八年级数学上册第十三章《轴对称》测试-人教版(含答案)
- 格式:docx
- 大小:1.17 MB
- 文档页数:17
人教版八年级数学第十三章轴对称综合复习一、选择题(本大题共10道小题)1. 如图所示的图形有________条对称轴()A.1 B.2 C.3 D.42. 在平面直角坐标系中,点A(m,2)与点B(3,n)关于y轴对称,则() A.m=3,n=2 B.m=-3,n=2C.m=2,n=3 D.m=-2,n=-33. 如图,AC=AD,BC=BD,则有()A.CD垂直平分ABB.AB垂直平分CDC.AB与CD互相垂直平分D.CD平分∠ACB4. 如图,在△ABC中,DE垂直平分AB,交AB于点E,交BC于点D,若AD=4,BC=3DC,则BC等于()A.4B.4.5C.5D.65. 如,在小方格中画与△ABC成轴对称的三角形(不与△ABC重合),这样的三角形能画出()A.1个B.2个C.3个D.4个6. 如图,在四边形ABCD中,AB∥CD,AD⊥AB,P是AD边上的一动点,要使PC+PB的值最小,则点P应满足()A.PB=PC B.P A=PDC.∠BPC=90°D.∠APB=∠DPC7. (2020自贡)如图,在R t△ABC中,∠ACB=90°,∠A=50°,以点B为圆心,BC长为半径画弧,交AB于点D,连接CD,则∠ACD的度数是()A.50°B.40°C.30°D.20°8. 如图,已知钝角三角形ABC,依下列步骤尺规作图,并保留作图痕迹.步骤1:以点C为圆心,CA长为半径画弧①;步骤2:以点B为圆心,BA长为半径画弧②,交弧①于点D;步骤3:连接AD,交BC的延长线于点H.则下列叙述正确的是()A.BH垂直平分线段ADB.AC平分∠BADC.S△ABC=BC·AHD.AB=AD9. 将平面直角坐标系内某个图形的各个点的横坐标都乘-1,纵坐标不变,则所得图形与原图形的关系是()A.关于x轴对称B.关于y轴对称C.图形向左平移D.图形向下平移10. 如图所示的正方形网格中,网格线的交点称为格点. 已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形.....,那么符合题意的点C的个数是()A. 6B. 7C. 8D. 9二、填空题(本大题共8道小题)11. 如图K-16-10,四边形ABCD是轴对称图形,BD所在的直线是它的对称轴,AB=5 cm,CD=3.5 cm,则四边形ABCD的周长为________ cm.12. 如图所示图案是几种车的标志,在这几个图案中,轴对称图形有________个,其中只有一条对称轴的轴对称图形有________个,对称轴最多的轴对称图形有________条对称轴.13. 如图,△ABC中,AC=8,BC=5,AB的垂直平分线DE交AB于点D,交边AC于点E,则△BCE的周长为________.14. 如图,在△ABC中,AD为角平分线,若∠B=∠C=60°,AB=8,则CD的长为________.15. 如图,直线a∥b,△ABC的顶点C在直线b上,边AB与直线b相交于点D.若△BCD是等边三角形,∠A=20°,则∠1=________.16. 如图,六边形ABCDEF的六个内角都相等.若AB=1,BC=CD=3,DE=2,则这个六边形的周长为________.17. 规律探究如图,∠BOC=9°,点A在OB上,且OA=1,按下列要求画图:以A为圆心,1为半径向右画弧交OC于点A1,得第1条线段AA1;再以A1为圆心,1为半径向右画弧交OB于点A2,得第2条线段A1A2;再以A2为圆心,1为半径向右画弧交OC于点A3,得第3条线段A2A3……这样画下去,直到得第n条线段,之后就不能再画出符合要求的线段了,则n=________.18. 数学活动课上,两名同学围绕作图问题:“如图①,已知直线l和直线l外一点P,用直尺和圆规作直线PQ,使PQ⊥直线l于点Q.”分别作出了如图②③所示的两个图形,其中作法正确的为图(填“②”或“③”).三、解答题(本大题共4道小题)19. 如图,△ABC与△ADE关于直线MN对称,BC与DE的交点F在直线MN 上.若ED=4 cm,FC=1 cm,∠BAC=76°,∠EAC=58°.(1)求BF的长度;(2)求∠CAD的度数;(3)连接EC,线段EC与直线MN有什么关系?20. 如图,上午8时,一条船从A处出发以30海里/时的速度向正北方向航行,12时到达B处.测得∠NAC=32°,∠ABC=116°.求B处与灯塔C的距离.21. 如图①,在△ABC中,∠ABC,∠ACB的平分线交于点O,过点O作EF∥BC分别交AB,AC于点E,F.探究一:猜想图①中线段EF与BE,CF间的数量关系,并证明.探究二:设AB=8,AC=6,求△AEF的周长.探究三:如图②,在△ABC中,∠ABC的平分线BO与△ABC的外角平分线CO交于点O,过点O作EF∥BC交AB于点E,交AC于点F.猜想这时EF与BE,CF间又是什么数量关系,并证明.22. 如图,在△ABC中,AB边的垂直平分线l1交BC于点D,AC边的垂直平分线l2交BC于点E,l1与l2相交于点O,连接OB,OC,AD,AE.若△ADE的周长为12 cm,△OBC的周长为32 cm.(1)求线段BC的长;(2)连接OA,求线段OA的长.人教版八年级数学第十三章轴对称综合复习-答案一、选择题(本大题共10道小题)1. 【答案】B[解析] 如图所示,此图形有2条对称轴.2. 【答案】B[解析] ∵点A(m,2)与点B(3,n)关于y轴对称,∴m=-3,n=2.3. 【答案】B4. 【答案】D[解析] ∵DE垂直平分AB,AD=4,∴BD=AD=4.∵BC=3DC,∴BD=2CD.∴CD=2.∴BC=BD+CD=6.故选D.5. 【答案】C[解析] 符合题意的三角形有3个,如图.6. 【答案】D7. 【答案】D.【解析】本题考查了直角三角形,圆,等腰三角形等知识,∵在R t△ABC中,∠ACB=90°,∠A=50°,∴∠B=40°,∵BC=BD,∴∠BCD=∠BDC(180°﹣40°)=70°,∴∠ACD=90°﹣70°=20°,因此本题选D.8. 【答案】A[解析] 如图,连接CD,BD.∵CA=CD,BA=BD,∴点C,B都在线段AD的垂直平分线上.∴BH垂直平分线段AD.故选A.9. 【答案】B[解析] 点的横坐标乘-1后变为原来的相反数,又因为纵坐标不变,故变化后的点与原来的点关于y轴对称.10. 【答案】C二、填空题(本大题共8道小题)11. 【答案】1712. 【答案】32213. 【答案】13【解析】∵DE垂直平分AB,∴AE=BE,∵AE+EC=8,∴EC +BE=8,∴△BCE的周长为BE+EC+BC=13.14. 【答案】4[解析] ∵∠B=∠C=60°,∴∠BAC=60°.∴△ABC为等边三角形.∵AB=8,∴BC=AB=8.∵AD为角平分线,∴BD=CD.∴CD=4.15. 【答案】40°[解析] 如图.∵△BCD是等边三角形,∴∠BDC=60°.∵a∥b,∴∠2=∠BDC=60°.由三角形的外角性质和对顶角的性质可知,∠1=∠2-∠A=40°.16. 【答案】15[解析] 由多边形的内角和定理可知,这个六边形的每个内角都是120°,因此直线AB,CD,EF围成一个等边三角形,且这个等边三角形的边长为7.因此AF=4,EF=2.所以这个六边形的周长=1+3+3+2+2+4=15.17. 【答案】918. 【答案】③三、解答题(本大题共4道小题)19. 【答案】解:(1)∵△ABC与△ADE关于直线MN对称,ED=4 cm,∴BC=ED=4 cm.又∵FC=1 cm,∴BF=BC-FC=3 cm.(2)∵△ABC与△ADE关于直线MN对称,∠BAC=76°,∴∠EAD=∠BAC=76°.又∵∠EAC=58°,∴∠CAD=∠EAD-∠EAC=76°-58°=18°.(3)结论:直线MN垂直平分线段EC.理由如下:∵E,C关于直线MN对称,∴直线MN垂直平分线段EC.20. 【答案】解:根据题意,得AB=30×4=120(海里).在△ABC中,∠NAC=32°,∠ABC=116°,∴∠C=180°-∠NAC-∠ABC=32°.∴∠C=∠NAC.∴BC=AB=120海里,即从B处到灯塔C的距离是120海里.21. 【答案】解:探究一:猜想:EF=BE+CF.证明如下:∵BO平分∠ABC,∴∠ABO=∠CBO.∵EF∥BC,∴∠EOB=∠CBO.∴∠ABO=∠EOB.∴BE=OE.同理:OF=CF,∴EF=OE+OF=BE+CF.探究二:C△AEF=AE+EF+AF=AE+(OE+OF)+AF=(AE+BE)+(AF+CF)=AB+AC=8+6=14.探究三:猜想:EF=BE-CF.证明如下:∵BO平分∠ABC,∴∠EBO=∠CBO.∵EF∥BC,∴∠EOB=∠CBO.∴∠EBO=∠EOB.∴BE=OE.同理:OF=CF,∴EF=OE-OF=BE-CF.22. 【答案】解:(1)∵l1是AB边的垂直平分线,∴DA=DB. ∵l2是AC边的垂直平分线,∴EA=EC.∵△ADE的周长为12 cm,∴DA+DE+EA=12 cm.∴BC=BD+DE+EC=DA+DE+EA=12 cm.(2)如图,连接OA.∵l1是AB边的垂直平分线,∴OA=OB.∵l2是AC边的垂直平分线,∴OA=OC.∵△OBC的周长为32 cm,∴OB+OC+BC=32 cm.∵BC=12 cm,∴OA=OB=OC=10 cm.。
人教版八年级上册数学十三章 轴对称 单元训练题 (9)一、单选题1.如图所示,共有等腰三角形( )A .4个B .5个C .3个D .2个2.等腰三角形腰长为13cm,底边长为10cm ,则其面积为 ( )A .302cmB .402cmC .502cmD .602cm3.一个等腰三角形的两边长分别为4,8,则它的周长为( )A .12B .16C .20D .16或204.如图所示,在平面直角坐标系中,()A 00,,()B 20,,1AP B 是等腰直角三角形且1P 90∠=,把1AP B 绕点B 顺时针旋转180,得到2BP C ,把2BP C 绕点C 顺时针旋转180,得到3CP D ,依此类推,得到的等腰直角三角形的直角顶点P 2020的坐标为( )A .(4039,-1)B .(4039,1)C .(2020,-1)D .(2020,1)5.下列命题的逆命题是假命题的是( )A .全等三角形的面积相等;B .等腰三角形两个底角相等;C .直角三角形斜边上的中线等于斜边的一半;D .在角的平分线上任意一点到这个角的两边的距离相等.6.下列说法,正确的是( )A .等腰三角形的高、中线、角平分线互相重合B .到三角形二个顶点距离相等的点是三边垂直平分线的交点C .三角形一边上的中线将三角形分成周长相等的两个三角形D .两边分别相等的两个直角三角形全等7.若点A (x ,3)与点B (2,y )关于x 轴对称,则( )A .x=2,y =3B .x=2,y =-3C .x=-2,y =3D .x=-2,y =-38.在平面直角坐标系中,点()3,2A -和点()3,2B --的对称轴是A .x 轴B .y 轴C .直线3x =-D .直线2y =9.小天从镜子里看到镜子对面的电子钟如下图所示,则此时的实际时间是 ( )A .21:10B .10:21C .10:51D .12:0110.下列图形中,可以看作是轴对称图形的是( )A .B .C .D .11.如图,DE 是ABC ∆的边AB 的垂直平分线,D 为垂足,DE 交AC 于点E ,且8,5AC BC ==,则BEC ∆的周长是( )A .12B .13C .14D .1512.如图,在ABC ∆中,AB AC =,AC 的垂直平分线交AC 于点N ,交AB 于点M ,12AB cm =,BMC ∆的周长是20cm ,若点P 在直线MN 上,则PA PB -的最大值为( )A .12cmB .8cmC .6cmD .2cm二、填空题13.