汽包底部各下降管(Φ133× 5、Φ108×4,20-GB5310)分别向膜式水冷壁供水,并与水冷壁下集箱相联接。 5、顶部连接管由: 汽包与水冷壁上集箱连接管24根(Φ133×6,Φ108×4,20-GB5310) 汽包与低温过热器进口集箱连接管8根(Φ108×5,20-GB5310) 低温过热器出口集箱与减温器连接管4根(Φ133×6,20-GB5310) 减温器与高温过热器进口集箱连接管4根(Φ133×6,20-GB5310) 6、省煤器:省煤器由进口、出口集箱和三组52根蛇形管(Φ32×3,20-GB5310)

制氢的全部方法

制氢的全部方法 一、电解水制氢 多采用铁为阴极面,镍为阳极面的串联电解槽(外形似压滤机)来电解苛性钾或苛性钠的水溶液。阳极出氧气,阴极出氢气。该方法成本较高,但产品纯度大,可直接生产99.7%以上纯度的氢气。这种纯度的氢气常供:①电子、仪器、仪表工业中用的还原剂、保护气和对坡莫合金的热处理等,②粉末冶金工业中制钨、钼、硬质合金等用的还原剂,③制取多晶硅、锗等半导体原材料,④油脂氢化,⑤双氢内冷发电机中的冷却气等。像北京电子管厂和科学院气体厂就用水电解法制氢。 二、水煤气法制氢 用无烟煤或焦炭为原料与水蒸气在高温时反应而得水煤气(C+H2O→CO+H2—热)。净化后再使它与水蒸气一起通过触媒令其中的CO转化成CO2(CO+H2O→CO2+H2)可得含氢量在80%以上的气体,再压入水中以溶去CO2,再通过含氨蚁酸亚铜(或含氨乙酸亚铜)溶液中除去残存的CO 而得较纯氢气,这种方法制氢成本较低产量很大,设备较多,在合成氨厂多用此法。有的还把CO与H2合成甲醇,还有少数地方用80%氢的不太纯的气体供人造液体燃料用。像北京化工实验厂和许多地方的小氮肥厂多用此法。 三、由石油热裂的合成气和天然气制氢 石油热裂副产的氢气产量很大,常用于汽油加氢,石油化工和化肥厂所需的氢气,这种制氢方法在世界上很多国家都采用,在我国的石油化工基地如在庆化肥厂,渤海油田的石油化工基地等都用这方法制氢气 也在有些地方采用(如美国的Bay、way和Batan Rougo加氢工厂等)。 四、焦炉煤气冷冻制氢 把经初步提净的焦炉气冷冻加压,使其他气体液化而剩下氢气。此法在少数地方采用(如前苏联的Ke Mepobo工厂)。 五、电解食盐水的副产氢 在氯碱工业中副产多量较纯氢气,除供合成盐酸外还有剩余,也可经提纯生产普氢或纯氢。像化工二厂用的氢气就是电解盐水的副产。 六、酿造工业副产 用玉米发酵丙酮、丁醇时,发酵罐的废气中有1/3以上的氢气,经多次提纯后可生产普氢(97%以上),把普氢通过用液氮冷却到—100℃以下的硅胶列管中则进一步除去杂质(如少量N2)可制取纯氢(99.99%以上),像北京酿酒厂就生产这种副产氢,用来烧制石英制品和供外单位用。 七、铁与水蒸气反应制氢 但品质较差,此系较陈旧的方法现已基本淘汰。 八、金属与酸反应制氢气, 当然,金属必须是活动性排在氢前的(钾,钙,钠不行),可以用镁铝锌铁锡铅。酸不能用硝酸和浓硫酸。 工厂生产方法有: 1、电解水制氢. 水电解制氢是目前应用较广且比较成熟的方法之一。水为原料制氢过程是氢与氧燃烧生成水的逆过程,因此只要提供一定形式一定能量,则可使水分解。提供电能使水分解制得氢气的效率一般在75-85%,其工艺过程简单,无污染,但消耗电量大,因此其应用受到一定的限制。利用电网峰谷差电解水制氢,作为一种贮能手段也具有特点。我国水力资源丰富,利用水电发电,电解水制氢有其发展前景。太阳能取之不尽,其中利用光电制氢的方法即称为太阳能氢能系统,国外已进行实验性研究。随着太阳电池转换能量效率的提高,成本的降低及

蒸汽锅炉岗位操作规程(最新版)

( 操作规程 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 蒸汽锅炉岗位操作规程(最新 版) Safety operating procedures refer to documents describing all aspects of work steps and operating procedures that comply with production safety laws and regulations.

