《画轴对称图形》教学设计
- 格式:doc
- 大小:78.00 KB
- 文档页数:4
13.2 画轴对称图形(第2课时)学生分析:这一节课的教学对象是本校的802班的学生,基础较好,具有较好的合作交流、敢于探究的习惯。
通过前面的学习,本班的大部分学生能够熟练的运用轴对称的性质做一个图形关于一条直线的对称图形,少部分学生由于基础偏差加之未能自觉、及时的复习导致对轴对称性质和作轴对称图形掌握的不够理想。
好在用坐标表示轴对称和用坐标表示平移类似,学生可以通过“对照”用坐标表示平移来进行学习,这就给这堂课带来较低的门槛,进而激发的学生学习兴趣和学习动力!教材分析:本课时的教学内容是本套教材的第十三章的第二节第二课时的内容,通过前两节课作轴对称图形的知识铺垫,加之有七年级下册的用坐标表示平移的类比。
根据学生掌握知识的实际情况考虑,在引入新课时将教材第69页思考题在学生归纳出点关于x、y轴对称后变化关系后再引导学生直接去解决问题。
在本节课中的重点是理解图形上的点的坐标的变化与图形的轴对称变换之间的关系;在用坐标表示轴对称时发展形象思维能力和数形结合的意识.难点是用坐标表示轴对称.教学目标:根据《数学课程标准》,结合教材与学生实际,具体目标设定为下面几个方面:一、知识与技能:(1)在平面直角坐标系中,探索关于x轴、y轴对称的点的坐标规律.(2)利用关于x轴、y轴对称的点的坐标的规律,能作出关于x轴、y轴对称的图形二、能力训练要求1.在探索关于x轴,y轴对称的点的坐标的规律时,发展学生数形结合的思维意识.2.在同一坐标系中,感受图形上点的坐标的变化与图形的轴对称变换之间的关系.三、情感与价值观要求在探索规律的过程中,提高学生的求知欲和强烈的好奇心.教学策略:本课以教师为主导、学生为主体为原则,由于学生对这类“似曾相识”的知识具有浓厚的兴趣,应以学生在学习过程中的自主探究为主,教师设计问题,学生提出问题,在对问题的研讨中,完成学习。
教学中应以在直角坐标系点与点关于x或y对称为情景导入,逐步引导学生猜测、思考、归纳点关于x 或y 轴对称的关系,进而培养学生解决实际问题的能力。
人教版八年级数学上册第十三章《轴对称13.2画轴对称图形第1课时》教学设计一. 教材分析人教版八年级数学上册第十三章《轴对称》是学生在学习了平面几何基本概念和性质的基础上进行的一章内容。
本章主要让学生掌握轴对称图形的概念,性质,以及如何画出各种轴对称图形。
13.2节《画轴对称图形》是本章的第二节内容,主要让学生学会如何通过对称轴画出各种轴对称图形,培养学生的动手操作能力和空间想象能力。
二. 学情分析学生在之前的学习中已经掌握了平面几何的基本概念和性质,对一些基本的几何图形有了一定的了解。
但学生在画图方面可能还有一定的困难,特别是在画对称轴和轴对称图形时。
因此,在教学过程中,教师需要耐心引导学生,让学生逐步掌握画图的方法。
三. 教学目标1.让学生理解轴对称图形的概念,并能找出生活中的轴对称图形。
2.让学生掌握画轴对称图形的方法,提高学生的动手操作能力和空间想象能力。
3.培养学生观察、思考、交流的能力,提高学生的合作意识。
四. 教学重难点1.重点:让学生掌握轴对称图形的概念,以及画轴对称图形的方法。
2.难点:如何引导学生找出生活中的轴对称图形,以及如何让学生独立画出各种轴对称图形。
五. 教学方法采用“引导法”、“实例法”、“合作学习法”等教学方法。
教师通过引导,让学生主动探索轴对称图形的性质,找出生活中的轴对称图形。
同时,采用合作学习的方式,让学生在小组内交流讨论,共同完成画轴对称图形的任务。
六. 教学准备1.准备一些生活中的轴对称图形实例,如剪纸、图片等。