点A(1,-2)关于x 轴的对称点为B .则点B 的坐标为_____________.14.在直角坐标平面内,点M (﹣2,3)关于y 轴对称的点的坐标是_____.15.如图,在ABC 中,BC 的垂直平分线ED 交AB 于点E ,交BC 于点D ,连接CE ,若AB 8=,AC 5=,则AEC 的周长为______.16.如图,在矩形ABCD 中,AB 8=,BC 4=,将矩形沿对角线AC 折叠,点D 落在D'处,求重叠部分AFC 的面积.17.如图,Rt ABC ∆中,90︒∠=C ,AB 的垂直平分线DE 交AC 于点E ,连接BE . 若40A ︒∠=,则CBE ∠的度数为____________.18.如图,在直角坐标系中,点A ,B 的坐标分别为()1,4和()3,0,点C 是y 轴上的一个动点,且A ,B ,C 三点不在同一条直线上,当ABC ∆的周长最小时,点C 的坐标是_________.三、解答题19.如图,在ABC ∆中,ABC ∠和ACB ∠的平分线交于点E ,过点E 作//BC MN 交AB 于M ,光AC 于N ,若ABC ∆、AMN ∆周长分别为13cm 和8cm .(1)求证:MN BM CN =+;(2)线段BC 的长.20.已知在等腰△ABC 中,AB=AC=10,BC=16.(1)若将△ABC 的腰不变,底变为 12,甲同学说,这两个等腰三角形面积相等;乙同学说,腰不变,底变化,这两个三角形面积必不相等,请对甲、乙两种说法做出判断,并说明理由;(2)已知△ABC 底边上高增加 x ,腰长增加(x ﹣2)时,底却保持不变,请确定 x 的值.21.如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE 的度数;(2)过点D 作DF ∥BE ,交AC 的延长线于点F ,求∠F 的度数.22.在ABC 中,AB AC =,90BAC ∠=︒,点E 是直线AC 上一动点,点D 是直线BC 上动点,点F 是直线AB 上一动点,且90DEF ∠=︒,ED EF =.(1)如图1,当点D ,E ,F 分别在BC ,AC ,AB 边上时,请你判断线段AE ,AF ,EC 之间有怎样的数量关系?请直接写出你的结论;(2)如图2,当D 在BC 延长线上,E 在CA 延长线上,F 在CB 延长线上时,(1)中的结论是否成立?若成立,请利用图2证明;若不成立,请判断线段AE ,AF ,EC 之间有怎样的数量关系?并证明你的结论;(3)若5AB AC ==,当2AF =时,请直接写出CE 的长.23.已知,如图△ABC 中,AB =AC ,点D 在BC 上,且BD =AD ,DC =AC .并求∠B 的度数.24.问题情境:在等腰直角三角形ABC 中,90BAC AB AC ︒∠==,, 直线MN 过点A 且//BC MN ,过点B 为一锐角顶点作,90Rt BDE BDE ︒∆∠=,且点D 在直线MN 上(不与点A 重合),如图1, DE 与AC 交于点P ,试判断BD 与DP 的数量关系,并说明理由.探究展示:小星同学展示出如下正确的解法:解: BD DP =,证明如下:过点D 作DF MN ⊥,交AB 于点F则ADF ∆为等腰直角三角形.DA DF = 190290FDP FDP ︒︒∠+∠=∠+∠=,,12∠∠∴=(依据1)在BDF ∆与PDA ∆中12135DF DA DFB DAP ︒∠=∠⎧⎪=⎨⎪∠=∠=⎩BDF PDA ∴∆≅∆BD DP ∴=(依据2)(1)反思交流:上述证明过程中的“依据1”和“依据2”分别是指:依据1:依据2:拓展延伸:(2)在图2中,DE与CA延长线交于点P,试判断BD与DP的数量关系,并写出证明过程(3)在图3中,DE与CA延长线交于点P,试判断BD与DP的数量关系,并写出证明过程.25.如图所示,△ABC和△A′B′C′关于直线MN成轴对称,△A′B′C′和△A″B″C″关于直线EF 成轴对称.(1)画出直线EF;(2)直线MN与EF相交于点O,试探究∠BOB″与直线MN,EF所夹锐角α的数量关系.26.尺规作图:如图,要在公路MN旁修建一个货物中转站P,分别向A、B两个开发区运货.(1)若要求货站到A、B两个开发区的距离相等,那么货站应建在那里?(2)若要求货站到A、B两个开发区的距离和最小,那么货站应建在那里?(分别在图上找出点P,并保留作图痕迹.)【答案与解析】一、单选题1.B解析:B由已知条件,根据三角形内角和定理,求出图形中未知度数的角,即可根据等角对等边求得等腰三角形的个数.解:根据三角形的内角和定理,得:∠ABO=∠DCO=36°,根据三角形的外角的性质,得∠AOB=∠COD=72°.再根据等角对等边,得等腰三角形有△AOB,△COD,△ABC,△CBD和△BOC.故选B.2.D解析:D试题分析:根据题意可得:AB=13cm,BD=12BC=5cm,根据等腰三角形的性质可知:AD⊥BC,则根据勾股定理可得:AD=12cm,则△ABC的面积=10×12÷2=602cm.点睛:本题主要考查的就是等腰三角形的性质以及直角三角形的勾股定理的应用.在解答等腰三角形的问题时,我们经常会通过作底边上的高线,利用等腰三角形底边上的三线合一定理转化成直角三角形的问题来进行求解.同学们在解答三角形问题时,如果出现角平分线或者中垂线的时候,一定要特别注意中垂线的性质和角平分线的性质的应用.3.C解析:C试题分析:由于题中没有指明哪边是底哪边是腰,则应该分两种情况进行分析.①当4为腰时,4+4=8,故此种情况不存在;②当8为腰时,8﹣4<8<8+4,符合题意.故此三角形的周长=8+8+4=20.考点:(1)等腰三角形的性质;(2)三角形三边关系4.A解析:A过点P 1作P 1M ⊥x 轴于M ,先分别求出点P 1、P 2、P 3、P 4的坐标并找出横纵坐标的变化规律,然后归纳出点P n 的坐标,即可求出结论.解:过点P 1作P 1M ⊥x 轴于M∵()A 00,,()B 20,,1AP B 是等腰直角三角形且1P 90∠=, ∴AM=P 1M=12AB =1 ∴点P 1的坐标为(1,1)=(2×1-1,(-1)1+1)同理可得点P 2的坐标为(3,-1)=(2×2-1, (-1)2+1)点P 3的坐标为(5,1)=(2×3-1, (-1)3+1)点P 4的坐标为(7,-1)=(2×4-1, (-1)4+1)∴点P n 的坐标为(2n -1, (-1)n+1)∴点P 2020的坐标为(2×2020-1, (-1)2020+1)= (4039,-1)故选A .【点睛】此题考查的是探索坐标规律题,掌握等腰直角三角形的性质、找出横纵坐标的变化规律并归纳公式是解决此题的关键.5.A解析:A先确定每个命题的逆命题,再对每个选项依次判定即可解答.A.逆命题为:面积相等的三角形是全等三角形,是假命题,符合题意;B.逆命题为:两个角相等的三角形是等腰三角形,是真命题,不符合题意;C.逆命题为:一条边上的中线等于这条边的一半的三角形是直角三角形,是真命题,不符合题意;D.在角的内部到角的两边距离相等的点在这个角的平分线上,是真命题,不符合题意. 故选:A.【点睛】此题考查命题,正确的命题是真命题,错误的命题是假命题,正确确定每个命题的逆命题是解此题的关键.6.B解析:B由三线合一的条件可知A 不正确,由三角形垂直平分线的性质可知B 正确,由三角形的中线可知C 错误,根据全等三角形的判定判断D 错误,可得出答案.解:A、等腰三角形底边上的高、中线、顶角的角平分线互相重合,错误;B、到三角形二个顶点距离相等的点是三边垂直平分线的交点,正确;C、三角形一边上的中线将三角形分成面积相等的两个三角形,错误;D、若一个直角三角形的斜边和直角边与另一个直角三角形的两个直角边相等则这两个直角三角形不全等,错误;故选B.【点睛】本题主要考查等腰三角形的性质及直角三角形全等的判定,掌握等腰三角形和直角三角形全等的判定是解题的关键.7.B解析:B分析:根据关于x轴对称的点,横坐标相同,纵坐标互为相反数解答即可.详解:∵点A(x,3)与点B(2,y)关于x轴对称,∴x=2,y=-3.故选D.点睛:本题主要考查了关于x轴对称点的坐标的特征:横坐标不变,纵坐标互为相反数,熟知这一性质是解题的关键.8.A解析:A根据点A(−3,2)和点B(−3,−2)的横坐标相同,纵坐标互为相反数,即可得到它们关于x轴对称.解:∵点A(−3,2)和点B(−3,−2)的横坐标相同,纵坐标互为相反数,∴它们的对称轴是x轴,故选:A.【点睛】本题主要考查了关于坐标轴对称的点的坐标特征,解题时注意:关于x轴对称的点横坐标相同,纵坐标互为相反数.9.C解析:C利用镜面对称的性质求解.镜面对称的性质:在平面镜中的像与现实中的事物恰好顺序颠倒,且关于镜面对称.根据镜面对称的性质,题中所显示的时刻与12:01成轴对称,所以此时实际时刻为10:51,故选C.【点睛】本题考查镜面反射的原理与性质.解决此类题应认真观察,注意技巧.10.B解析:B根据轴对称图形的概念:如果一个图形关于一条直线对折,左右两边重合,则该图形就是轴对称图形,对每一项一一判断即可.A 、不是轴对称图形,故本选项错误;B 、是轴对称图形,故本选项正确;C 、不是轴对称图形,故本选项错误;D 、不是轴对称图形,故本选项错误.故选B .【点睛】主要考查了轴对称图形的判断方法,最主要的是能否找到使两边对称的直线是本题的关键.11.B解析:B直接利用线段垂直平分线的性质得出AE BE =,进而得出答案.解:∵DE 是ABC ∆的边AB 的垂直平分线,∴AE BE =,∵8,5AC BC ==,∴BEC ∆的周长是:13BE EC BC AE EC BC AC BC ++=++=+=.故选:B .【点睛】考核知识点:线段垂直平分线.理解线段垂直平分线性质是关键.12.B解析:B根据已知条件MN 垂直平分AC ,可知MA MC =,即可将BMC ∆的周长转换为AB+BC ,即可求出8BC cm =,再通过作辅助线(见详解),可得到PA PB PC PB -=-,则PBC ∆中PC PB BC -<,当P B C 、、共线时(PC PB -)有最大值即可得到PA PB -最大值,得到答案.解:∵MN 垂直平分AC∴MA MC =又∵20BMC C BM MC BC cm ∆=++=∴20BM MA BC cm ++=12BM MA AB cm +==8BC cm =在MN 上取点P 1∵MN 垂直平分AC连接1P A 、1P B 、1PC ∴11P A PC =∴PA PB PC PB -=-在1P BC ∆中11PC PB BC -< 当1P 运动2P 位置时,即P B C 、、共线时(PC PB -)有最大值,此时8PC PB BC cm -==.即PA PB -最大值是8cm,故答案选B.【点睛】本题考查了垂直平分线的性质,线段垂直平分线上的点到线段两端的距离相等二、填空题13.(12)解析:(1,2)根据“关于x 轴对称的点,横坐标相同,纵坐标互为相反数”即可求解.∵关于x 轴对称的点,横坐标相同,纵坐标互为相反数;∴点A(1,-2)关于x 轴的对称点B 的坐标为(1, 2).故答案为(1, 2).【点睛】本题考查了关于坐标轴对称的点的坐标,解题的关键是熟练的掌握关于坐标轴对称的点的坐标的性质.14.(23)解析:(2,3)根据关于y 轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可直接得到答案. 解:点P (-2,3)关于y 轴对称的点的坐标是(2,3),故答案为(2,3).【点睛】此题主要考查了关于y 轴对称点的坐标特点,关键是掌握点的坐标的变化规律. 