蒸汽锅炉岗位操作规程(最新版) 1进入工作现场,必须正确穿戴劳动防护用品。 2操作者必须持证上岗,必须熟悉设备的操作要领和技术性能。 3提前30分钟交接班,认真做好开机前的准备工作,携带齐工具,检查机器各部位性能是否良好及各种零部件是否完好,机油是否到位,检查电压、电流是否正常。 4若上面各项检查,未发现任何问题,方可做好开机准备。若发现问题应立即处理,未处理完之前严禁开机。 1启动前的检查与准备 1.检查各处阀门开关位置是否正确。 2.检查水泵、鼓风机、引风机、炉排、除渣机等转动是否灵活,润滑油是否按要求加注。 3.压力表、水位计旋塞开关是否正确。

4.检查水位计照明是否正常。 5.检查各阀门填料是否留有余量。 6.机械通风5分钟。 2锅炉上水 1.开启给水泵入口阀门 2.打开给水泵放气阀排出泵体内空气。 3.检查各水、汽系统阀门开关符合上水要求。 4.启动水泵,待压力上升即可开启出口阀门向锅炉供水。 5.给锅炉进合格的软水。 6.上水时注意监视水位计水位。 7.当炉水水位上升至低水位时停止上水。 3点火 3.1点火 1.启动炉排向炉内送煤,煤层厚度100cm。炉排上煤层进到距煤闸板1.5米处停止炉排。 2.将引火木材旧棉纱等置于煤层上,引燃。不可使用强挥发性

锅炉安装焊接工艺

GLQC04-2008 XXXXXXXX公司 焊条电弧焊工艺

焊条电弧焊焊接工艺守则 1 总则 1.1 为了保证锅炉焊接质量,特制定本通用工艺守则。 1.2 本通用工艺守则适用于锅炉及锅炉范围内管道工程中材质为低碳钢管道的焊条电弧焊焊接。 2 编制依据 2.1 《蒸汽锅炉安全技术监察规程》 2.2 GB50236--98《现场设备工业、管道焊接工程施工及验收规范》 3 材料要求 3.1 管材应有制造厂的质量证明书,并经入厂检验合格。 3.2 焊接材料应按设计规定选用。设计无规定时,应选用焊缝金属性能、化学成分与母材相应且工艺性能良好的焊接材料。 常用焊接材料按下表选用 3.3焊条使用前应安规定进行烘干,领用焊材时必须使用焊条保温筒. 4.焊工要求 受压元件的施焊焊工必须是经按《锅炉压力容器压力管道焊工考试与管理

规则》考试合格的焊工。施焊项目与焊工证所规定项目相符,中断焊接工作六个月以上者和对所有焊接设备焊材不熟悉时,焊工应重新进行考试。 5. 施焊所用焊接工艺必须经过焊接工艺评定。除应遵守本通用工艺守则外,对具体的施焊工况应编制专门的焊接工艺卡。 6 焊前准备 6.1 焊缝的位置应合理选择,使焊缝处于便于焊接、检验、维修的位置,并避开应力集中区。各种焊缝之间的关系,一般应符合下列要求: 6.1.1 有缝管对口,纵缝之间应相互错开100mm以上; 6.1.2 地沟和架空管道两相临环形焊缝中心之间距离应大于管子外径,且不小于150mm; 6.1.3 直埋供热管道两相临环形焊缝中心之间距离应不小于2m; 6.1.4 在有缝管上焊接分支管时,分支管外壁与其它焊缝中心的距离,应大于分之管外径且不小于70mm。 6.2 焊缝坡口应按设计规定进行加工,无要求时可参照下表: 6.3 外径和壁厚相同的管子或管件对口,应做到外壁平齐。对口错边量在壁厚5mm以下时为0.5mm,在6~10mm范围内为1.0mm。