2.准备几何画图工具,如直尺、圆规等。
3.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的轴对称图形实例,如剪纸、图片等,引导学生观察并思考:这些图形有什么共同特点?让学生初步感受轴对称图形的性质。
2.呈现(10分钟)教师通过课件呈现轴对称图形的定义,让学生明确轴对称图形的概念。
同时,教师通过讲解,让学生了解轴对称图形的性质,如对称轴的性质,对称点的性质等。
第十三章轴对称13.2《画轴对称图形》教学设计第1课时一、教学目标1.初步认识轴对称图形,能找出对称轴.并会作出轴对称图形.2.认识轴对称的特点, 利用轴对称设计图案.二、教学重点及难点重点:认识轴对称图形的特点,掌握作轴对称图形的步骤和方法.难点:利用轴对称的定义设计图案.三、教学用具电脑、多媒体、课件、直尺、刻度尺四、相关资源动态演示五、教学过程(一)情境导入:回顾轴对称图形和轴对称的定义、区别和联系.(二)探究新知1.在一张半透明纸张的左边部分,画出左脚印,如何由此得到相应的右脚印?把这张纸对折后描图,打开对折的纸.就能得到相应的右脚印.(1)左脚印和右脚印有什么关系?成轴对称.(2)对称轴是什么?折痕所在的直线,即图中直线l.(3)图中的PP′与l有什么关系?PP′被直线l垂直平分.2.请动手在一张纸上画一个你喜欢的图形,将这张纸折叠,描图,再打开纸,看看你得到了什么?由一个平面图形得到与它关于一条直线对称的图形.一个平面图形和与它成轴对称的另一个图形之间有什么关系?(1)画出的轴对称图形的形状、大小和原图形有什么关系?由一个平面图形可以得到与它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同.(2)画出的轴对称图形的点与原图形上的点有什么关系?新图形上的每一点都是原图形上的某一点关于直线l的对称点.(3)对应点所连线段与对称轴有什么关系?连接任意一对对应点的线段被对称轴垂直平分.设计意图:通过在半透明的纸上描图的方法,由左脚印得到了与它对称的右脚印,然后通过让学生自己动手画图,归纳得出轴对称的特点:一是轴对称前后两个图形全等,二是对应点连线被对称轴垂直平分.(三)例题解析如果有一个图形和一条直线,如何画出这个图形关于这条直线对称的图形呢?【例】如图,已知△ABC和直线l,画出与△ABC关于直线l对称的图形.分析:△ABC可以由三个顶点的位置确定,只要能分别画出这三个顶点关于直线l的对称点,连接这些对称点,就能得到要画的图形.画法:(1)如图,过点A画直线l的垂线,垂足为点O,在垂线上截取OA′=OA,点A′就是点A关于直线l的对称点;(2)同理,分别画点B,C关于直线l的对称点B′,C′;(3)连接A′B′,B′C′,C′A′,得到的△A′B′C′即为所求.(动态演示确定对称点的过程)教师根据学生的掌握情况,对例题中△ABC的顶点A和C的位置改变,使其在直线l上.让学生画出与△ABC关于直线l对称的图形.思考:如何验证画出的图形与△ABC关于直线l对称?由画法可知,点A与点A′是对称点,点B与点B′是对称点,所以沿直线l折叠,点A与点A′,点B与点B′能够重合;又因为过两点有且只有一条直线,所以线段AB和线段A′B′也互相重合,同理AC与A′C′,BC与B′C′互相重合,所以△ABC与△A′B′C′关于直线l对称.已知一个几何图形和一条直线,说一说画一个与该图形关于这条直线对称的图形的一般方法.几何图形都可以看作由点组成.对于某些图形,只要画出图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.