15.13解析:13根据线段垂直平分线上的点到线段两端点的距离相等,得BE CE =,所以AEC 的周长等于边长AB 与AC 的和.解:DE 垂直平分BC ,BE CE ∴=,AB 8=,AC 5=, AEC ∴的周长AC CE AE AC AB 5813=++=+=+=.故答案为13.【点睛】本题主要考查线段垂直平分线上的点到线段两端点的距离相等的性质,熟练掌握性质是解题的关键.16.10解析:10矩形翻折后易知AF=FC ,利用直角三角形BFC ,用勾股定理求出CF 长,也就是AF 长,根据S △AFC =1AF?BC 2,即可求解. 设AF x =,依题意可知,矩形沿对角线AC 对折后有:D'B 90∠∠==,AFD'CFB ∠∠=,BC AD'= .AD'F ∴≌CBF .CF AF x ∴==.BF 8x ∴=-.在Rt BCF 中有222BC BF FC += .即2224(8x)x +-= .解得x 5=.AFC 11SAF BC 541022∴=⋅=⨯⨯=. 【点睛】本题主要考查了折叠的性质及其应用问题;灵活运用勾股定理是解本题的关键.17.{解析}根据线段的垂直平分线的性质得到EA =EB 得到∠ABE =∠A =40°根据三角形的外角的性质求出∠CEB 根据三角形内角和定理计算即可∵DE 是AB 的垂直平分线∴EA =EB ∴∠ABE =∠A =40°∴解析:10︒{解析}根据线段的垂直平分线的性质得到EA =EB ,得到∠ABE =∠A =40°,根据三角形的外角的性质求出∠CEB ,根据三角形内角和定理计算即可.∵DE是AB的垂直平分线,∴EA=EB,∴∠ABE=∠A=40°,∴∠CEB=80°,∵∠C=90°,∴∠CBE=10°,故选:A.【点睛】本题考查的是线段的垂直平分线的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.18.(03)解析:(0,3)作点B作关于y轴的对称点B′,连接AB′与y轴的交点就是点C的坐标.解: 作点B作关于y轴的对称点B′,连接AB′与y轴的交点是点C,此时△ABC的周长最小,∵A,B的坐标分别是(1,4)(3,0)∴B′的坐标是(-3,0),AE=4则B′E=4,∵C′O∥AE,∴B′O= C′O=3∴此时C′的坐标是(0,3),此时△ABC的周长最小.三、解答题19.(1)见解析;(2)5cm(1)由角平分线的定义,平行线的性质和等腰三角形的判定证明BM=ME,EN=NC则问题可解;(2)由等腰三角形的性质,线段的和差及等量代换,三角形的周长计算出线段BC的长为5cm.解:如图所示:(1)∵BE是∠ABC的角平分线,∴∠MBE=∠CBE,又∵MN∥BC,∴∠CBE=∠MEB,∴∠MEB =∠MBE,∴BM=ME同理BN=NC∴MN BM CN=+(2)∵△MBE为等腰三角形,∴MB=ME,同理可得:NE=NC,又∵AMN∆周长为AM+AN+MN,MN=ME+NE,∴AMN∆周长为AM+AN+ME+NE=AM+BM+AN+CN,∴AMN∆周长为AB+AC=8.又∵ABC∆周长为AB+AC+BC=13,∴BC=13-8=5cm.【点睛】本题综合考查了等腰三角形的判定与性质,平行线的性质,角平分线的定义,三角形的周长公式等相关知识点,解答关键是线段的等量代换和线段的和差进行计算.20.(1)甲说法对,乙说法不对,理由见解析;(2)x=9.(1)根据等腰三角形的性质和三角形的面积公式解答即可;(2)根据勾股定理解答即可.(1)甲说法对,乙说法不对,理由如下:过AD⊥BC于D,∵AB=AC=10,BC=16,∴BD=CD=8,根据勾股定理得:AD=6,∴ABC 1S BC AD482=⨯⨯=;过A′D′⊥B′C′于D′,∵A′B′=A′C′=10,B′C′=12,A′B′C′∴B′D′=C′D′=6,根据勾股定理得:A′D′=8,∴A'B'C'1S B'C'A'D'482=⨯⨯=;∴这个等腰三角形的面积没变化,甲说法对,乙说法不对,(2)依题意得,(10+x ﹣2)2=(6+x )2+82,解得:x=9.【点睛】此题考查勾股定理和等腰三角形的性质,熟练掌握相关知识是解题的关键.21.(1) 65°;(2) 25°.分析:(1)先根据直角三角形两锐角互余求出∠ABC=90°﹣∠A=50°,由邻补角定义得出∠CBD=130°.再根据角平分线定义即可求出∠CBE=12∠CBD=65°; (2)先根据直角三角形两锐角互余的性质得出∠CEB=90°﹣65°=25°,再根据平行线的性质即可求出∠F=∠CEB=25°.详解:(1)∵在Rt △ABC 中,∠ACB=90°,∠A=40°,∴∠ABC=90°﹣∠A=50°,∴∠CBD=130°.∵BE 是∠CBD 的平分线,∴∠CBE=12∠CBD=65°; (2)∵∠ACB=90°,∠CBE=65°,∴∠CEB=90°﹣65°=25°.∵DF ∥BE ,∴∠F=∠CEB=25°.点睛:本题考查了三角形内角和定理,直角三角形两锐角互余的性质,平行线的性质,邻补角定义,角平分线定义.掌握各定义与性质是解题的关键.22.(1)AE AF EC +=;(2)结论不成立;AF EC AE =+,证明见解析;(3)1.5CE =或 3.5CE =.(1)如图(见解析),先根据角的和差得出AFE GED ∠=∠,再根据三角形全等的判定定理与性质可得,AF GE AE GD ==,从而可得AE AF GD GE +=+,然后根据等腰三角形的判定与性质可得CG GD =,最后根据等量代换即可得;(2)如图(见解析),先根据角的和差可得EFA DEM ∠=∠,再根据三角形全等的判定定理与性质可得AE MD =,AF ME =,然后根据等腰三角形的性质可得CM MD =,最后根据线段的和差、等量代换即可得;(3)分点F 在线段AB 上和点F 在BA 的延长线上两种情况,先根据线段的和差可得5AE CE +=,再结合(1)和(2)的方法和结论可得AE ,AF ,EC 之间的数量关系等式,然后分别联立求解即可得.(1)AE AF EC +=,证明如下:如图,过点D 作DG AC ⊥于点G90BAC ∠=︒,90DEF ∠=︒90AFE AEF GED AEF ∴∠+∠=∠+∠=︒AFE GED ∴∠=∠在AEF 和GDE △中,90A DGE AFE GED EF DE ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩()AEF GDE AAS ∴≅,AF GE AE GD ∴==AE AF GD GE ∴+=+90BAC ∠=︒,AB AC = 1(180)452BA B C C ∴∠=∠=︒-∠=︒Rt CDG ∴是等腰直角三角形,且CG GD =AE AF CG GE EC ∴+=+=即AE AF EC +=;(2)(1)中的结论不成立,AF EC AE =+,证明如下:如图,过点D 作AC 的垂线,交AC 延长线于点M ,则90DME ∠=︒∵90BAC ∠=︒,AB AC =∴90EAF ∠=︒,45ACB ABC ∠=∠=︒∴90EAF DME ∠=∠=︒,90EFA FEA ∠+∠=︒∵90DEF ∠=︒∴90DEM FEA ∠+∠=︒∴EFA DEM ∠=∠在AEF 和MDE 中,EAF DME EFA DEM EF DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴()AEF MDE AAS ≅∴AE MD =,AF ME =∵90DME ∠=︒,45MCD ACB ∠=∠=︒∴45CDM MCD ∠=∠=︒∴CM MD AE ==∴AF ME EC CM EC AE ==+=+即AF EC AE =+;(3)5AB AC ==,2AF =AF AB ∴<因此,分以下两种情况:①如图3-1,点F 在线段AB 上5,2AC AF ==5AE CE AC ∴+==由(1)可知,AE AF EC +=,即2AE CE +=联立52AE CE AE CE +=⎧⎨+=⎩,解得 1.53.5AE CE =⎧⎨=⎩ ②如图3-2,点F 在BA 的延长线上过点D 作DN AC ⊥于点N同(1)和(2)可证:AEF NDE ≅,AE ND AF NE ∴==90,45CND C ∠=︒∠=︒9045CDN C ∴∠=︒-∠=︒CDN C ∴∠=∠ND CN CE NE ∴==+2AE CE AF CE ∴=+=+又5AE CE AC +==联立52AE CE AE CE +=⎧⎨=+⎩,解得 3.51.5AE CE =⎧⎨=⎩ 综上, 1.5CE =或 3.5CE =.【点睛】本题考查了三角形全等的判定定理与性质、等腰三角形的判定与性质、线段的和差等知识点,较难的是题(3),依据题意,正确分两种情况是解题关键.23.36°.试题分析:先设∠B=x,由AB=AC可知,∠C=x,由AD=BD可知∠B=∠DAB=x,由三角形外角的性质可知∠ADC=∠B+∠DAB=2x,根据AC=CD可知∠ADC=∠CAD=2x,再在△ABD中,由三角形内角和定理即可得出关于x的一元一次方程,求出x的值即可.试题解析:设∠B=x,∵AB=AC,∴∠C=∠B=x,∵AD=BD,∴∠B=∠DAB=x,∴∠ADC=∠B+∠DAB=2x,∵AC=CD,∴∠ADC=∠CAD=2x,在△ACD中,∠C=x,∠ADC=∠CAD=2x,∴x+2x+2x=180°,解得x=36°.∴∠B=36°.考点:等腰三角形的性质.24.(1)依据1:同角的余角相等,依据2:全等三角形的对应边相等;(2)=,见解析;(3)BD=DP,见解析BD DP(1)根据余角的概念、全等三角形的性质解答;(2)作DF⊥MN交AB的延长线于F,证明△BDF≌△PDA,根据全等三角形的性质证明结论;(3)作DF⊥MN交BA的延长线于F,证明△BDF≌△PDA,根据全等三角形的性质证明结论.()1依据1:同角的余角相等依据2:全等三角形的对应边相等;故答案为:同角的余角相等;全等三角形的对应边相等;()2BD DP =成立. 如图2,过点D 作DF MN ⊥,交AB 的延长线于点F则ADF ∆为等腰直角三角形,.DA DF ∴=∴90FDB ADB ︒∠+∠=,90ADB ADP ︒∠+∠=∴∠FDB=∠ADP,在BDF ∆与PDA ∆中,∴∠FDB=∠ADP , DF DA =45DFB DAP ︒∠=∠=() BDF PDA ASA ∴∆∆≌.BD DP ∴=()3BD=DP .如答图3,过点D 作DF MN ⊥,交AB 的延长线于点F则ADF ∆为等腰直角三角形,.DA DF ∴=在BDF ∆与PDA ∆中,45F PAD ︒∠=∠=DF DA =BDF PDA∠=∠()≌BDF PDA ASA∴∆∆∴=BD DP.【点睛】本题考查的是全等三角形的判定和性质、等腰直角三角形的性质、余角的性质,掌握全等三角形的判定定理和性质定理是解题的关键.25.(1)见解析;(2)∠BO B″=2∠α(1)找到并连接关键点,作出关键点的连线的垂直平分线;(2)根据对称找到相等的角,然后进行推理.(1)如图,连接B'B″,作线段B'B″的垂直平分线EF,则直线EF是△A'B'C'和△A″B″C″的对称轴.(2)连接B'O.因为△ABC和△A'B'C'关于直线MN对称,所以∠BOM=∠B'OM.又因为△A'B'C'和△A″B″C″关于直线EF对称,所以∠B'OE=∠B″OE.所以∠BOB″=∠BOM+∠B'OM+∠B'OE+∠B″OE=2(∠B'OM+∠B'OE)=2∠α,即∠BOB″=2∠α.26.(1)答案见解析;(2)答案见解析.(1)要使货站到A、B两个开发区的距离相等,可连接AB,线段AB中垂线与MN的交点即为货站的位置;(2)由于两点之间线段最短,所以做点A作A’关于MN对称,连接BA’,与MN的交点即为货站的位置.(1)如图所示:(2)如图所示:【点睛】本题考查的是中垂线的性质与两点之间线段最短的知识,掌握中垂线的作图方法是以线段的两个端点为圆心,以大于二分之一线段的长度为半径,分别以线段两个端点为圆心画弧,连接两个交点即可,本题(2)中关键是通过中垂线找到点A的对称点(画图过程同(1),但需要从MN中任选两个点为线段端点,因为MN太长了,不方便作图),从而利用两点之间线段最短的的知识解答.。