天然气制氢的基本原理及工业技术进展

天然气制氢的基本原理及工业技术进展 一、天然气蒸汽转化的基本原理 1.蒸汽转化反应的基本原理 天然气的主要成分为甲烷,约占90%以上,研究天然气蒸汽转化原理可以甲烷为例来进行。 甲烷蒸汽转化反应为一复杂的反应体系,但主要是蒸汽转化反应和一氧化碳的变换反应。 主反应: CH4+H2O===CO+3H2 CH4+2H2O===CO2+4H2 CH4+CO2===2CO+2H2 CH4+2CO2===3CO+H2+H2O CH4+3CO2===4CO+2H2O CO+H2O===CO2+H2 副反应: CH4===C+2H2 2CO===C+CO2 CO+H2===C+H2O 副反应既消耗了原料,并且析出的炭黑沉积在催化剂表面将使催化剂失活,因此必须抑制副反应的发生。 转化反应的特点如下:

1)可逆反应在一定的条件下,反应可以向右进行生成CO 和H2,称为正反应;随着生成物浓度的增加,反应也可以 向左进行,生成甲烷和水蒸气,称为逆反应。因此生产中必须控制好工艺条件,是反应向右进行,生成尽可能多的CO 和H2。 2)气体体积增大反应一分子甲烷和一分子水蒸气反应后,可以 生成一分子CO和三分子H2,因此当其他条件确定时,降低压力有利于正反应的进行,从而降低转化气中甲烷的含 量。 3)吸热反应甲烷的蒸汽转化反应是强吸热反应,为了使 正反应进行的更快、更彻底,就必须由外界提供大量的热量,以保持较高的反应温度。 4)气-固相催化反应甲烷的蒸汽转化反应,在无催化剂的 参与的条件下,反应的速度缓慢。只有在找到了合适的催化 剂镍,才使得转化的反应实现工业化称为可能,因此转化反 应属于气-固相催化反应。 2.化学平衡及影响因素 3.反应速率及影响速率 在没有催化剂的情况时,即使在相当高的温度下,甲烷蒸汽转化反应的速率也是很慢的。当有催化剂存在时,则能大大加快反应速率;甲烷蒸汽转化反应速率对反应温度升高而加快,扩散

蒸汽锅炉安全操作规程标准范本

操作规程编号:LX-FS-A75921 蒸汽锅炉安全操作规程标准范本 In The Daily Work Environment, The Operation Standards Are Restricted, And Relevant Personnel Are Required To Abide By The Corresponding Procedures And Codes Of Conduct, So That The Overall Behavior Can Reach The Specified Standards 编写:_________________________ 审批:_________________________ 时间:________年_____月_____日 A4打印/ 新修订/ 完整/ 内容可编辑

蒸汽锅炉安全操作规程标准范本 使用说明:本操作规程资料适用于日常工作环境中对既定操作标准、规范进行约束,并要求相关人员共同遵守对应的办事规程与行动准则,使整体行为或活动达到或超越规定的标准。资料内容可按真实状况进行条款调整,套用时请仔细阅读。 蒸汽锅炉是一种经常处于高温条件下工作的特种设备,操作不当它将有爆炸的危险。为了保障其安全、经济运行,特制定如下规程: 一、值班人员必须严格遵守劳动纪律,不得擅离职守,不得做与本单位无关的事情,在操作过程中,严格执行“操作规程”不得违章操作,并严格酒后和带病上班。 二、密切注视水位和压力变化,做到“燃烧稳定,水位稳定,汽压稳定”。严禁发生缺水、满水事故和超压运行。一旦发现锅炉严重缺水时,严禁向锅炉进水!