设计意图:通过讨论如何画出一个图形的轴对称图形的问题,最后归纳得出画出轴对称图形的方法和步骤.(四)拓展应用利用轴对称,可以设计出精美的图案.请你用所学的知识来欣赏下列美丽的图案.我们可由一个图形得到与它成轴对称的另一个图形,重复此过程,就可得到美丽的图案.教师可鼓励学生尝试利用计算机软件设计得到美丽的图案.设计意图:通过利用轴对称设计简单的图案,体验数学的对称美.六、课堂小结(1)一个平面图形和与它成轴对称的另一个图形之间的关系?由一个平面图形可以得到与它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线l的对称点;连接任意一对对应点的线段被对称轴垂直平分.(2)画轴对称图形的一般方法是什么?依据是什么?方法:画出原图形中的一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.依据:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称.七、板书设计13.2 画轴对称图形(1)作轴对称图形的步骤在平面直角坐标系中画出与已知图形关于x轴或y轴对称的图形。
《轴对称图形》教案(优秀8篇)轴对称图形教案篇一教学目标:1.让学生经历长方形、正方形等轴对称图形各有几条对称轴的探索过程,会画简单的几何图形的对称轴,并借此加深对轴对称图形特征的认识。
2.让学生在学习过程中进一步增强动手实践能力,发展空间观念,培养审美情操,增加学习数学的兴趣。
教学重难点:经历发现长方形、正方形对称轴条数的过程。
画平面图形的对称轴。
课前准备:小黑板、学具卡片。
教学活动:一、复习导入出示飞机图、蝴蝶图、奖杯图。
提问:这三幅图有什么共同的特征?(都是轴对称图形)指着蝴蝶图提问:你怎么知道它是轴对称图形的?(指名到讲桌上折纸并回答)把蝴蝶图贴在黑板上,提问:谁能指出这幅图的对称轴?(学生指出后,教师用点段相间的线画出对称轴,并板书:对称轴)谈话:这节课我们继续学习轴对称图形,重点研究轴对称图形的对称轴。
(把课题补书完整)二、教学例题1.谈话:首先我们研究长方形的对称轴。
请拿出一张长方形纸对折,并画出它的对称轴。
学生折纸画图,教师巡视,发现不同的折法。
2.指名到投影仪前展示自己的折法和画法。
提问:你能告诉同学们折纸时应该注意什么,画对称轴时应该怎么画吗?对他的发言有没有不同的意见?谁还有不同的折法吗?也来展示一下。
(指名展示)为什么这条线(指着学生画出的对称轴)也是这张长方形纸的对称轴?3.谈话:这样看来,我们已经找到了长方形的两条对称轴,它还有另外的对称轴吗?用纸折折看。
通过操作我们发现长方形只有两条对称轴。
4.出示黑板上画好的长方形,谈话:刚才我们用折纸的办法找到了长方形的对称轴,现在画在黑板上的长方形能对折吗?如果要画出它的对称轴你有什么办法吗?在小组内讨论。
让学生充分发表意见。
如果有学生提到用和黑板上的长方形同样大的纸对折找到对称轴后再在黑板上描画,指出这样做是可以的,但是我们不用折纸的办法,还能不能直接在黑板上画长方形的对称轴?如果学生提到先量出长方形对边的中点再连线,画出对称轴,对这种想法予以表扬,并提问:你能说一说是怎样想到先找对边中点的吗?如果学生想不到取对边中点连线的办法,拿出长方形纸,谈话:想一想我们在把长方形纸这样对折的时候,长方形的这条边(例如指一条长边)被折痕分成了几段?这两段的长度有什么关系?你是怎么知道的?那么折痕与这条边相交的这个点是这条边的什么?同样地我们能找到折痕与这条边的对边的交点吗?找到了这两个点能不能画出长方形的对称轴?指名到黑板上量长方形的边,取中点。