人教版八年级上册数学十三章轴对称单元训练题 (15)一、单选题1.在△ABC中,已知AB=AC,且一内角为100°,则这个等腰三角形底角的度数为A.100°B.50°C.40°D.30°2.坐标平面内一点A(1,2),O是原点,P是x轴上一个动点,如果以点P、O、A为顶点的三角形为等腰三角形,那么符合条件的动点P的个数为()A.1 B.2 C.3 D.43.如图,△ABC中,AB=AC,D为BC的中点,DE⊥AC于点E,已知AB=5,AD=3,则DE的长为( )A.1.2 B.2 C.2.4 D.4.84.如图,在△PAB中,∠A=∠B,D、E、F分别是边PA、PB、AB上的点,且AD=BF,BE=AF.若∠DFE=34°,则∠P的度数为()A.112°B.120°C.146°D.150°5.如图,轮船从B处以每小时50海里的速度沿南偏东30方向匀速航行,在B处观测灯塔A位于南偏东75︒方向上.轮船航行半小时到达C处,在C处观测灯塔A位于北偏东60︒方向上,则C处与灯塔A的距离是()A.50海里B.45海里C.35海里D.25海里6.等腰三角形的顶角为80°,则它的底角是()A.20°B.50°C.60°D.80°7.若等腰三角形中有两边长分别为2和3,则这个三角形的周长为( )A.7 B.7或8 C.8 D.9或78.如图,已知等腰△ABC中,AB=AC,AD⊥BC,下列不正确的是()A.BD=CD B.∠DAB=∠DAC C.当∠B=60°时,AB=2BD D.AD=BC 9.点M(﹣5,2)关于x轴对称的坐标是()A.(﹣5,﹣2)B.(5,﹣2)C.(5,2)D.(﹣5,2)10.下列轴对称图形中只有一条对称轴的是()A.B.C.D.11.将长方形纸片按如图所示的方式折叠,BC、BD为折痕,若∠ABC=35°,则∠DBE的度数为A.55°B.50°C.45°D.60°12.下列图形中,是轴对称图形但不是中心对称图形的是 ( )A.B.C.D.二、填空题13.平面直角坐标系中,与点(4,-3)关于x轴对称的点是______.14.若点P(m,m﹣1)在x轴上,则点P关于x轴对称的点为_____.15.已知点P(m+1,5)与Q(4,n+2)关于x轴对称,则m-n=_________.16.和已知线段的两端点距离相等,且到一个已知点的距离等于定长的点最多有______个.17.如图,Rt △ABC 中,∠C =90°,AB 边上的中垂线分别交BC 、AB 于点D 、E ,若BC =7cm ,AC =4cm ,△ADC 的周长为_____cm .18.如图,△ABC 申,BC 的垂直平分线DP 与∠BAC 的角平分线相交于点D ,垂足为点P ,若∠BAC=82︒,则∠BDC=____.三、解答题19.如图,在ABC ∆中,60A ∠=︒,2ABC C ∠=∠,BC 边的垂直平分线交AC 边于点D ,交BC 边于点BC ,连接BD ,求ADB ∠的度数.20.如图梯形ABCD 中,AD ∥BC ,AB =AD =CD ,BD ⊥CD ,求∠C 的度数.21.已知射线AC 是MAN ∠的角平分线,60NAC ∠=︒,点B 是射线AN 上的点,连接BC .(1)如图1,当点D 在射线AM 上时,连接BD ,CD .若90ABC ADC ∠=∠=︒,则BCD ∆的形状是_____.(2)如图2,当点D 在射线AM 的反向延长线AG 上时,连接BD ,CD .若ABC ADC ∠=∠,则(1)中的结论是否成立?请说明理由.22.已知:Rt△ABC中,∠C=90°,∠ABC=30°.(1)探究应用1:如图1,Rt△ABC中,∠C=90°,∠ABC=30°,点D在线段CB上,以AD为边作等边△ADE,连接BE,为探究线段BE与DE之间的数量关系,组长已经添加了辅助线:取AB 的中点F,连接EF.线段BE与DE之间的数量关系是_________,并说明理由;(2)探究应用2:如图2,Rt△ABC中,∠C=90°,∠ABC=30°,点D在线段CB的延长线上,以AD 为边作等边△ADE,连接BE.线段BE与DE之间的数量关系是__________,并说明理由。
人教版八年级数学上册第十三章轴对称同步测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在△ABC 中,DE 是AC 的垂直平分线,且分别交BC ,AC 于点D 和E ,∠B =60°,∠C =25°,则∠BAD 为( )A .50°B .70°C .75°D .80°2、如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .3、在Rt ABC ∆中,90C ∠=︒,30A ∠=︒,12AB BC cm +=,则AB 的长度为( )A .6cmB .7cmC .8cmD .9cm4、一个三角形具备下列条件仍不是等边三角形的是( )A .一个角的平分线是对边的中线或高线B .两边相等,有一个内角是60°C .两角相等,且两角的和是第三个角的2倍D .三个内角都相等5、若点()2,3A a -和点()1,5B b -+关于x 轴对称,则点(),C a b 在( )A .第一象限B .第二象限C .第三象限D .第四象限6、2020年初,新冠状病毒引发肺炎疫情,全国多家医院纷纷派医护人员驰援武汉.下面是四家医院标志得图案,其中是轴对称图形得是( )A .B .C .D .7、如图,若ABC 是等边三角形,6AB =,BD 是ABC ∠的平分线,延长BC 到E ,使CE CD =,则BE =( )A .7B .8C .9D .108、如图,在ABC ∆中,4AC =,ADE ∆的周长10,ABC ∠和ACB ∠的平分线交于点O ,过点O 作//DE BC 分别交AB 、AC 于D 、E ,则AB 的长为( )A .10B .6C .4D .不确定9、如图,先将正方形纸片对折,折痕为MN,再把B 点折叠在折痕MN 上,折痕为AE,点B 在MN 上的对应点为H,沿AH 和DH 剪下,这样剪得的△ADH 中 ( )A .AH=DH≠ADB .AH=DH=ADC .AH=AD≠DHD .AH≠DH≠AD10、以下四个标志,每个标志都有图案和文字说明,其中的图案是轴对称图形是( )A .B .C .D .第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在ABC 中,AB AC =,点E 在CA 延长线上,EP BC ⊥于点P ,交AB 于点F ,若10CE =,3AF =,则BF 的长度为______.2、如图,BD 垂直平分线段AC ,AE ⊥BC ,垂足为E ,交BD 于P 点,AE =7cm ,AP =4cm ,则P 点到直线AB 的距离是_____.3、如图,AB 的垂直平分线l 交AB 于点M ,P 是l 上一点,PB 平分∠MPN .若AB =2,则点B 到直线PN 的距离为__________.4、如图,在△ABC 中,AB <AC ,BC 边上的垂直平分线DE 交BC 于点D ,交AC 于点E ,BD=4,△ABE 的周长为14,则△ABC 的周长为_____.5、如图, 在△ABC 中, ∠ACB 的平分线交AB 于点D, DE⊥AC 于点E, F 为BC 上一点,若DF=AD, △ACD 与△CDF 的面积分别为10和4, 则△AED 的面积为______三、解答题(5小题,每小题10分,共计50分)1、已知ABC 的三边长分别为a ,b ,c .(1)若2a =,3b =,求c 的取值范围;(2)在(1)的条件下,若c 为奇数,试判断ABC 的形状,并说明理由.2、如图,在△ABC 中,AB =AC ,D ,E 是BC 边上的点,连接AD ,AE ,以△ADE 的边AE 所在直线为对称轴作△ADE 的轴对称图形△AD 'E ,连接D 'C ,若BD =CD '.(1)求证:△ABD ≌△ACD '.(2)若∠BAC =100°,求∠DAE 的度数.3、如图,在△ABC 和△DCB 中,∠A =∠D =90°,AC =BD ,AC 与BD 相交于点O .(1)求证:△ABC ≌△DCB ;(2)△OBC 是何种三角形?证明你的结论.4、如图,已知△ABC 中,AB =AC ,∠A =108°,BD 平分∠ABC .求证:BC =AB +CD .5、平面直角坐标系中,点A 坐标为(0,2)-,,B C 分别是x 轴,y 轴正半轴上一点,过点C 作//CD x 轴,3CD =,点D 在第一象限,32ACD AOB S S ∆∆=,连接AD 交x 轴于点E ,45BAD ∠=︒,连接BD .(1)请通过计算说明AC OB =;(2)求证ADC ADB ∠=∠;(3)请直接写出BE 的长为 .-参考答案-一、单选题1、B【解析】【分析】根据线段垂直平分线的性质得到DA=DC,根据等腰三角形的性质得到∠DAC=∠C,根据三角形内角和定理求出∠BAC,计算即可.【详解】∵DE是AC的垂直平分线,∴DA=DC,∴∠DAC=∠C=25°,∵∠B=60°,∠C=25°,∴∠BAC=95°,∴∠BAD=∠BAC-∠DAC=70°,故选B.【考点】本题考查的是线段垂直平分线的性质、等腰三角形的性质,掌握线段的垂直平分线上的点到线段的两个端点的距离相等是解题的关键.2、D【解析】【分析】根据ED是BC的垂直平分线、BD是角平分线以及∠A=90°可求得∠C=∠DBC=∠ABD=30°,从而可得CD=BD=2AD=6,然后利用三角函数的知识进行解答即可得.【详解】∵ED 是BC 的垂直平分线,∴DB=DC,∴∠C=∠DBC,∵BD 是△ABC 的角平分线,∴∠ABD=∠DBC,∵∠A=90°,∴∠C+∠ABD+∠DBC=90°,∴∠C=∠DBC=∠ABD=30°,∴BD=2AD=6,∴CD=6,故选D .【考点】本题考查了线段垂直平分线的性质,三角形内角和定理,含30度角的直角三角形的性质,余弦等,结合图形熟练应用相关的性质及定理是解题的关键.3、C【解析】【分析】根据直角三角形的性质30°所对的直角边等于斜边的一半求解即可.【详解】∵在Rt △ABC 中,90C ∠=︒,30A ∠=︒,∴12BC AB =, ∴=2AB BC∵12AB BC cm +=,∴3BC =12cm .∴BC =4cm∴AB =8cm故选:C【考点】本题考查了含30度角的直角三角形的性质,掌握含30度角的直角三角形的性质是解题的关键.4、A【解析】【分析】根据等边三角形的判定方法即可解答.【详解】选项A ,一个角的平分线是对边的中线或高线,能判定该三角形是等腰三角形,不能判断该三角形是等边三角形;选项B ,两边相等,有一个内角是60°,根据有一个角为60°的等腰三角形是等边三角形,即可判定该三角形是等边三角形;选项C ,两角相等,且两角的和是第三个角的2倍 ,根据三角形的内角和定理可求得该三角形的三个内角的度数都为60°,即可判定该三角形是等边三角形;选项D ,三个内角都相等,根据三角形的内角和定理可求得该三角形的三个内角的度数都为60°,即可判定该三角形是等边三角形.故选A.【考点】本题考查了等边三角形的判定,熟练运用等边三角形的判定方法是解决问题的关键.5、D【解析】【分析】根据关于x轴对称的点的横坐标相等,纵坐标互为相反数,可得答案.【详解】点A(a−2,3)和点B(−1,b+5)关于x轴对称,得a−2=-1,b+5=-3.解得a=1,b=−8.