孤东油田九区蒸汽驱开采效果分析

孤东油田九区蒸汽驱开采效果分析 2008-10-30:数字油田 一、地质概况 孤东油田稠油区块为岩性-构造油藏,油层薄、埋藏深、生产中易出砂、边底水活跃、净总比低,属于高孔、高渗油藏(表1-1)。九区位于孤东油田的南部,为岩性-构造层状油藏。其主力含油层Ng4-6为稠油层,含油面积1.2km2,地质储量375×104t,可采储量103×104t。主力层为42、52+3、55+61,构造高点位于GD6-1井附近,由此向南倾没。油藏埋深为1320~1400m左右,50℃时地面原油黏度一般在1153~4660 mPa·s。其中42层原油物性较好,一般在1600~2200 mPa·s,平均为1982 mPa·s。 九区馆上段为河流相沉积,砂体自下而上表现为由细砂岩、粉砂岩、泥质粉砂岩及泥岩构成的正韵律组合,岩石颗粒分选中等,粒度平均分选系数1.6,粒度中值0.12mm,泥质含量6.5%,平均孔隙度33~35%,平均渗透率为1000~3000×10-3μm2。岩石润湿性属中性, 储层为弱速敏性、中等偏弱水敏性、中等偏弱碱敏性、弱温敏性。 从各层的小层平面图上可以看出,各层的边水主要位于油层的东部和西南部,纵向上愈向下水体体积愈大。Ng52水体体积约为油体体积的1.2倍,油水体积约占总孔隙体积的一半,表明Ng52水体较小。Ng55水体体积约为油体体积的1.5倍,油水体积约占总孔隙体积的2/5,水体积约占总孔隙体积的3/5,表明该层边底水不活跃。Ng61水体体积为油体体积的1.4倍,油水体积约占总孔隙体积的2/5,水体积约占总孔隙体积的3/5,表明该层边底水不 活跃。 孤东九区馆上4~6油层除受时间单元-岩性控制外,主要受构造控制,其油藏类型为岩性 -构造层状油藏(表1、图1)。 原油组分中,烷烃占37.30%,芳烃占23.15%,非烃占25.84%,沥青质占4.72%,总烃占60.45%。

天然气水蒸气转化设计

天然气水蒸气转化设计 一、氢气的用途及制造方法 氢气是炼油工业中加氢裂化、加氢精制等加氢工艺中主要的原料。在工业生产中,制氢包括两个过程,即含氢气体制造(造气)及氢气提纯(净化)。根据不同的制氢原料和所需氢气用途不同,采用不同制造工艺,得到不同纯度的氢气。目前制造含氢气体的原料主要是碳氢化合物,包括固体(煤)、液体(石油)及气体(天然气、炼厂气)。水是制造氢气的另一重要原料,如电解水。水也可以与碳氢化合物相结合制得氢气―即烃的水蒸气转化法。 二、天然气和水蒸气转化制氢 天然气是廉价的制氢原料。天然气和油田伴生气的主要成分是CH4,杂质含量少,含硫量也低,主要是硫化氢,含少量的羰基硫和硫醇,很容易加工处理,是制氢的好原料。 天然气是由以低分子饱和烃为主的烃类气体与少量非烃类气体组成的混合气体。目前天然气大型化工利用的主要途径是经过合成气生产合成氨、甲醇及合成油等。而在上述产品的生产装置中,天然气转化制合成气工序的投资及生产费用通常占装置总投资及总生产费用的60%左右。因此,在天然气的化工利用中,天然气转化制合成气占有特别重要的地

位。以天然气为原料生产合成气的方法主要有转化法和部分氧化法。 工业上多采用水蒸气转化法,水蒸气转化是指烃类被水蒸气转化为氢气和一氧化碳及二氧化碳的化学反应。蒸汽转化核心是转化炉,拥有天然气制氢技术的各大公司转化炉的型式、结构各有特点,上、下集气管的结构和热补偿方式以及转化管的固定方式也不同。虽然对流段换热器设置不同,但是从进出对流段烟气温度数据可知,烟道气的热回收率相差不大。在近期的工艺设置上,各公司普遍采用较高转化温度和相对较低水碳比的工艺操作参数设置有利于转化深度的提高,从而简化原料的消耗。 天然气蒸汽转化炉 天然气蒸汽转化炉是天然气蒸汽转化制合成气的主体设备。它是使天然气与蒸汽混合物通过转化管(反应管)转化成富含氢、一氧化碳、二氧化碳的合成气。转化管由外部辐射加热,管内装有含镍催化剂。 蒸汽转化炉炉型很多,按加热方法不同,大致可分为顶部烧嘴炉和侧壁烧嘴炉。 顶部烧嘴炉 外观呈方箱型结构,设有辐射室和对流室(段),两室并排连成一体。辐射室交错排列转化管和顶部烧嘴。对流室内设置有锅炉、蒸汽过热器、天然气与蒸汽混合物预热器、锅炉给水预热器等。 侧壁烧嘴炉 是竖式箱形炉,由辐射室和对流室两部分组成。辐射室沿其纵向中心排列转化管,室的两侧壁排列6~7排辐射烧嘴,以均匀加热转化管。对流室设有天然气与蒸汽混合原料预热器、高压蒸汽过热器、工艺用空气预热器、锅炉给水预热器等 三、天然气水蒸气转化过程工艺原理 原料天然气组成: 设计规模:30万吨/天 原料气温度:25℃ 要求:H2S<20mg/m3 因为天然气中甲烷含量在80%以上,而甲烷在烷烃中是热力学最稳定的,其他烃类较易反应,反应,因此在讨论天然气转化过程时,只需考虑甲烷与水蒸气的反应。 甲烷水蒸气转化过程的主要反应有(前三个)和可能发生的副反应有(后三个): O C CO C C CO C C C O CO C O C CO O H H O H H H O H H O H H H H 222 24222222422422423CH +?→←++?→←+?→←+?→←++??←++?→←+mol k J mol k J mol k J mol k J mol k J mol k J H H H H H H /4.131/5.172/9.74/2.41/165/206298298298298298298-=?-=?=?-=?=?=?ΘΘ ΘΘ Θ Θ 以上列举的主反应均是可逆反应。其中甲烷水蒸气转化主反应式(第一个方程式)和第二个方程式是强吸热的,副反应甲烷裂解式(第四个方程式)也是吸热的,其余为放热反应。 甲烷水蒸汽转化反应必须在催化剂存在下才有足够的反应速率。倘若操作条件下不适当,析碳反应严重时,生成的碳会覆盖在催化剂内外表面,致使催化剂活性降低,反应速率下降。析碳是更严重时,床层堵塞,阻力增加,催化剂毛细孔内的碳遇水蒸气会剧烈汽化,致使催化剂崩裂或粉化,迫使停工,经济损失巨大。所以,对于烃类蒸汽转化过程特 分子式 C1 C2 C3 N2 H2S CO2 组成 0.8512 0.0284 0.0013 0.0072 0.0892 0.524