13.2画轴对称图形教案篇一:13.2《画轴对称图形》教案12篇二:13.2画轴对称图形教学设计教案教学准备1.教学目标1.通过实际操作,了解什么叫做轴对称变换.2.如何作出一个图形关于一条直线的轴对称图形.2.教学重点/难点教学重点1、轴对称变换的定义.2.能够按要求作出简单平面图形经过轴对称后的图形.教学难点1.作出简单平面图形关于直线的轴对称图形.2.利用轴对称进行一些图案设计.3.教学用具多媒体,三角板4.标签画轴对称图形教学过程课堂小结课后习题板书篇三:13.2画轴对称图形教学设计教案教学准备1.教学目标1.通过实际操作,了解什么叫做轴对称变换.2.如何作出一个图形关于一条直线的轴对称图形.2.教学重点/难点教学重点1.轴对称变换的定义.2.能够按要求作出简单平面图形经过轴对称后的图形.教学难点1.作出简单平面图形关于直线的轴对称图形.2.利用轴对称进行一些图案设计.3.教学用具4.标签教学过程教学过程Ⅰ.设置情境,引入新课在前一个章节,我们学习了轴对称图形以及轴对称图形的一些相关的性质问题.在上节课的作业中,我们有个要求,让同学们自己思考一种作轴对称图形的方法,现在来看一下同学们完成的怎么样.将一张纸对折后,用针尖在纸上扎出一个图案,将纸打开后铺平,?得到的两个图案是关于折痕成轴对称的图形.准备一张质地较软,吸水性能好的纸或报纸,在纸的一侧上滴上一滴墨水,将纸迅速对折,压平,并且手指压出清晰的折痕.再将纸打开后铺平,?位于折痕两侧的墨迹图案也是对称的.?这节课我们就是来作简单平面图形经过轴对称后的图形.Ⅱ.导入新课?由我们已经学过的知识知道,连结任意一对对应点的线段被对称轴垂直平分.类似地,我们也可以由一个图形得到与它成轴对称的另一个图形,重复这个过程,可以得到美丽的图案.对称轴方向和位置发生变化时,得到的图形的方向和位置也会发生变化.大家看大屏幕,从电脑演示的图案变化中找出对称轴的方向和位置,体会对称轴方向和位置的变化在图案设计中的奇妙用途.下面,同学们自己动手在一张纸上画一个图形,将这张纸折叠描图,?再打开看看,得到了什么?改变折痕的位置并重复几次,又得到了什么?同学们互相交流一下.结论:由一个平面图形呆以得到它关于一条直线L对称的图形,?这个图形与原图形的形状、大小完全相同;新图形上的每一点,都是原图形上的某一点关于直线L的对称点;连结任意一对对应点的线段被对称轴垂直平分.我们把上面由一个平面图形得到它的轴对称图形叫做轴对称变换.成轴对称的两个图形中的任何一个可以看作由另一个图形经过轴对称变换后得到.一个轴对称图形也可以看作以它的一部分为基础,经轴对称变换扩展而成的.取一张长30厘米,宽6厘米的纸条,将它每3厘米一段,?一正一反像“手风琴”那样折叠起来,并在折叠好的纸上画上字母E,用小刀把画出的字母E挖去,拉开“手风琴”,你就可以得到以字母E为图案的花边.回答下列问题.(:13.2画轴对称图形教案)(1)在你所得的花边中,相邻两个图案有什么关系??相间的两个图案又有什么关系?说说你的理由.(2)如果以相邻两个图案为一组,每一组图案之间有什么关系??三个图案为一组呢?为什么?(3)在上面的活动中,如果先将纸条纵向对折,再折成“手风琴”,?然后继续上面的步骤,此时会得到怎样的花边?它是轴对称图形吗?先猜一猜,再做一做.注:为了保证剪开后的纸条保持连结,画出的图案应与折叠线稍远一些.课后习题板书篇四:13.2画轴对称图形教学设计教案教学准备1.教学目标1、知识与技能:(1)能够作轴对称图形;(2)能够经过探索利用坐标来表示轴对称;(3)能够用轴对称的知识解决相应的数学问题.2、过程与方法:在探索问题的过程中体会知识间的关系,感受对称与生活的联系.3、情感态度与价值观:培养学生的应用意识和探究精神2.教学重点/难点4、教学重点(1)能够作轴对称图形;(2)能够经过探索利用坐标来表示轴对称;(3)能够用轴对称的知识解决相应的数学问题.5、教学难点用轴对称知识解决相应的数学问3.教学用具4.标签教学过程1.创设情境,激发学生兴趣,引出本节课要研究的内容活动1观察图片操作:自己动手在纸上画一个图案,将这张纸折叠,描图,再打开纸,看看你得到了什么?改变折痕的位置再试一次,你又得到了什么?。