则点C(a,b)在第四象限,故选:D.【考点】本题考查了关于y轴对称的点的坐标,利用关于y轴对称的点的横坐标互为相反数,纵坐标相等得出a−2=-1,b+5=-3是解题关键.6、B【解析】【分析】根据轴对称图形的概念对各选项分析判断即可得解.如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:选项B能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以是做轴对称图形;选项A、C、D不能找到这样的一条直线,使图形沿一条直线折叠,直线两旁的部分能够互相重合,所以不是做轴对称图形;故选:B.【考点】本题考查了轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.7、C【解析】【分析】根据等边三角形三线合一得到BD垂直平分CA,所以CD=1122AC AB,另有CE CD,从而求出BE的长度.【详解】解:由于△ABC是等边三角形,则其三边相等,BD也是AC的垂直平分线,即AB=BC=CA=6,AD=DC=3,已知CE=CD,则CE=3.而BE=BC+CE,因此BE=6+3=9.故答案选C.【考点】本题考查了等边三角形性质,看到等边三角形应想到三条边相等,三线合一.8、B【解析】【分析】根据平行线、角平分线和等腰三角形的关系可证DO = DB 和EO=EC ,从而得出DE=DB +EC ,然后根据ADE ∆的周长即可求出AB.【详解】解:∵//DE BC∴∠OBC=∠DOB∵BO 平分ABC ∠∴∠OBC=∠DBO∴∠DOB=∠DBO∴DO = DB同理可证:EO=EC∴DE=DO+EO= DB +EC∵4AC =,ADE ∆的周长10,∴AD+AE +DE=10∴AD+AE +DB +EC =10∴AB+AC=10∴AB=10-AC=6故选B.【考点】此题考查的是平行线的性质、角平分线的定义和等腰三角形的判定,掌握平行线、角平分线和等腰三角形的关系是解决此题的关键.9、B【解析】【分析】翻折后的图形与翻折前的图形是全等图形,利用折叠的性质,正方形的性质,以及图形的对称性特点解题.【详解】解:由图形的对称性可知:AB=AH,CD=DH,∵正方形ABCD,∴AB=CD=AD,∴AH=DH=AD.故选B.【考点】本题主要考查翻折图形的性质,解决本题的关键是利用图形的对称性把所求的线段进行转移.10、D【解析】【分析】根据轴对称图形的定义判断即可【详解】∵A,B,C都不是轴对称图形,∴都不符合题意;D是轴对称图形,符合题意,故选D.【考点】本题考查了轴对称图形的定义,准确理解轴对称图形的定义是解题的关键.二、填空题1、4【分析】根据等边对等角得出∠B=∠C,再根据EP⊥BC,得出∠C+∠E=90°,∠B+∠BFP=90°,从而得出∠E=∠BFP,再根据对顶角相等得出∠E=∠AFE,最后根据等角对等边即可得出答案.【详解】证明:在△ABC中,∵AB=AC,∴∠B=∠C,∵EP⊥BC,∴∠C+∠E=90°,∠B+∠BFP=90°,∴∠E=∠BFP,又∵∠BFP=∠AFE,∴∠E=∠AFE,∴AF=AE=3,∴△AEF是等腰三角形.又∵CE=10,∴CA=AB=7,∴BF=AB-AF=7-3=4,故答案为:4.【考点】本题考查了等腰三角形的判定和性质,解题的关键是证明∠E=∠AFE,注意等边对等角,以及等角对等边的使用.2、3cm.【分析】由已知条件,根据垂直平分线的性质得出AB=BC,可得到∠ABD=∠DBC,再利用角平分线上的点到角两边的距离相等得到答案.【详解】解:过点P作PM⊥AB与点M,∵BD垂直平分线段AC,∴AB=CB,∴∠ABD=∠DBC,即BD为角平分线,∵AE=7cm,AP=4cm,∴AE﹣AP=3cm,又∵PM⊥AB,PE⊥CB,∴PM=PE=3(cm).故答案为:3cm.【考点】本题综合考查了线段垂直平分线的性质及角平分线的性质,线段垂直平分线上的点到线段两端的距离相等,角平分线上的点到角两边的距离相等,灵活应用线段垂直平分线及角平分线的性质是解题的关键.3、1【解析】根据线段垂直平分线的性质得出BM=1,根据角平分线的性质得到BN=BM=1,即可得出答案.【详解】解:如图,过点B作BC⊥PN,垂足为点C,∵AB的垂直平分线l交AB于点M,∴112BM AB==,BM⊥PM,∵PB平分∠MPN,BM⊥PM,BC⊥PN,∴BC=BM=1,∴点B到直线PN的距离为1,故答案为:1.【考点】本题考查了线段垂直平分线的性质与角平分线的性质,能熟记线段垂直平分线上的点到线段两个端点的距离相等是解此题的关键.4、22【解析】【详解】【分析】根据线段垂直平分线上的点到线段两端点的距离相等可得BE=CE,然后求出△ABE的周长=AB+AC ,再求出BC 的长,然后根据三角形的周长定义计算即可得解.【详解】∵BC 边上的垂直平分线DE 交BC 于点D ,交AC 于点E ,BD=4,∴BE=EC,BC=2BD=8;又∵△ABE 的周长为14,∴AB+AE+BE=AB+AE+EC=AB+AC=14,∴△ABC 的周长是:AB+AC+BC=14+8=22,故答案是:22.【考点】本题考查了线段垂直平分线上的点到线段两端点的距离相等的性质,三角形的周长,熟记性质是解题的关键.5、3【解析】【分析】如图(见解析),过点D 作DG BC ⊥,根据角平分线的性质可得DE DG =,再利用三角形全等的判定定理得出,CDE CDG ADE FDG ∆≅∆∆≅∆,从而有,CDE CDG ADE FDG S S S S ∆∆∆∆==,最后根据三角形面积的和差即可得出答案.【详解】如图,过点D 作DG BC ⊥ CD 平分ACB ∠,DE AC ⊥DE DG ∴=CD CD =()CDE CDG HL ∴∆≅∆CDE CDG S S ∆∆∴=又AD FD =()ADE FDG HL ∴∆≅∆ADE FDG S S ∆∆∴=104ACD ADE CDE CDE CDG CDF FDG ADES S S S S S S S ∆∆∆∆∆∆∆∆=+=⎧∴⎨==+=+⎩ 则410ADE ADE S S ∆∆++=解得3ADE S ∆=故答案为:3.【考点】本题考查了角平分线的性质、直角三角形全等的判定定理等知识点,通过作辅助线,构造两个全等的三角形是解题关键.三、解答题1、(1)1<c <5;(2)△ABC 为等腰三角形【解析】【分析】(1)根据三角形的三边关系定理可得3-2<c <3+2,再解不等式即可;(2)根据c 的范围可直接得到答案.【详解】解:(1)根据三角形的三边关系定理可得3-2<c <3+2,即1<c <5;(2)∵第三边c 为奇数,∴c=3,∵a=2,b=3,∴b=c,∴△ABC 为等腰三角形.【考点】此题主要考查了三角形的三边关系及等腰三角形的判断,关键是掌握三角形三边关系定理:三角形两边之和大于第三边,三角形的两边差小于第三边.2、(1)见解析;(2)50︒.【解析】【分析】(1)由对称得到AD AD =',再证明ABD △≅ACD '△ ()SSS 即可;(2)由全等三角形的性质,得到BAD CAD '∠=∠,∠BAC =DAD '∠=100°,最后根据对称图形的性质解题即可.【详解】解:(1)以△ADE 的边AE 所在直线为对称轴作△ADE 的轴对称图形△A D E ',AD AD '∴=在△ABD 与ACD '△中,AB AC BD CD AD AD ''=⎧⎪=⎨⎪=⎩ABD ∴≅ACD '△ ()SSS(2)ABD ≅ACD '△ ()SSSBAD CAD '∴∠=∠,∠BAC =DAD '∠=100°,以△ADE 的边AE 所在直线为对称轴作△ADE 的轴对称图形△A D E ',111005022DAE D AE DAD ''∴∠=∠=∠=⨯︒=︒ ∴∠DAE 50=︒.【考点】本题考查全等三角形的判定与性质、轴对称的性质等知识,是重要考点,难度一般,掌握相关知识是解题关键.3、 (1)见解析(2)等腰三角形,证明见解析【解析】【分析】(1)利用HL 公理证明 Rt △ABC ≌Rt △DCB ;(2)利用Rt △ABC ≌Rt △DCB 证明∠ACB =∠DBC ,从而证明△OBC 是等腰三角形.(1)证明:在△ABC 和△DCB 中,∠A =∠D =90°AC =BD ,BC 为公共边,∴Rt △ABC ≌Rt △DCB (HL );(2)△OBC 是等腰三角形,证明:∵Rt △ABC ≌Rt △DCB ,∴∠ACB=∠DBC,∴OB=OC,∴△OBC是等腰三角形.【考点】此题主要考查斜边直角边判定两个直角三角形全等和等腰三角形的判定与性质,熟练掌握斜边直角边等腰三角形的判定与性质是解题的关键.4、证明见解析【解析】【分析】在BC上截取点E,并使得BE=BA,连接DE,证明△ABD≌△EBD,得到∠DEB=∠BAD=108°,进一步计算出∠DEC=∠CDE=72°得到CD=CE即可证明.【详解】证明:在线段BC上截取BE=BA,连接DE,如下图所示:∵BD平分∠ABC,∴∠ABD=∠EBD,在△ABD和△EBD中:AB BEABD EBD BD BD=⎧⎪∠=∠⎨⎪=⎩,∴△ABD≌△EBD(SAS),∴∠DEB=∠BAD=108°,∴∠DEC =180°-108°=72°,又AB =AC ,∴∠C =∠ABC =(180°-108°)÷2=36°,∴∠CDE =180°-∠C -∠DEC =180°-36°-72°=72°,∴∠DEC =∠CDE ,∴CD =CE ,∴BC =BE +CE =AB +CD .【考点】本题考查了角平分线的定义,三角形内角和定理,全等三角形的判定与性质,等腰三角形性质等,本题的关键是能在BC 上截取BE ,并使得BE =BA ,这是角平分线辅助线和全等三角形的应用的一种常见作法.5、(1)证明见解析;(2)证明见解析;(3)5BE =.【解析】【分析】(1)先根据点A 坐标可得OA 的长,再根据32ACD AOB S S ∆∆=即可得证;(2)如图(见解析),延长DC 至点H ,使得CH OA =,连接AH ,先根据三角形全等的判定定理与性质可得,12,AH AB H CAB =∠=∠∠=∠,再根据直角三角形的性质和45BAD ∠=︒得出45HAD BAD ∠=∠=︒,然后根据三角形全等的判定定理与性质即可得证; (3)先由题(2)两个三角形全等可得5BD DH ==,再根据平行线的性质得出3ADC ∠=∠,从而有3ADB ∠=∠,然后根据等腰三角形的定义(等角对等边)即可得.【详解】(1)(0,2)A -2OA ∴=11,,3,3222ACD OAB ACD AOB S CD AC S O S S OB CD A ∆∆∆∆=⋅==⋅=131222CD AC OA OB ⋅=⨯⋅∴,即31322221AC OB ⨯=⨯⨯ AC OB =∴;(2)如图,延长DC 至点H ,使得CH OA =,连接AHOB AC =,//CD x 轴90HCA AOB ∴∠=∠=︒()ACH BOA SAS ∆≅∆∴,12,AH AB H CAB =∠=∠∠=∠∴190H ︒∠+∠=190CAB ∠+∠=︒∴45BAD ∠=︒45HAD BAD ∴∠=∠=︒()HAD BAD SAS ∴∆≅∆ADH ADB ∴∠=∠,即ADC ADB ∠=∠;(3)由(2)已证,,325HAD BAD ADC ADB DH CD CH CD OA ∆≅∆∠=∠⎧⎨=+=+=+=⎩ 5BD DH ∴==//CD x 轴3ADC ∴∠=∠3ADB ∴∠=∠5BE BD ∴==(等角对等边)故答案为:5.【考点】本题考查了三角形全等的判定定理与性质、等腰三角形的定义、平行线的性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.。
