七年级下册数学:10.轴对称7.画轴对称图形
- 格式:ppt
- 大小:1.85 MB
- 文档页数:11
七年级下册的对称轴知识点对称轴是对一幅图形进行对称所呈现出来的轴线,一条对称轴将图形分为两部分相对称的部分,也被称为镜像轴、中心轴。
在数学学科中,对称轴是一项重要的知识点。
七年级下册也将对称轴作为一个重要的学习内容,让我们一起来看看七年级下册的对称轴知识点吧。
一、基本概念对称轴是指沿着这条轴线将图形平面翻转180度后,得到的是与原来的图形重合的图形。
对称轴有两种:一种是轴对称(又称镜像对称),指图形沿某条直线对称,一半与另一半重合;另一种是中心对称,指图形沿某个点对称,对称的两半完全重合。
二、轴对称的性质1、轴对称图形有一条轴线,该图形的任意一点到轴线的距离都相等。
2、轴对称的图形有相关的性质,举个例子,如一个图形所拥有的锐角、直角和钝角的个数都是对称的。
3、一个轴对称图形上的任何一点,其对称点都存在于这条轴线的另一侧。
三、中心对称的性质1、中心对称图形是指沿着某个点将图形对称,对称的两半完全重合。
2、整个中心对称图形上每一个点和它关于对称中心的图形都是完全一样的。
3、中心对称图形上的每个点都有一条过中心对称的线。
四、中心对称和轴对称的差异中心对称和轴对称的不同之处在于轴对称是围绕轴线对称,而中心对称则围绕着中心点对称,其对称性质也有所不同。
中心对称的图形每个点和其对称点距离相等,而轴对称的图形每个点和其对称点到轴线的距离相等。
五、对称坐标对称坐标是指一个点所在位置与其对称后位置之间的关系。
在轴对称下,一个点的对称坐标是另一个点的负值;在中心对称下,一个点的对称坐标是以对称中心为原点的对称坐标。
六、实际应用对称轴不仅是数学知识点,还有很多实际应用。
在艺术设计中,对称轴被经常使用,比如在家居装饰中,对称轴能够让家居更加美观和和谐。
在机械工程领域,对称轴同样也有广泛应用,可以制造出更加精准的零件。
七、总结对称轴是数学学科中的重要知识点之一,包括轴对称和中心对称,二者的性质和应用也有所不同。
学生在学习过程中,应该先掌握其基本概念、性质和应用场景,并能够应用到实际生活中。
北师大版七年级下册数学[《生活中的轴对称》全章复习与巩固(提高)知识点整理及重点题型梳理]研究目标】1.增进对身边轴对称图形的认识和欣赏,提高对数学的兴趣。
2.了解轴对称的概念,探索轴对称图形的基本性质和应用。
3.探究线段垂直平分线、角平分线和等腰三角形的性质及判定方法。
4.能够按照要求画出一些轴对称图形。
要点梳理】要点一、轴对称1.轴对称图形和轴对称1)轴对称图形如果一个图形沿着某一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形,这条直线就是它的对称轴。
轴对称图形的性质:轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线。
2)轴对称定义:把一个图形沿着某一条直线折叠,如果它能够与另一个图形重合,那么就说这两个图形关于这条直线对称,这条直线叫做对称轴。
要点诠释:成轴对称的两个图形的性质:①关于某条直线对称的两个图形形状相同,大小相等,是全等形;②如果两个图形关于某条直线对称,则对称轴是任何一对对应点所连线段的垂直平分线;③两个图形关于某条直线对称,如果它们的对应线段或延长线相交,那么它们的交点在对称轴上。
3)轴对称图形与轴对称的区别和联系要点诠释:轴对称是指两个图形的位置关系,轴对称图形是指具有特殊形状的一个图形;轴对称涉及两个图形,而轴对称图形是对一个图形来说的。
联系:如果把一个轴对称图形沿对称轴分成两个图形,那么这两个图形关于这条轴对称;如果把成轴对称的两个图形看成一个整体,那么它就是一个轴对称图形。
2.线段的垂直平分线线段的垂直平分线的性质:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与一条线段两个端点距离相等的点,在这条线段的垂直平分线上。
要点诠释:线段的垂直平分线的性质是证明两线段相等的常用方法之一。
同时也给出了引辅助线的方法,即遇见线段的垂直平分线,画出到线段两个端点的距离,这样就出现相等线段,直接或间接地为构造全等三角形创造条件。
三角形三边垂直平分线交于一点,该点到三角形三顶点的距离相等,这点是三角形外接圆的圆心——外心。