甲烷化技术

甲烷化技术 ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ 甲烷化技术是煤制天然气的关键环节,一氧化碳和氢气在一定温度、压力和催化剂下合成甲烷的反应叫甲烷化反应。 煤制天然气的原理就是合成气的甲烷化反应,其化学方程式如下: 一氧化碳和氢反应: CO +3H2 =CH4 +H2O △H= -206.2kJ/mol 反应生成的水与一氧化碳发生作用 CO +H2O =CO2 +H2 △H= -38.4kJ/mol 二氧化碳与氢作用: CO2 +4H2 =CH4 +2H2O △H =-165.0kJ/mol 以上反应体系为强放热、快速率的自平衡反应,温度升高到一定程度后反应速率快速下降且向相反方向(左)进行。另外甲烷化的过程属于体积缩小的反应,增加反应压力,一方面有利于提高反应速率,另一方面有助于推动反应向甲烷合成向进行,增加压力可以在很大程度上减小装置体积,提高装置产能。 甲烷化反应为强放热反应,每转化1%的CO,体系绝热升温约72℃,因此煤制天然气工艺要解决一氧化碳转化率和反应热的转移问题。 该过程中发生的副反应: 一氧化碳的分解反应: 2CO =CO2 +C △H= -173.3kJ/mol 沉积碳的加氢反应 C +2H2 =CH4 △H = -84.3kJ/mol 该反应在甲烷合成温度下,达到平衡是很慢的。当有碳的沉积产生时催化剂失活。 反应器出口气体混合物的热力学平衡,决定于原料气的组成、压力和温度。目前,甲

烷化技术已经用在大规模的合成气制天然气上,最大的问题是催化剂的耐温和强放热反应器的设计制作上。 甲烷化工艺有两步法和一步法两种类型。 两步法甲烷化工艺是指煤气化得到的合成气,经气体变换单元提高H2/CO比后,再进入甲烷化单元的工艺技术。由于两步法甲烷化工艺技术成熟,甲烷转化率高,技术复杂度略低,已实现工业化运行。一步法甲烷化工艺是指将气体变换单元和甲烷化单元合并在一起同时进行的工艺技术,也叫直接合成天然气技术。 托普索甲烷化技术 ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ ˉ TREMP?技术的操作经验可以追溯到20世纪70年代后期,托普索进行了大量的中试验证,保证了该技术能够进行大规模应用。 托普索循环节能甲烷化工艺与鲁奇公司甲烷化技术和Davy公司甲烷化技术有所不同,