2022-2023学年人教版八年级数学上册《第13章轴对称》假期自主提升训练(附答案)一.选择题1.自新冠肺炎疫情发生以来,全国人民共同抗疫,各地积极普及科学防控知识,下面是科学防控知识的图片,图片上有图案和文字说明,其中图案是轴对称图形的是()A.打喷嚏捂口鼻B.喷嚏后慎揉眼C.勤洗手勤通风D.戴口罩讲卫生2.已知点A的坐标为(﹣1,2),点A关于x轴的对称点的坐标为()A.(1,2)B.(2,﹣1)C.(1,﹣2)D.(﹣1,﹣2)3.等腰三角形一边长等于4,一边长等于9,则它的周长等于()A.17B.22C.17或22D.134.如图,在△ABC中,DE是AC的垂直平分线,AC=6cm,且△ABD的周长为13cm,则△ABC的周长为()cm.A.13B.19C.10D.165.如图,已知直线m是正五边形ABCDE的对称轴,连接BD交m于点F,则∠1的度数为()A.36°B.70°C.72°D.108°6.在△ABC中,AB=AC,OB=OC,点A到BC的距离是6,O到BC的距离是4,则AO 为()A.2B.10C.2或10D.无法测量二.填空题7.小强从镜子中看到的电子表的读数是,则电子表的实际读数是.8.在平面直角坐标系中,点A(1,﹣1)和B(1,1)关于轴对称.9.如图,直线l1∥l2,等边△ABC的顶点C在直线l2上,若边AB与直线l1的夹角∠1=40°,则边AC与直线l2的夹角∠2=°.10.如图,△ABC中,∠ACB=90°,∠A=30°,AB=4,若CD是高,则BD=.11.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出的不同的等腰三角形的个数最多为.12.若等腰三角形一腰上的高和另一腰的夹角为25°,则该三角形的一个底角是.三.解答题13.已知点A(a+2b,1),B(﹣2,2a﹣b),若点A,B关于y轴对称,求a+b的值.14.如图,已知△ABC中,AB=AC,AB的垂直平分线DE交AC于D,垂足为E.(1)若AB=19,BC=16,求△BCD的周长;(2)若∠A=36°,求∠DBC的度数.15.如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线ED交AB于点E,交BC于点D,若CD=3,求BC的长.16.图1中,AB=AC,AD=AE,图2是一个等腰梯形,请用无刻度的直尺,在图1,图2中作出它们的对称轴.17.如图,△ABC是等边三角形,BE是∠ABC的平分线,交AC于点E,延长BC到D,使CD=CE,求证:EB=ED.18.如图,在△ABC中,AB=AC,D为AB边的中点,DE⊥AC于点E,DF⊥BC于点F,DE=DF.求证:△ABC是等边三角形.19.如图,在△ABC中,AB=AC,BE平分∠ABC,DE∥BC,交AB于点D,交AC于点E.(1)求证:BD=DE;(2)若∠DEB=30°且DE=3,求AD的长度.20.在等边三角形ABC中,AD是BC边上的高,E为AC的中点,P为AD上一动点,若AD=12,试求PC+PE的最小值.21.如图,在△ABC中,AB=AC,∠ABC的平分线BE交AC于点D,AF⊥AB交BE于点F.(1)如图1,若∠BAC=40°,求∠AFE的度数.(2)如图2,若BD⊥AC,垂足为D,BF=8,求DF的长.22.如图,△ABC是等边三角形,D、E分别是BC、AC边上的点,连接AD、BE,且AD、BE相交于点P,∠AEB=∠CDA.(1)求∠BPD的度数.(2)过点B作BQ⊥AD于Q,若PQ=3,PE=1,求BE的长.参考答案一.选择题1.解:A、不是轴对称图形,不合题意;B、不是轴对称图形,不合题意;C、不是轴对称图形,不合题意;D、是轴对称图形,符合题意.故选:D.2.解:∵点A的坐标为(﹣1,2),∴点A关于x轴的对称点的坐标为(﹣1,﹣2),故选:D.3.解:∵4+4=8<9,0<4<9+9=18,∴腰的不应为4,而应为9,∴等腰三角形的周长=4+9+9=22,故选:B.4.解:∵DE是AC的垂直平分线,∴AD=DC,∵△ABD的周长为13cm,∴AB+BD+AD=AB+BD+DC=AB+BC=13cm,∵AC=6cm,∴△ABC的周长为AB+BC+AC=13cm+6cm=19cm,故选:B.5.解:∵直线m是正五边形ABCDE的对称轴,∴FC=FD,∵CB=CD,∠BCD=108°,∴∠CDB=∠CBD=36°,∴∠FCD=∠FDC=36°,∴∠1=∠FCD+∠FDC=72°,故选:C.6.解:∵AB=AC,OB=OC,∴A、O都在线段BC的垂直平分线上,∴AM⊥BC,∵点A到BC的距离为6,点O到BC的距离为4,∴AM=6,OM=4,∴①O在△ABC内,∴AO=AM﹣OM=2,②O在△ABC外,∴AO=AM+OM=10.故选:C.二.填空题7.解:∵镜面所成的像为反像,∴此时电子表的实际读数是02:05.故答案为:02:05.8.解:点A(1,﹣1)和B(1,1)关于x轴对称,故答案为x.9.解:如图,∵△ABC是等边三角形,∴∠A=60°,∵∠3=∠1=40°,∴∠4=60°+40°=100°,∵l1∥l2,∴∠2=∠4=100°.故答案为:100.10.解:在Rt△ABC中,∵∠ACB=90°,AB=4,∠A=30°,∴BC=AB=2,∵CD⊥AB,∴∠ADC=∠CDB=90°,∴∠ACD=60°,∴∠BCD=90°﹣60°=30°,∴BD=BC=1,故答案为1.11.解:如图:可以画出7个等腰三角形;故答案为7.12.解:①如图,∵∠ABD=25°,∠BDA=90°,∴∠A=65°,∵AB=AC,∴∠C=(180°﹣65°)÷2=57.5°②如图,∵∠ABD=25°,∠BDA=90°,∴∠BAD=65°,∵AB=AC,∴∠C=65°÷2=32.5°.故答案为:57.5°或32.5°.三.解答题13.解:∵点A(a+2b,1),B(﹣2,2a﹣b)关于y轴对称,∴,解得,所以,a+b=+=.14.解:(1)∵AB=AC,AB=19,∴AC=19.∵DE⊥AB,且平分AB,∴DA=DB,∴DB+DC=DA+DC=AC,∴△BCD的周长=DB+DC+BC=AC+BC=19+16=35;(2)∵AB=AC,∠A=36°,∴∠ABC=∠C=(180°﹣36°)÷2=72°,∵DA=DB,∠A=36°,∴∠ABD=∠A=36°,∴∠DBC=∠ABC﹣∠ABD=72°﹣36°=36°.15.解:∵DE是线段AB的垂直平分线,∴AD=BD,∵∠B=30°,∴∠BAD=∠B=30°,又∵∠C=90°,∴∠CAB=90°﹣∠B=90°﹣30°=60°,∴∠DAC=∠CAB﹣∠BAD=60°﹣30°=30°,在Rt△ACD中,CD=AD,∴AD=2CD=2×3=6,∴BD=AD=6,∴BC=BD+CD=6+3=9.16.解:如图1,直线OA为所作;如图2,直线MN为所作.17.证明:∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,∵BE是∠ABC的平分线,∴∠EBC=30°,∵CD=CE,∴∠CED=∠EDC,∵∠ACB=∠ECD+∠EDC=60°,∴∠CED=∠EDC=30°,∴∠EBC=∠EDC,∴EB=ED.18.证明:∵D为AB的中点,∴AD=BD.∵DE⊥AC,DF⊥BC,∴∠AED=∠BFD=90°.在Rt△ADE和Rt△BDF中,,∴Rt△ADE≌Rt△BDF(HL),∴∠A=∠B,∴CA=CB,∵AB=AC,∴AB=BC=AC∴△ABC是等边三角形.19.证明:(1)∵BE平分∠ABC,∴∠ABE=∠EBC,∵DE∥BC,∴∠DEB=∠EBC,∴∠DBE=∠DEB,∴BD=DE;(2)∵∠DEB=∠DBE=30°=∠EBC,∴∠ABC=60°,∵AB=AC,∴△ABC是等边三角形,∴∠ABC=∠ACB=∠A=60°,∵DE∥BC,∴∠ADE=∠ABC=60°,∠AED=∠C=60°,∴△ADE是等边三角形,∴AD=DE=3.20.解:如图,连接BE,与AD交于点P,此时PE+PC最小,∵△ABC是等边三角形,AD⊥BC,∴PC=PB,∴PE+PC=PB+PE=BE,即BE就是PE+PC的最小值,∵AD=12,点E是边AC的中点,∴AD=BE=12,∴PE+PC的最小值是12.21.解:(1)∵AB=AC,∠BAC=40°,∴∠ABC=70°,∵BE平分∠ABC,∴∠ABF=35°,∵AF⊥AB,∴∠BAF=90°,∴∠AFE=125°.(2)∵BD平分∠ABC,∴∠ABD=∠CBD,∵BD⊥AC,∴∠ADB=CDB=90°,∴△ABD≌△CBD(ASA),∴AB=BC,∵AB=AC,∴三角形ABC是等边三角形,∴∠ABF=30°,∴AF=4,在Rt△ADF中,DF=2.22.解:(1)由△ABC是等边三角形可得,∠ABC=∠C=60°,∵∠ADC=∠ABC+∠BAD,∠AEB=∠C+∠EBC,∠AEB=∠CDA,∴∠BAD=∠EBC,∵∠BPD=∠ABE+∠BAD,∴∠BPD=∠ABE+∠EBC=∠ABC=60°;(2)∵BQ⊥AD于Q,∴∠BQP=90°,∵∠BPD=60°,∴∠PBQ=90°﹣∠BPD=30°,在Rt△BPQ中,∵PQ=3,∠PBQ=30°,∴BP=2PQ=6,又∵PE=1,∴BE=BP+PE=6+1=7.。
初中数学人教版八年级上册实用资料13.2画轴对称图形基础巩固1.(知识点2)将平面直角坐标系中的某个图形各个点的横坐标都乘-1,纵坐标不变,所得图形与原图形的关系是()A.关于原点对称B.关于x轴对称C.关于y轴对称D.重合2.(题型二)如图13-2-1,在3×3的正方形网格中有四个格点A,B,C,D,以其中一个点为原点,网格线所在的直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点是()图13-2-1A.点AB.点BC.点CD.点D3.(知识点2)点A(-3,2)关于x轴的对称点A′的坐标为.4.(题型一)如图13-2-2,有一个英语单词,四个字母都关于直线l对称,请写出这个单词所指的物品.图13-2-2 图13-2-35.(易错点1)图13-2-3是李华在镜中看到身后墙上的钟表,你认为实际时间是.6.(题型一)如图13-2-4,在正方形方格中,阴影部分是涂黑的7个小正方形所形成的图案.将方格内空白的一个小正方形涂黑,使得到的新图案成为一个轴对称图形的涂法有种.图13-2-47.(题型一)如图13-2-5的3×3网格都是由9个相同的小正方形组成,每个网格图中都有3个小正方形已涂上阴影,请在剩下的6个空白小正方形中,按下列要求涂上阴影:选取2个涂上阴影,使5个阴影小正方形组成一个轴对称图形(给出三种方法)(1)(2)(3)图13-2-58.(题型一)如图13-2-6,在边长为1个单位长度的小正方形网格中,给出了△ABC(顶点是网格线的交点).(1)请画出△ABC关于直线l对称的△A1B1C1;(2)将线段AC向左平移3个单位长度,再向下平移5个单位长度,画出平移后得到的线段A2C2,并以它为一条边作一个格点三角形A2B2C2,使A2B2=C2B2.图13-2-69.(题型二)如图13-2-7,在平面直角坐标系中,已知点A(0,3),B(2,4),C(4,0),D(2,-3),E(0,-4).写出点D,C,B关于y轴的对称点F,G,H的坐标,并在图13-2-7中作出点F,G,H.顺次而平滑地连接A,B,C,D,E,F,G,H,A各点.观察你画出的图形,说明它具有怎样的性质,像我们熟知的什么图形.图13-2-710.(题型二)图13-2-8中的“鱼”是将坐标分别为(0,0),(5,4),(3,0),(5,1),(5,-1),(3,0),(4,-2),(0,0)的点用线段依次连接而成的.(1)利用轴对称变换,画出原图案关于x轴的对称图形,形成美丽的“双鱼座”;(2)求两个图案的公共部分的面积(直接写结果).