第01讲_变量之间的关系知识图谱轴对称知识精讲轴对称将一个图形沿着一条直线折叠,如果能够与另一个图形重合,则这两个图形关于这条直线成轴对称(1)△ABC 与△A ´B ´C ´关于直线l 成轴对称,l 为对称轴,A 与A ´,B 与B ´,C 与C ´是对应点(2)将△ABC 、△A ´B ´C ´与直线l 看做一个整体,则它是一个轴对称图形轴对称图形 如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形垂直平分线经过线段中点,并且垂直于这条线段的直线,叫做这条线段的垂直平分线l 为线段AB 的垂直平分线轴对称图形、图形成轴对称的性质(1)△ABC △A ´B ´C ´(2)l 为线段AA ´、BB ´、CC ´的垂直平分线(3)对称轴l 是任何一对对应点连线的垂直平分线易错点:1.对称轴是一条直线,而不是线段或者射线 2.注意轴对称和轴对称图形的区别三点剖析一.考点:1.轴对称基本概念和性质;2.轴对称图形.二.重难点:轴对称的两个图形是全等的,对应点的连线被对称轴垂直平分.三.易错点:1.对称轴是一条直线,而不是线段或者射线.2.把成轴对称的两个图形看成一个整体,它就是一个轴对称图形. 把一个轴对称图形沿对称轴分成两个图形,这两个图形关于这条对称轴对称.轴对称基本概念和性质例题1、 下列说法中错误的是( )A.两个三角形关于某条直线对称,那么这两个三角形全等B.两个图形关于某直线对称,对应点的连线段被对称轴垂直平分C.若直线l 同时垂直平分'AA 、'BB ,则线段''AB A BD.两个图形关于某直线对称,则对应线段相等且平行 【答案】 D【解析】 若两个图形按照某条直线折叠后重合,则称这两个图形关于这条直线对称,这两个图形全等,对应点的连线段被对称轴垂直平分,对应线段相等,因此A 、B 、C 选项正确,D 选项两个图形关于某直线对称,对应线段相等,不一定平行,故选D . 考点:图形轴对称的性质.例题2、 试找出如图所示的每个正多边形的对称轴的条数.请就正n 边形对称轴的条数作一猜想.正n 边形有________条对称轴. 【答案】 n【解析】 ∵正三角形有3条对称轴, 正方形有4条对称轴, 正五边形有5条对称轴, 正六边形有6条对称轴, ∴正n 边形有n 条对称轴.例题3、 如图,是一个风筝的图案,它是轴对称图形,EF 是对称轴,∠A =90°,∠AED =120°,∠C =50°,则∠BFC 的度数为________.【答案】160°【解析】如图:,轴对称图形,EF是对称轴,∠A=90°,∠AED=120°,∠C=50°,得∠D=∠A=90°,∠ABF=∠DCF=50°,AE=DE,BF═CF.由三角形的内角和,得∠EAD+EDA=180°-∠AED=60°.由四边形的内角和定理,得∠ABC+∠DCB=360°-(∠BAD+∠CDA)=360°-(90+90°+60°)=120°.∠FBC+∠FCB=∠ABC+∠DCB-(∠ABF+DCF)=120°-(50°+50°)=20°.由三角形的内角和,得∠BFC=180°-(∠FBC+∠FCB)=180°-20°=160°.例题4、如图所示,五边形ABCDE关于过点A的直线l轴对称,若∠DAE=40°,∠ADE=60°,则∠B的度数为()A.60°B.40°C.80°D.100°【答案】C【解析】∵∠DAE=40°,∠ADE=60°,∴∠E=180°-∠DAE-∠ADE=180°-40°-60°=80°,∵五边形ABCDE关于过点A的直线l轴对称,∴∠B=∠E=80°.例题5、如图,已知等腰△ABC,AB=BC,D是AC上一点,线段BE与BA关于直线BD对称,射线CE交射线BD于点F,连接AE,AF.则下列关系正确的是()A.∠AFE+∠ABE=180°B.12AEF ABC ∠=∠C.∠AEC+∠ABC=180°D.