《轴对称图形》教学设计《轴对称图形》教学设计(通用5篇)作为一名教职工,就难以避免地要准备教学设计,教学设计是连接基础理论与实践的桥梁,对于教学理论与实践的紧密结合具有沟通作用。
怎样写教学设计才更能起到其作用呢?下面是小编收集整理的《轴对称图形》教学设计(通用5篇),供大家参考借鉴,希望可以帮助到有需要的朋友。
《轴对称图形》教学设计1教学目标:1、初步认识轴对称图形,理解轴对称图形的含义,能找出对称图形的对称轴,并能用自己的方法创造出轴对称图形。
2、通过观察、思考和动手操作,培养学生探索与实践能力,发展学生的空间观念。
3、引导学生领略自然世界的美妙与对称世界的神奇,激发学生的数学审美情趣。
教学重点:1、认识轴对称图形的特点,建立轴对称图形的概念。
2、能够准确的判断生活中的轴对称图形,并能找出它的对称轴。
教具准备:对称的剪纸作品,对称的图片,剪刀,彩纸等教学过程:一、创设情境,激发兴趣1、欣赏剪纸作品:师:我们班有许多同学都参加了剪纸兴趣小组,他们的作品多次参加学校的展览,我们教室里也贴有他们的作品,你们喜欢这些剪纸作品吗?老师也很喜欢这些作品,今天我带来了一些剪纸作品,我们一起欣赏。
(出示剪纸作品)师:这些作品美不美?美在哪里?(答案强调图形的两边是对称的,对称也是一种美。
)师:这节课我们就一起来欣赏图形中的对称美。
(板书课题:对称图形)(反思:利用学生自己的剪纸作品引入新课,更能激发学生的学习兴趣,让学生体会数学知识来源于生活,从而产生学习数学的欲望。
这一环节,主要是让学生发现对称的美,激发学生探究新知的欲望。
)二、自主探究,感悟新知1、剪一剪师:同学们都认为对称也是一种美,那么我这儿有一幅图,谁能把它补充完整,使它成为一种对称的美。
(出示一个只画了一半的花瓶。
)指生上来画完整。
师:画得美不美?对称吗?(肯定不太对称)师:你有什么好办法能使它两边完全对称?师:我有一个好办法,能使它两边完全对称。
13.2 画轴对称图形(第1课时)教学目标(一)教学知识点1.能够按要求作出简单平面图形经过轴对称后的图形.2.轴对称的简单应用.(二)能力训练要求1.能够按要求作出简单平面图形经过轴对称后的图形.2.培养学生运用轴对称解决实际问题的基本能力.3.使学生掌握数学知识的衔接与各部分知识间的相互联系.(三)情感与价值观要求1.积极参与数学学习活动,对数学有好奇心和求知欲.2.在数学活动中获得成功的体验,锻炼克服困难的意志,建立自信心.教学重点能够按要求作出简单平面图形经过轴对称后的图形.教学难点应用轴对称解决实际问题.教学方法讲练结合法.教具准备多媒体课件,方格纸数张.教学过程Ⅰ.提出问题,创设情境观察图片操作:自己动手在纸上画一个图案,将这张纸折叠,描图,再打开纸,看看你得到了什么?改变折痕的位置再试一次,你又得到了什么?学生活动设计:学生观察图片,动手操作、观察所画图形,先独立思考,然后进行交流.教师活动设计:教师组织活动,引导学生作以下归纳:(1)由一个平面图形可以得到它关于一条直线l成轴对称的图形,这个图形与原图形的形状、大小完全一样;(2)新图形上一个点,都是原图形上的某一点关于直线l的对称点;(3)连接任意一对对应点的线段被对称轴垂直平分.Ⅱ.