图13-2-8能力提升11.(题型四)如图13-2-9,将长方形纸片首先沿虚线AB按箭头方向对折,接着将对折后的纸片沿虚线CD按箭头方向对折,然后剪下一个小三角形,最后将纸片打开,则打开后的图形是()图13-2-912.(题型三)如图13-2-10,在平面直角坐标系中,线段OA与线段OA′关于直线l:y=x对称.已知点A的坐标为(2,1),则点A′的坐标为.图13-2-1013.(题型一)如图13-2-11,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且以格点为顶点的三角形,请在下面所给的格纸中一一画出(所给的六个格纸未必全用).图13-2-1114.(题型三)如图13-2-12,在平面直角坐标系中,△ABO的顶点坐标分别为O(0,0),A (2a,0),B(0,-a),线段EF两端点的坐标分别为E(-m,a+1),F(-m,1)(2a>m>a).直线l∥y轴,交x轴于点P(a,0),且线段EF与CD关于y轴对称,线段CD与MN关于直线l对称.(1)求点M,N的坐标(用含m,a的代数式表示).(2)△ABO与△MFE通过平移能重合吗?能与不能都要说明理由,若能,请你说出一种平移方案(平移的长度用m,a表示).图13-2-12答案基础巩固1. C 解析:将各个点的横坐标都乘-1,纵坐标不变,即各个点的横坐标变成它的相反数,纵坐标不变,所以所得图形与原图形关于y轴对称.故选C.2. B 解析:如图D13-2-1,以B为原点建立平面直角坐标系,此时存在两个点A,C关于y轴对称.故选B.图D13-2-13.(-3,-2)4. 书解析:如图D13-2-2,这个单词所指的物品是书.图D13-2-25. 7:45 解析:由镜面对称性可知,实际时间应该是7:45.6. 3 解析:在1,2或3处(如图D13-2-3)涂黑都可得到一个轴对称图形,故涂法有3种.图D13-2-37. 解:如图D13-2-4.图D13-2-48. 解:(1)如图D13-2-5,△A1B1C1即为所求.图D13-2-5(2)如图D13-2-5,△A2B2C2即为所求.(答案不唯一)9. 解:由题意,得F(-2,-3),G(-4,0),H(-2,4).如图D13-2-6,这个图形关于y轴对称,是我们熟知的轴对称图形.图D13-2-610. 解:(1)如图D13-2-7.(2)两个图案的公共部分的面积为1/2×3×2×2+1/2×2×2=6+2=8.图D13-2-7能力提升11. D 解析:∵第三个图形中剪去的是三角形,∴将第三个图形展开,可得A项不符合题意.再展开可知三角形的短边正对着,且在内侧,∴B,C项不符合题意.故选D.12.(1,2)解析:图D13-2-8如图D13-2-8,过点A作AC⊥x轴于点C,过点A′作A′C′⊥y轴于点C′,连接AA′,交直线l于点D.∵线段OA与线段OA′关于直线l:y=x对称,∴△ODA′≌△ODA,∠C′OD=∠COD,∴∠A′OD=∠AOD,A′O=AO.∴∠A′OC′=∠AOC.在△AC O和△A′C′O中,∠AOC=∠A′OC′,∠ACO=∠A′C′O=90°,AO=A′O,∴△ACO≌△A′C′O(AAS),∴AC=A′C′,CO=C′O.∵点A 的坐标为(2,1),∴点A′的坐标为(1,2).13解:与△ABC成轴对称且以格点为顶点的三角形如图D13-2-9.图D13-2-9`14. 解:(1)∵线段EF与CD关于y轴对称,线段EF两端点的坐标分别为E(-m,a+1),F(-m,1),∴C(m,a+1),D(m,1).设CD与直线l之间的距离为x.∵CD与MN关于直线l对称,l与y轴之间的距离为a,∴MN与y轴之间的距离为a-x.又∵x=m-a,∴点M的横坐标为a-(m-a)=2a-m.∴M(2a-m,a+1),N(2a-m,1).(2)能重合.理由如下:由(1)知EM=2a-m-(-m)=2a=OA,EF=a+1-1=a=OB.∵EF∥y轴,EM∥x轴,∴∠MEF=∠AOB=90°,∴△ABO≌△MFE(SAS),∴△ABO与△MFE通过平移能重合.平移方案:先将△ABO向上平移(a+1)个单位长度,再向左平移m 个单位长度,即可重合.。
一、选择题1.如图,已知ABC ∆中,,AB AC =点,D E 是射线AB 上的两个动点(点D 在点E 的右侧).且,CE DE =连结CD ,若ACE x ∠=,BCD y ∠=.则y 关于x 的函数关系式是( )A .()900180y x x =-<<︒B .()101802y x x =<<︒ C .()39001802y x x =-<<︒ D .()201803y x x =<<︒ 2.如图,在ABC 中,90C ∠=︒,30B ∠=︒,以点A 为圆心,任意长为半径画弧分别交AB ,AC 于点M 和N ,再分别以点M ,N 为圆心,大于12MN 的长为半径画弧,两弧交于点P ,连接AP 并延长交BC 于点D .则下列说法中正确的个数是( )①AD 是BAC ∠的平分线;②60ADC ∠=︒;③点D 在AB 的中垂线上;④:2:5DAC ABC S S =△△A .1B .2C .3D .43.如图,ABC ∆和CDE ∆都是等边三角形,且62EBD ∠=,则AEB ∠的度数是( )A .124B .122C .120D .1184.如图所示的是A 、B 、C 三点,按如下步骤作图:①先分别以A 、B 两点为圆心,以大于12AB 的长为半径作弧,两弧相交于M 、N 两点,作直线MN ;②再分别以B 、C 两点为圆心,以大于12BC 的长为半径作弧,两弧相交于G 、H 两点,作直线GH ,GH 与MN 交于点P ,若66BAC ∠=︒,则BPC ∠等于( )A .100°B .120°C .132°D .140° 5.等腰三角形的一个内角是50度,它的一腰上的高与底边的夹角是( )度 A .25或60B .40或60C .25或40D .406.三个等边三角形的摆放位置如图所示,若12100︒∠+∠=,则3∠的度数为( )A .80︒B .70︒C .45︒D .30︒7.如图,在△ABC 中,∠C =84°,分别以点A ,B 为圆心,以大于12AB 的长为半径画弧,两弧分别交于点M ,N ,作直线MN 交AC 于点D ;以点B 为圆心,适当长为半径画弧,分别交BA ,BC 于点E ,F ,再分别以点E ,F 为圆心,大于12EF 的长为半径画弧,两弧交于点P .若此时射线BP 恰好经过点D ,则∠A 的大小是( )A .30°B .32°C .36°D .42°8.如图,△ABC 中,AB =AC =5,BC =8,则sin B 的值为( )A .58B .45C .35D .129.北京有许多高校,下面四所高校校徽主体图案是轴对称图形的有( )A .1个B .2个C .3个D .4个10.如图,在ABC 中,18cm AC =,20cm BC =,点M 从点A 出发以每秒2cm 的速度向点C 运动,点N 从点C 出发以每秒1.6cm 的速度向点B 运动,其中一个动点到达终点时,另一个动点也随之停止运动,当CMN △是以MN 为底的等腰三角形时,则这时等腰三角形的腰长是( )A .5cmB .6cmC .7cmD .8cm11.如图,是一个 3×4 的网格(由 12 个小正方形组成,虚线交点称之格点)图中有一个三角形,三个顶点都在格点上,在网格中可以画出( )个与此三角形关于某直线对称的格点三角形.A .6B .7C .8D .9 12.等腰三角形腰上的高与另一腰的夹角为30,则底角度数是( )A .30B .60︒C .40︒或50︒D .30或60︒13.如图,在等腰ABC 中,118ABC ︒∠=,AB 垂直平分线DE 交AB 于点D ,交AC 于点E ,BC 的垂直平分线PQ 交BC 于点P ,交AC 于点Q ,连接BE ,BQ ,则EBQ ∠=( )A .65︒B .60︒C .56︒D .50︒14.在直角坐标系中,已知A (2,-2),在y 轴上确定一点P ,使△AOP 为等腰三角形,则符合条件的点P 共有( ) A .2个 B .3个 C .4个 D .5个 15.已知等腰三角形的一个内角为50°,则它的顶角为( )A .50°B .80°C .65°或80°D .50°或80°二、填空题16.如图,已知60AOB ︒∠=,点P 在边OA 上, 10OP =,点,M N 在边OB 上,PM PN =,若3,MN =则OM 的长是__________.17.如图,已知30MON ∠=︒,点1A ,2A ,3A ,…在射线ON 上,1B ,2B ,3B ,…在射线OM 上,112A B A △,223A B A △,334A B A △,…均为等边三角形;若48OA =,则1n n n A B A +△的边长为______.18.如图,在ABC 中,D 是BC 上一点,,105AC AD DB BAC ==∠=︒,则B ∠=________°.19.如图,点A 为线段BC 外一动点,4BC =,1AB =,分别以AC 、AB 为边作等边ACD △、等边ABE △,连接BD .则线段BD 长的最大值为______.20.如图,在等腰三角形ABC 中,AB =AC ,∠B =50°,D 为BC 的中点,点E 在AB 上,∠AED =70°,若点P 是等腰三角形ABC 的腰上的一点,则当DEP 是以∠EDP 为顶角的等腰三角形时,∠EDP 的度数是_____.21.如图,DF 垂直平分AB ,EG 垂直平分AC ,若110BAC ∠=︒,则DAE =∠__________°.22.若等腰三角形的一条边长为5cm ,另一条边长为10cm ,则此三角形第三条边长为__________cm .23.如图,在Rt ABC 中,90ACB ∠=︒,30A ∠=︒,BD 平分ABC ∠,如果9cm AC =,那么AD = ___________cm .24.如图,P 是等边三角形ABC 内一点,∠APB ,∠BPC ,∠CPA 的大小之比为5:6:7,则以PA ,PB ,PC 为边的三角形三内角大小之比(从小到大)是_________________.25.如图,已知 O 为△ABC 三边垂直平分线的交点,且∠A =50°,则∠BOC 的度数为_____度.26.已知,点()1,3A a -与点()2,21B b --关于x 轴对称,则2a b +___________.三、解答题27.如图,在ABC ∆中,已知D 是BC 的中点,过点D 作BC 的垂线交∠BAC 的平分线于点E ,EF ⊥AB 于点F ,EG ⊥AC 于点G . (1)求证:BF=CG ;(2)若AB=12,AC=8,求线段CG 的长.28.如图,BD 是ABC 的角平分线,点E 在边AB 上,且//DE BC ,AE BE =. (1)若5BE =,求DE 的长; (2)求证:AB BC =.29.如图,已知四边形ABCD 中,60B ∠=,边8cm AB BC ==,动点P ,Q 同时从A ,B 两点出发,分别沿AB ,BC 方向匀速运动,其中点P 运动的速度是每秒1cm ,点Q运动的速度是每秒2cm,当点Q到达点C时,P,Q两点都停止运动,设运动时间为t秒.解答下列问题:(1)AP=_______________,BP=______________,BQ=______________.(用含t的式子表示)(2)当点Q到达点C时,PQ与AB的位置关系如何.请说明理由.(3)在点P与点Q的运动过程中,BPQ是否能成为等边三角形.若能,请求出t的值.若不能,请说明理由.30.教材呈现:如图是华师版八年级上册数学教材第94页的部分内容.线段垂直平分线我们已经知道线段是轴对称图形,线段的垂直平分线是线段的对称轴.如图,直线MN是线段AB的垂直平分线,P是MN上任一点,连结PA、PB.将线段AB沿直线MN对折,我们发现PA与PB完全重合.由此即有:线段垂直平分线的性质定理:线段垂直平分线上的点到线段两端的距离相等.已知:如图,MN⊥AB,垂足为点C,AC=BC,点P是直线MN上的任意一点求证:PA=PB.分析:图中有两个直角三角形APC和BPC,只要证明这两个三角形全等,便可证得PA=PB.(1)请根据教材中的分析,结合图①,写出“线段垂直平分线的性质定理”完整的证明过程;(2)如图②,在△ABC中,直线l,m,n分别是边AB,BC,AC的垂直平分线.求证:直线l、m、n交于一点;(请将下面的证明过程补充完整)证明:设直线l,m相交于点O.(3)如图③,在△ABC中,AB=BC,边AB的垂直平分线交AC于点D,边BC的垂直平分线交AC于点E,若∠ABC=120°,AC=15,则DE的长为.。