∠AEB=∠ACB 【答案】B【解析】由轴对称的性质可得,四边形ABEF中,AB=EB,AF=EF,∴∠BAF=∠BEF,∵等腰△BCE中,∠BEC<90°,∴∠BEF>90°,∴∠BAF>90°,∴四边形ABEF中,∠AFE+∠ABE<180°,故A错误;∵△ABE中,1802ABE AEB-∠∠=,△BCE 中,1802CBEBEC -∠∠=,∴∠AEF =180°-∠AEB -∠BEC180********ABE CBE-∠-∠=--=12(∠ABE +∠CBE ) =12∠ABC ,故B 正确; ∵AB =CB =EB ,∴∠AEB =∠EAB ,∠BEC =∠BCE ,∴∠AEC =∠EAB +∠ECB >∠CAB +∠ACB ,∴∠AEC +∠ABC >∠CAB +∠ACB +∠ABC =180°,故C 错误; ∵∠AEB =∠EAB ,∠BAC =∠BCA ,∠BAE >BAC , ∴∠AEB >ACB ,故D 错误;随练1、 在平面镜里看到背后墙上,电子钟示数如图所示,这时的时间应是_______.【答案】 21:05【解析】 由图分析可得题中所给的“20:15”与“21:05”成轴对称,这时的时间应是21:05.随练2、 如图,直线MN 是四边形AMBN 的对称轴,点P 是直线MN 上的点,下列判断错误的是( )A.AM=BMB.AP=BNC.∠MAP=∠MBPD.∠ANM=∠BNM 【答案】 B【解析】 直线MN 是四边形AMBN 的对称轴, ∠点A 与点B 对应,∠AM=BM ,AN=BN ,∠ANM=∠BNM , ∠点P 时直线MN 上的点, ∠∠MAP=∠MBP ,∠A ,C ,D 正确,B 错误,随练3、 将一张矩形纸片叠成如图所示的图形,若AB=6cm ,则AC=_____cm .【答案】 6【解析】如图,延长原矩形的边,∵矩形的对边平行,∴∠1=∠ACB,由翻折变换的性质得,∠1=∠ABC,∴∠ABC=∠ACB,∴AC=AB,∵AB=6cm,∴AC=6cm.随练4、如图,在△ABC中,AB=8,BC=6,AC=5,点D在AC上,连结BD,将△ABC沿BD翻折后,若点C 恰好落在AB边上的点E处,则△ADE的周长为__________.【答案】7【解析】∵由翻折的性质可知:DC=DE,BC=EB=6.∴AD+DE=AD+DC=AC=5,AE=AB﹣BE=AB﹣CB=8﹣6=2.∴△ADE的周长=5+2=7.随练5、如图,△MNP中,∠P=60°,MN=NP,MQ⊥PN,垂足为Q,延长MN至G,取NG=NQ,若△MNP的周长为12,MQ=a,则△MGQ周长是()A.8+2aB.8+aC.6+aD.6+2a【答案】D【解析】暂无解析轴对称图形例题1、下列图案中,是轴对称图形的有()A. B. C. D.【答案】B【解析】A不是轴对称图形,故本选项错误;B是轴对称图形,故本选项正确;C不是轴对称图形,故本选项错误;D不是轴对称图形,故本选项错误.例题2、在镜子中看到时钟显示的是,则实际时间是.【答案】16:25:08..【解析】实际时间是16:25:08.例题3、你们见过这种形状的风筝吗?如图,在四边形ABCD中,如果有AB=AD,BC=DC,则我们称这个四边形ABCD为筝形.连接AC和BD交于点F,下列结论中成立的有()①筝形ABCD为轴对称图形;②AC平分∠BAD和∠BCD;③BD平分∠ABC和∠ADC;④AC⊥BD于点F;⑤∠BAD=∠BCD;⑥AC平分BD;⑦BD平分AC;⑧∠ABC=∠ADC.A.4个B.5个C.6个D.7个【答案】B【解析】暂无解析例题4、如图,在4×4的正方形方格式中,阴影部分是涂黑5个小正方形所形成的图案.(1)若将方格内空白的两个小正方形涂黑,使得到的新图案成为一个轴对称图形,涂法共有________种.(2)请在下面的备用图中至少画出具有不同对称轴的三个方案,并画出对称轴.【答案】(1)5(2)【解析】暂无解析随练1、图1、图2是两张形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,点A、B、C 在小正方形的顶点上,请图1、图2中各画一个四边形,满足以下要求:(1)在图1中,以AB、BC为边画四边形ABCD,点D在小正方形的顶点上,且此四边形有两组角互补且是非对称图形;(2)在图2中以以AB、BC为边画四边形ABCD,点D在小正方形的顶点上,且此四边形有两组角互补且是轴对称图形.【答案】暂无答案【解析】(1)如图1所示:(2)如图2所示:随练2、在4×4的方格内选5个小正方形,让它们组成一个轴对称图形,请在图中画出你的4种方案.(每个4×4的方格内限画一种)要求:(1)5个小正方形必须相连(有公共边或公共顶点式为相连)(2)将选中的小正方行方格用黑色签字笔涂成阴影图形.