导入新课[师]如何作一个图形经过轴对称后的图形呢?我们知道:任何一个图形都是由点组成的.因为我们来作一个点关于一条直线的对称点.由已经学过的知识知道:对应点的连线被对称轴垂直平分.所以,已知对称轴L和一个点A,要画出点A关于L的对应点A′,可采取如下方法:(1)过点A作对称轴L的垂线,垂足为B;(2)在垂线上截取BA′,使BA′=AB.点A′就是点A关于直线L的对应点.好,大家来动手画一点A关于直线L对称的对应点,教师口述,大家来画图,要注意作图的准确性.……[师]画好了没有?[生]画好了.[师]好,现在我们会画一点关于已知直线的对称点,那么一个图形呢?大家请看大屏幕.(演示课件)[例1]如图(1),已知△ABC和直线L,作出与△ABC关于直线L对称的图形.[师]同学们讨论一下.……[生甲]可以在已知图形上找一些点,然后作出这些点关于这条直线的对应点,再按图形上点的顺序连结这些点.这样就可以作出这个图形关于直线L的对称图形了.[师]说说看,找几个什么样的点就行呢?[生乙]△ABC可以由三个顶点的位置确定,只要找A、B、C三点就可以了.[师]好,下面大家一起动手做.作法:如图(2).(1)过点A作直线L的垂线,垂足为点O,在垂线上截取OA′=OA,点A′就是点A 关于直线L的对称点;(2)类似地,作出点B、C关于直线L的对称点B′、C′;(3)连结A′B′、B′C′、C′A′,得到△A′B′C′即为所求.[师]大家做完后, 我们共同来归纳一下如何作出简单平面图形经过轴对称后的图形.归纳:几何图形都可以看作由点组成,我们只要分别作出这些点关于对称轴的对称点,再连结这些对应点,就可得到原图形的轴对称图形;对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段端点)的对应点,连结这些对应点,就可以得到原图形的轴对称图形.[师]看来在作一个平面图形关于直线轴对称的图形,找一些特殊点是关键.下图中,要作出图形的另一半,哪些点可以作为特殊点?并画出图形的另一半.[师]大家作个简单讨论,共同来完成这个题.[生]在图形(1)上找三个点,在图形(2)中找一个点就可以,如下图:[师]现在我们来做练习.Ⅲ.随堂练习(一)课本P68练习1、2.1.如图,把下列图形补成关于直线L对称的图形.提示:找特殊点.答案:图(略)2.用纸片剪一个三角形,分别沿它一边的中线、高、角平分线对折,看看哪些部分能够重合,哪些部分不能重合.答案:本题答案不唯一,要求学生尽可能用准确的数学语言将自己剪出的三角形的情况进行表述.(二)阅读课本P67~P68,然后小结.Ⅳ.课时小结本节课我们主要研究了如何作出简单平面图形经过轴对称后的图形.在按要求作图时要注意作图的准确性.求作一个几何图形关于某条直线对称的图形,可以转化为求作这个图形上的点关于这条直线的对称点.对于一些由直线、线段或射线组成的图形,只要作出图形中的一些特殊点(如线段的端点)的对称点,连结这些对称点,就可以得到原图形的轴对称图形.Ⅴ.课后作业(一)课本P71习题─1、5、8、9题.(二)预习内容P69~P70.Ⅵ.活动与探究[探究1]如图(1).要在燃气管道L上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?你可以在L上找几个点试一试,能发现什么规律吗?过程:把管道L近似地看成一条直线如图(2),设B′是B的对称点,将问题转化为在L上找一点C使AC与CB′的和最小,由于在连结AB′的线中,线段AB′最短.因此,线结AB′与直线L的交点C的位置即为所求.结果:作B关于直线L的对称点B′,连结AB′,交直线L于点C,C为所求.[探究2]为什么在点C的位置修建泵站,就能使所用的输管道最短?