天然气制备合成气

天然气制备合成气 天然气作为一种清洁、环境友好的能源,越来越受到广泛的重视。天然气作为一种清洁、环境友好的能源,越来越受到广泛的重视。制合成气是间接利用天然气的重要步骤,也是天然气制氢的基础,充分了解天然气制合成气的工艺与催化剂对于我们进一步研究天然气的利用将有很大帮助。天然气中甲烷含量一般大于90%,其余为小量的乙烷、丙烷等气态烷烃,有些还含有少量氮和硫化物。其他含甲烷等气态烃的气体,如炼厂气、焦炉气、油田气和煤层气等均可用来制造合成气。 目前工业上有天然气制合成气的技术主要有蒸汽转化法和部分氧化法。本文主要对蒸汽转化法进行具体的描述,并具体介绍此工艺的发展趋势。 蒸气转化法 蒸气转化法是目前天然气制备合成气的主要途径。蒸汽转化法是在催化剂存在及高温条件下,使甲烷等烃类与水蒸气反应,生成 H2、CO等混合气,其主反应为: CH4 + 出0 =C0+3战,人H% =206KJ/mol 该反应是强吸热的,需要外界供热。因为天然气中甲烷含量在 90%以上,而甲烷在烷烃中热力学最稳定,其他烃类较易反应,因此在讨论天然气转化过程时,只需考虑甲烷与水蒸气的反应。 甲烷水蒸气转化反应和化学平衡 甲烷水蒸气转化过程的主要反应有: CH4 +日2。= CO+3H2,A^29^206KJ/mol CH4+2H2O= CO2+4H2,AH % =165KJ/mol CO + H 2O u CO2+ H2,△H % = 74.9KJ / mol 可能发生的副反应主要是析碳反应,它们是: CH4=C+2H2,也Hd98 =74.9KJ/mol 2CO U C+CO2,心Hd98 =-172.5KJ/mol CO + H2U C + H2O,心H 色98 =-131.4KJ /mol

燃气锅炉安全操作规程及注意事项(新版)

( 安全管理 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 燃气锅炉安全操作规程及注意 事项(新版) Safety management is an important part of production management. Safety and production are in the implementation process

燃气锅炉安全操作规程及注意事项(新版) 为了确保燃油燃气锅炉安全经济运行,保障人身安全,锅炉操作人员必须严格执行《蒸汽锅炉安全技术监察规程》的有关规定和本规程。 1启动、升压、供汽 1.1启动前的准备工作 1.1.1内外部检查:确认锅炉本体、燃烧机、附属设备状态良好;安全附件、各阀门,仪表等作用灵活,位置正确; 1.1.2检查线路电压是否符合要求,各种开关位置是否正常,分别启动水泵、燃烧机的风机、油泵等各种辅机的运行是否正常。 1.1.3锅炉上水:打开排空阀,使水位上至正常水位(略低于中水位)。 1.2启动 1.2.1首先进行炉膛吹扫,引风机抽吸时间通常为10分钟左右,

确保炉膛内没有残余煤气,置换合格,然后点火,送气燃烧。 1.2.2点火完毕后根据所需要的负荷调整燃烧量,锅炉投入正常运行。 1.2.3启动过程中,要严密监视水位变化情况,防止锅炉缺水事故或满水事故的发生。 2正常运行 2.1水位 2.1.1燃油燃气锅炉水位表应有红线指示高、中、低水位,运行中 不得超过最高安全水位或低于最低安全水位。 2.1.2水位表每班至少冲洗一次,运行中对水位有怀疑时,应随时冲洗检查; 2.2汽压压力表应有红线指示工作压力,作到灵敏可靠,存水弯管每周至少应冲洗一次。 2.3安全阀 安全阀应铅封完好,无泄漏;每周做一次手动(或自动)排放