(每画对一种方案得2分,若两个方案的图形经过反折、平移、旋转后能够重合,均视为一种方案)【答案】【解析】利用轴对称图形的性质用5个小正方形组成一个轴对称图形即可.随练3、如图,在4×4正方形网格中,黑色部分的图形构成一个轴对称图形,现在任选取一个白色的小正方形并涂黑,使图中黑色部分的图形仍然构成一个轴对称图形的概率是.【答案】5 13【解析】如图,∵根据轴对称图形的概念,轴对称图形两部分沿对称轴折叠后可重合,白色的小正方形有13个,而能构成一个轴对称图形的有5个情况,∴使图中黑色部诶的图形仍然构成一个轴对称图形的概率是:5 13.故答案为:5 13.拓展1、如图是一个经过改造的台球桌面的示意图,图中四个角上的阴影部分分别表示四个入球孔果一个球按图中所示的方向被击出(球可以经过多反射),那么该球最后将落入的球袋是()A.1号袋B.2号袋C.3号袋D.4号袋【答案】B【解析】根据轴对称的性质可知,台球走过的路径为:2、如图,六边形ABCFED是轴对称图形,CD所在的直线是它的对称轴,若130ADC BCD∠+∠=︒,则E F∠+∠的大小是()A.130°B.220°C.260°D.230°【答案】D【解析】∵六边形ABCFED是轴对称图形,CD所在的直线是它的对称轴,∴130FCD EDC ADC BCD∠+∠=∠+∠=︒,∴230E F∠+∠=︒3、图中由“○”和“□”组成轴对称图形,该图形的对称轴是直线()A.l1B.l2C.l3D.l4【答案】C【解析】该图形的对称轴是直线l3.4、如图是一个风筝的图案,它是轴对称图形,量得∠B=30°,则∠E的大小为()A.30°B.35°C.40°D.45°【答案】A【解析】∵∠B与∠E是对应角,∠B=30°,AF为对称轴,∴∠E=∠B=30°.5、如图,在五边形ABCDE中,∠BAE=120°,∠B=∠E=90°,AB=BC,AE=DE,在边BC、DE上分别找一点M、N,使得△AMN周长最小,则∠AMN+∠ANM=________.【答案】120°【解析】如图,取点A关于BC的对称点P,关于DE的对称点Q,连接PQ与BC相交于点M,与DE相交于点N,则AM=PM,AN=QN,所以,∠P=∠PAM,∠Q=∠QAN,所以,△AMN周长=AM+MN+AN=PM+MN+QN=PQ,由轴对称确定最短路线,PQ的长度即为△AMN的周长最小值,∵∠BAE=120°,∴∠P+∠Q=180°-120°=60°,∵∠AMN=∠P+∠PAM=2∠P,∠ANM=∠Q+∠QAN=2∠Q,∴∠AMN+∠ANM=2(∠P+∠Q)=2×60°=120°.6、如图,△ABC中AB=AC,AB的垂直平分线交BC于E,EC的垂直平分线交DE延长线于M,若∠FMD=40°,则∠BAC等于()A.120°B.110°C.100°D.90°【答案】C【解析】∵EC的垂直平分线交DE延长线于M,若∠FMD=40°,∴∠MEF=90°-40°=50°,∴∠BED=∠MEF=50°,∵AB的垂直平分线交BC于E,∴∠B=90°-∠BED=90°-50°=40°,∵AB=AC,∴∠B=∠C,∴∠BAC=180°-∠B-∠C=180°-40°-40°=100°.7、如图图中的阴影部分是由5个小正方形组成的一个图形,若在图中的方格里涂黑两个正方形,使整个阴影部分成为轴对称图形,涂法有几种()A.2种B.4种C.5种D.7种【答案】D【解析】如图所示:一共有7种,故选:D.8、如图,在4×3正方形网格中,阴影部分是由5个小正方形组成的一个图形,请你用两种方法分别在下图方格内填涂2个小正方形,使这7个小正方形组成的图形是轴对称图形.【答案】如图所示,答案不唯一.【解析】暂无解析9、如图是4×4正方形网格,其中已有3个小方格涂成了阴影.现在要从其余13个白色小方格中选出一个也涂成阴影,使整个涂成阴影的图形成为轴对称图形,请在图中补全图形,并画出它们各自的对称轴.(要求画出3种不同方法)【答案】【解析】如图所示:10、如图,在正方形网格上有一个△DEF.(1)画△DEF关于直线HG的轴对称图形;(2)画△DEF的EF边上的高;(3)若网格上的最小正方形边长为1,求△DEF的面积.【答案】(1)见解析;(2)见解析;(3)3【解析】(1)如图,△D′E′F′即为所求;(2)如图,DH即为所求;(3)S△DEF=12×3×2=3.。