过程:将实际问题转化为数学问题,该问题就是证明AC+CB最小.结果:如上图,在直线L上取不同于点C的任意一点C′.由于B′点是B点关于L的对称点,所以BC′=B′C′,故AC′+BC′=AC′+B′C′,在△A′B′C′中AC′+BC′>AB′, 而AB′=AC+CB′=AC+CB,则有AC+CB<AC′+C′B.由于C′点的任意性,所以C点的位置修建泵站,可以使所用输气管线最短.板书设计§13.2 画轴对称图形一、已知对称轴L和一个点A,要画出点A关于L的对称点A′,方法如下:(1)过点A作对称轴L的垂线,垂足为B.(2)在垂线上截取BA′=AB.则点A′就是点A关于直线L的对应点,二、例1三、随堂练习四、课时小结五、课后作业备课资料参考练习1.已知△ABC,过点A作直线L.求作:△A′B′C′使它与△ABC关于L对称.作法:(1)作点C关于直线L的对称点C′;(2)作点B关于直线L的对称点B′;(3)点A在L上,故点A的对称点A′与A重合;(4)连结A′B′、B′C′、C′A′.则△A′B′C′就是所求作的三角形.2.已知a⊥b,a、b相交于点O,点P为a、b外一点.求作:点P关于a、b的对称点M、N,并证明OM=ON(不许用全等).作法:(1)过点P作PC⊥a,并延长PC到M,使CM=PC.(2)过点P作PD⊥b,并延长PD到N,使得DN=PD.则点M、N就是点P关于a、b的对称点.证明:∵点P与点M关于直线a对称,∴直线a是线段PM的中垂线.∴OP=OM.同理可证:OP=ON.∴OM=ON.3.为美化校园,学校准备在一块圆形空地上建花坛,现征集设计方案,要求设计的图案由圆、三角形、矩形组成(三种几何图案的个数不限),并且使整个圆形场地成轴对称图形,请你画出你的设计方案.答案:略。
人教版数学八年级上册教学设计13.2《画轴对称图形》一. 教材分析《画轴对称图形》是人教版数学八年级上册第13章“轴对称图形”的第二节内容。
本节课主要让学生掌握轴对称图形的概念,学会如何画出轴对称图形,并理解轴对称图形与实际生活的联系。
教材通过丰富的图片和实例,激发学生的学习兴趣,培养学生观察、思考、动手操作的能力。
二. 学情分析八年级的学生已经掌握了七年级数学的基本知识,具备一定的观察、思考和动手操作能力。
但部分学生对抽象图形的概念理解较浅,对实际生活中的轴对称现象认识不足。
因此,在教学过程中,要注重引导学生从实际生活中发现轴对称现象,加深对轴对称图形概念的理解。
三. 教学目标1.知识与技能目标:让学生掌握轴对称图形的概念,学会画出轴对称图形。
2.过程与方法目标:通过观察、操作、思考,培养学生发现和解决实际问题的能力。
3.情感态度与价值观目标:培养学生对数学的兴趣,感受数学与生活的联系。
四. 教学重难点1.重点:轴对称图形的概念及画法。
2.难点:如何引导学生从实际生活中发现轴对称现象,加深对轴对称图形概念的理解。
五. 教学方法1.情境教学法:通过展示实际生活中的轴对称现象,引导学生发现和理解轴对称图形的概念。
2.动手操作法:让学生亲自动手画出轴对称图形,提高学生的动手操作能力。
3.小组合作法:引导学生分组讨论,培养学生的团队协作能力。
六. 教学准备1.准备一些实际生活中的轴对称图片,如剪纸、蝴蝶、树叶等。
2.准备黑板、粉笔、直尺、圆规等教学用具。
3.准备课件,用于辅助教学。
七. 教学过程1.导入(5分钟)利用课件展示一些实际生活中的轴对称图片,如剪纸、蝴蝶、树叶等,引导学生观察并提问:“这些图片有什么共同特点?”让学生发现轴对称现象,引出本节课的主题。
2.呈现(10分钟)教师简要讲解轴对称图形的概念,并用课件展示一些轴对称图形的例子。