浅析分层蒸汽驱的工艺技术

龙源期刊网 https://www.doczj.com/doc/906966628.html, 浅析分层蒸汽驱的工艺技术 作者:杨淑英 来源:《科技创新导报》2013年第13期 摘要:蒸汽驱是指应用在稠油油藏蒸汽吞吐开采的中后期,能够进一步提高原油采收率的重要手段。迄今为止,大部分稠油区已进入了吞吐中后期,转换开发方式的需求显得愈发重要,因此,开展分层蒸汽驱工艺技术的研究势在必行。 关键词:分层蒸汽驱配汽流量设计与调整分层汽驱管柱地面模拟实验 中图分类号:TE357 文献标识码:A 文章编号:1674-098X(2013)05(a)-0089-01 同普通蒸汽驱相比,分层蒸汽驱不仅需要解决蒸汽驱长期连续注汽过程中管柱的锚定与座封、油套环空的长效密封与隔热以及长期注汽后整体管柱的解封,同时分层蒸汽驱需要根据油藏各层段层间差异及其动用程度确定各层段的合理配注量,并设计相应的配注结构及其配汽孔径的合理调整方式,依据测试结果最终实现层间配注量的动态调整。 1 分层蒸汽驱工艺管柱及其配套工具的研制 1.1 分层蒸汽驱注汽管柱 1.1.1 管柱结构 分层蒸汽驱注汽管柱是由真空隔热管(同时与其配上隔热管接箍密封器)、压力补偿式隔热型汽驱伸缩管、多级长效汽驱密封器、Y441-152强制解封汽驱封隔器、层间配汽装置、以 及层间密封器等工具组成。 1.1.2 管柱工艺特点。 (1)液压座封上提分级解封,下井和提出一趟管柱完成,可实现分层汽驱2-3层段的分层配汽。(2)管柱耐温350 ℃、耐压17 MPa,使用寿命3年以上。(3)管柱采用金属和非金属双级密封,双向锚定,管柱自身调节伸缩补偿。(4)可实现分层汽驱注汽过程中,各层段配汽量的动态调节。(5)申请6项国家专利,其中压力补偿式隔热伸缩管、隔热管接箍密封器、强制解封蒸汽驱封隔器等已获4项实用新型专利授权。 1.2 配套工具的研制 1.2.1 Y441强制解封蒸汽驱封隔器

燃气蒸汽锅炉操作规程完整

10t/h 燃气锅炉操作规程 编制:王世锋 校对: 审核:

东营奥星石油化工有限公司 二零一七年十二月

目录 第一部分锅炉简介........................................................................................................ 一、WNS 型系列蒸汽锅炉的型号意义 (1) 二、锅炉结构和技术特点 (1) 三、锅炉及除氧器结构介绍 (2) 四、煮炉 (4) 第二部分锅炉使用说明................................................................................................. 一、燃气锅炉的运行 (5) 二、锅炉的升火及升温 (6) 三、锅炉的停炉 (7) 四、锅炉的排污 (8) 五、水位计的冲洗 (8) 六、锅炉水质分析方法 (9) 七、正常运行与管理 (10) 八、锅炉运行中常见事故处理 (11) 九、锅炉辅助设备表 (14) 十、附表:锅炉控制器使用说明 (15)

第一部分锅炉简介 一、WNS 型系列蒸汽锅炉的型号意义 以WNS10-1.25-Y (Q)为例:表示卧式内燃锅炉,额定蒸发量为10t/h ,额定蒸汽压力1.25MPa ,蒸汽温度为饱和温度,燃用油(气)的蒸汽锅炉。 二、锅炉结构和技术特点 1、WNS 系列全自动燃油(气)蒸汽锅炉,采用快装卧式内燃双回程湿背烟火管 锅炉型式。锅炉本体采用下置式波形炉胆,回燃室和波形炉胆、螺纹烟管相连接。高温 烟气火焰在炉胆内进行辐射放热后,经回燃室折向螺纹烟管进行对流传热后,进入前烟箱;高温烟气向后进入节能冷凝器,经充分换热后,最后通过烟囱排入大气。 2、WNS 系列全自动蒸汽锅炉,采用快装卧式内燃三回程湿背烟火管锅炉型式, 其中1t/h 的锅炉为中心回焰燃烧结构,其余的为顺流燃烧结构。锅炉本体采用下置式波形炉胆,烟气分三个回程,燃料在炉胆内正压燃烧,经过回烟室进入对流螺纹烟管,再 从前烟箱折回对流烟管,再进入节能器进行对流传热,最后通过烟囱排入大气。烟气三 回程在炉内的停留时间长,利于降低排烟温底,提高锅炉效率。 3、锅炉前烟箱装有活动烟箱盖,拆、装检修方便。锅炉配有整体式燃烧器,具有 启动快,效率高,高度自动化等特点,适用于各种需要提供生活、民用及工业用蒸汽的 地方。 4、锅炉具有超气压保护、水位自动调节、缺水保护、意外熄火停炉保护、程序启 动等完善功能。

相关主题
文本预览
相关文档 最新文档