同时,让学生动手折纸,亲身体验轴对称现象。
3.操练(10分钟)学生分组讨论,每组选择一个轴对称图形,用直尺、圆规等工具在黑板上画出所选图形的轴对称图形。
《画轴对称图形》教学设计
一、教材分析:
之前我们知道了如何寻找轴对称图形的对称轴,本节课学生需要知道,已知原图形与对称轴,如何画对称之后的图形。
这也是对称变换的核心知识,也为今后数学与其它学科的知识内容(如物理的镜面反射)打下基础。
二、教学目标:
知识与技能目标:能画出简单平面图形作轴对称之后的图形,了解画一般轴对称图形的方法;
过程与方法目标:经历画轴对称图形的一般过程,掌握基本的数学作图规范;
情感、态度与价值观目标:培养审美情操,培养学习兴趣。
三、教学重难点:
重点:作平面图形的轴对称图形;
难点:作轴对称图形的一般步骤中所包含的原理。
四、教学过程:
1、复习引入:
问1:如何作一轴对称图形的对称轴?(随机抽查)
①作对应点连线的垂直平分线;
②作过两对对应点连线中点的直线。
对称轴把一个图形分成两个部分,有两部分我们可以作出对称轴,那么有图形的一部分和对称轴,我们能否作出另一部分?
2、新课探究:
试一试:在格点图中,画出已知图形的轴对称图形。
(由作出图形的同学展示自己的成果,并向其它同学分享作图步骤。
)
学生总结作轴对称图形的步骤:
①寻找原图形中各点关于对称轴对称后的对应(对称)点;
②按照一定的顺序连接各对应(对称)点。
问2:在格点图中,依据各点我们很容易找到对应点,再依次连接。
若没有格点,如何能作出轴对称之后的图形?
将问题进行分解,可以分如下两个问题进行探究:
问2-1:在没有格点的一般情况下,作轴对称图形要遵循怎样的步骤?
类比以上格点图中的做法,学生容易想到,在一般情形下,作轴对称图形也可分为找对称点与连接各对称点的两步。
问2-2:在一般情况下,如何作一点关于某条直线对称的对应点?
由于对称轴是对应点连线的垂直平分线,我们可以按照垂直和评分的两步来作对称点。
①对称点间连线与对称轴垂直,即对称点在过点直线的垂线上:
过点A作直线l的垂线,垂足为O;
②对称轴平分对称点间的连线,即点O
为中点:取AO A O'
=。
注:在数学作图中,需要保留作图痕迹(辅
助线),如上述过程中,找对称点需要先作垂
线,做完图后,垂线不要擦掉。
通过上述的方法,接下来我们只需要不断重复步骤,寻找原图形中各点的对称点,最后再依次连接各对称点就能够作出对称之后的图形了。
例作出ABC关于直线l对称的图形
'''。
A B C
步骤:
1、作出,,
A B C三点关于直线对称的对称
''';
点,,
A B C
''',得到的即为所求。
2、依次连接,,
A B C
再次提醒:垂线的直角符号不能漏掉,三条垂线不能擦掉,必须保留。
课堂练习:独立完成课本P107 练习(由学生展示、讲解)。
3、小结:
(1)过A作垂线
1、作各点的对称点
(2)取AO=A O'画轴对称图形
2、连接各对称点
4、作业布置:
《同步练习册》 10.1(三)
五、板书设计:
10.1.3 画轴对称图形
步骤:
①寻找原图形中各点关于对
称轴对称后的对应(对称)点;
②按照一定的顺序连接各对
应(对称)点。
六、教学反思:
1、课堂教学中需要台上台下同时关注:
(1)只关注台上学生的作图过程,台下学生得不到指导;
(2)只关注台下,台上学生的错误发现不了,台上同学很大程度上起的是示范作用,不及时纠错会给别的同学错误的引导。
2、学生对保留作图痕迹理解不到位,部分学生是把对称图形做完后再来补充垂线,这样的作图不科学,要在今后作图讲解时多强调。
3、有部分学生显然对作图工具使用不够熟练,今后需要对作图多加练习。