人教版数学八年级上册《第十三章轴对称》期末高分突破卷附解析学生版一、单选题(每题3分,共30分)(共10题;共30分)1.(3分)下列四幅图案中,不是轴对称图形的是()A.B.C.D.2.(3分)点M(1,2)关于x轴对称点的坐标为()A.(-1,2)B.(-1,-2)C.(2,-1)D.(1,-2)3.(3分)已知图形A全部在x轴的上方,如果将图形A上的所有点的纵坐标都乘以-1,横坐标不变得到图形B,则()A.两个图形关于x轴对称B.两个图形关于y轴对称C.两个图形重合D.两个图形不关于任何一条直线对称4.(3分)下列说法正确的有()A.全等的两个三角形一定关于某直线对称B.关于某直线对称的两个图形一定能完全重合C.轴对称图形的对称轴一定只有一条D.等腰三角形的对称轴是底边上的高线5.(3分)如图,DE是△ABC的边BC的垂直平分线,分别交边AB,BC于点D,E,且AB=9,AC=6,则△ACD的周长是()A.10.5B.15C.12D.186.(3分)如图,已知△ABC是等边三角形,点B、C、D、E在同一直线上,且CG=CD,DF= DE,则∠EFD=()A.10∘B.15∘C.30∘D.25∘7.(3分)如图,在ΔABC中,AB=AC,∠A=120°,BC=15cm.AB的垂直平分线交AB于点D,交BC于点E;AC的垂直平分线交AC于点G,交BC于点F.EF的长为()A.3cm B.4cm C.5cm D.6cm8.(3分)如图,在△ABC中,AB=AC,AD、CE是△ABC的两条中线,CE=5,AD=7,P是AD 上一个动点,则BP+EP的最小值是()A.7B.3.5C.5D.2.59.(3分)如图,四边形ABCD中,△BAD=120°,△B=△D=90°,在BC、CD上分别找一点M、N,使△AMN周长最小,则△AMN+△ANM的度数为()A.130°B.120°C.110°D.100°10.(3分)如图,四边形ABCD中,AB=AD,点B关于AC的对称点B′恰好落在CD上,若∠BAD=α,则∠ACB的度数为()A.45°B.α−45°C.12αD.90°−12α二、填空题(每题3分,共15分)(共5题;共15分)11.(3分)等腰三角形的两边长分别为2和4,则这个三角形的周长为.12.(3分)点A(m,3),B(−5,n)关于y轴对称,则mn=.13.(3分)如下图,在△ABC中,AB=AC,AB的中垂线DE交AC于点D,交AB于点E,如果BC=7,△BDC的周长为18,那么AB=.14.(3分)如图,在Rt△ABC中,△C=90°,△A=30°,BD=2CD,则△ADB=度.15.(3分)如图所示,点A的坐标为(2,1),点B的坐标为(5,3),点C为x轴上一动点,则AC+BC的最小值是.三、解答题(共8题,共75分)(共8题;共75分)16.(4分)如图是由16个小正方形组成的正方形网格图,现已将其中的两个涂黑.请你用四种不同的方法分别在下图中再涂黑三个空白的小正方形,使整个图形成为轴对称图形.17.(7分)如图,在△ABC中,AC的垂直平分线交AC于点D,与BC延长线交于点E,连接AE,如果△B=48°,△BAC=19°,求△CAE的度数.18.(7分)如图,△AOP=△BOP=15°,PC∥OA,PD△OA,PE△OB,若PC=4,求PD的长.19.(7分)已知:如图,点M在锐角△AOB的内部,在OA边上求作一点P,在OB边上求作一点Q,使得△PMQ的周长最小.20.(15分)如图,在平面直角坐标系中,A(2,4),B(3,1),C(−2,−1).(1)(5分)在图中作出△ABC关于x轴对称的图形△A1B1C1;(2)(5分)写出点A1、B1、C1三点的坐标;(3)(5分)求△ABC的面积.21.(10分)如图,AD,CE分别是ΔABC的中线和角平分线,AB=AC.(1)(5分)若△ABC的面积是20,且BC=4,求AD的长.(2)(5分)若∠CAD=20°,求∠ACE的度数.22.(10分)如图,在△ABC中,△BAC=90°,AB=AC,D是AC边上一点,连接BD,EC△AC,且AE=BD,AE与BC交于点F.(1)(5分)求证:△ABD△△CAE;(2)(5分)当AD=CF时,求△ABD的度数.23.(15分)如图,在等腰ΔABC中,AB=AC,∠A<90°,CD是ΔABC的高,BE是ΔABC的角平分线,CD与BE交于点P.当∠A的大小变化时,ΔEPC的形状也随之改变..(1)(5分)当∠A=36°时,求∠BPD的度数;(2)(5分)设∠A=α,∠EPC=β,求变量β与α的关系式;(3)(5分)当ΔEPC是等腰三角形时,求∠ACB的度数.答案解析部分1.【答案】D【解析】【解答】解:A.是轴对称图形,故本选项不合题意;B.是轴对称图形,故本选项不合题意;C.是轴对称图形,故本选项不合题意;D.不是轴对称图形,故本选项符合题意.故答案为:D.【分析】轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形. 2.【答案】D【解析】【解答】解:点M(1,2)关于x轴对称点的坐标为(1,-2).故答案为:D【分析】利用关于x轴对称的点的坐标特点:横坐标不变,纵坐标互为相反数,可得答案.3.【答案】A【解析】【解答】解:关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.纵坐标都乘以−1,即纵坐标变为相反数,横坐标不变,符合关于x轴对称.故答案为:A.【分析】由题意可得图形A、图形B上的点的坐标满足:纵坐标互为相反数,横坐标相等,据此判断.4.【答案】B【解析】【解答】解:A、全等的两个三角形不一定关于某直线对称,原说法错误,故本选项不合题意;B、关于某直线对称的两个图形一定能完全重合,说法正确,故本选项符合题意;C、轴对称图形的对称轴不一定只有一条,可以有多条,如圆有无数条对称轴,原说法错误,故本选项不合题意;D、等腰三角形的对称轴是底边上的高线所在的直线,原说法错误,故本选项不合题意.故答案为:B.【分析】把一个平面图形,沿着某一条直线折叠,直线两旁的部分能完全重合的平面图形就是轴对称图形,折迹所在的直线,就是对称轴,据此可判断C、D;把一个图形沿着某一条直线折叠,能与另一个图形完全重合的两个图形就关于这条直线对称,据此可判断A、B.5.【答案】B【解析】【解答】解:∵DE是△ABC的边BC的垂直平分线,∴BD=CD,∵△ACD的周长为AD+CD+AC=AD+BD+AC=AB+AC=9+6=15.故答案为:B【分析】利用线段垂直平分线上的点到线段两个端点的距离相等,可证得BD=CD;再证明△ACD的周长为AB+AC,代入计算可求解.6.【答案】B【解析】【解答】解:∵△ABC是等边三角形,∴∠ACB=60°.∵∠ACB=∠CGD+∠CDG,∴∠CGD+∠CDG=60°.∵CG=CD,∴∠CGD=∠CDG=30°.∵∠CDG=∠DFE+∠E,∴∠DFE+∠E=30°.∵DF=DE,∴∠DFE=∠E=15°.故答案为:B.【分析】根据等边三角形的性质可得△ACB=60°,由等腰三角形的性质可得△CGD=△CDG,△DFE=△E,结合外角的性质可得△CGD+△CDG=2△GDC=△ACB、△DFE+△E=2△EFD=△GDC,据此计算.7.【答案】C【解析】【解答】解:连接AE,AF,∵AB的垂直平分线交AB于点D,交BC于点E;AC的垂直平分线交AC于点G,∴BE=AE,CF=AF,∴∠EAB=∠B,∠CAF=∠C,∵∠BAC=120°,AB=AC,∴∠B=∠C=30°,∴∠BAE+∠CAF=60°,∠AEF=∠AFE=60°,∴ΔAEF是等边三角形,∴AE=AF=EF,∴BE=EF=FC,∵BC=15=BE+EF+FC=3EF,∴EF=5.故答案为:C.【分析】连接AE,AF,先证明ΔAEF是等边三角形,可得AE=AF=EF,再结合BC=15=BE+ EF+FC=3EF,求出EF=5即可。
人教版八年级数学上学期期末复习:第13章《轴对称》填空题精选一.填空题(共30小题)1.(2020春•渝中区校级期末)如图,P为△ABC内一点,过点P的线段MN分别交AB、BC于点M、N,且M、N分别在P A、PC的中垂线上.若∠ABC=80°,则∠APC的度数为.2.(2020春•沙坪坝区期末)如图,在Rt△ABC中,∠C=90°,∠A=30°,AB=6,BD是△ABC的角平分线,点P,点N分别是BD,AC边上的动点,点M在BC上,且BM=1,则PM+PN的最小值为.3.(2019秋•九龙坡区校级期末)已知△ABC为等腰三角形,AB=AC=10,BC=8,BD为∠ABC的平分线,点P 为线段BD上的一动点,过点P作线段AB的垂线,垂足为点M,连接AP,则PM+P A的最小值为.4.(2020春•沙坪坝区校级期末)如图所示,在等腰△ABC中,AB=AC,∠B=50°,D为BC的中点,点E在AB 上,∠AED=73°,若点P是等腰△ABC的腰上的一点,则当△EDP为以DE为腰的等腰三角形时,∠EDP的度数是.5.(2019秋•渝中区校级期末)如图所示,在△ABC中,∠C=90°,DE垂直平分AB,交BC于点E,垂足为点D,BE=6cm,∠B=15°,则AC等于.6.(2019秋•渝中区校级期末)在平面直角坐标系中,若点A(a,b)与点B(1,﹣2)关于y轴对称,则a+b=.7.(2019秋•巴南区期末)如图,△ABC中,∠ABC的平分线与∠ACB的外角平分线相交于点D,点E,F分别在线段BD、CD上,点G在EF的延长线上,△EFD与△EFH关于直线EF对称,若∠A=60°,∠BEH=84°,∠HFG=n°,则n=.8.(2019秋•开州区期末)如图,△ABC中边AB的垂直平分线分别交BC、AB于点D、E,AE=4cm,△ADC的周长为10cm,则△ABC的周长是cm.9.(2019秋•两江新区期末)如图,在△ABC中,DB和DC分别平分∠ABC和∠ACB,过D作EF∥BC,分别交AB、AC于点E、F,若EF=5,BE=3,则线段CF的长为.10.(2019秋•江津区期末)如图,在等腰△ABC的两腰AB、BC上分别取点D和E,使DB=DE,此时恰有∠ADE= 12∠ACB,则∠A的度数是.11.(2019秋•九龙坡区期末)在平面直角坐标系中,点P(1,﹣5)关于x轴对称点的点的坐标是.12.(2019秋•梁平区期末)如图,△ABC是等边三角形,D,E分别是BC,AB的中点,且AD=4cm.F是AD上一动点,则BF+EF的最小值为cm.13.(2019秋•江北区期末)如图,在△ABC中,AB=AC,点D,E都在边BC上,∠BAD=∠CAE,若BD=7,则CE的长为.14.(2019秋•万州区期末)如图,已知:∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB=6,AC=3,则BE=.15.(2019秋•长寿区期末)在线段、直角、等腰三角形、直角三角形中,成轴对称图形的是.16.(2019秋•长寿区期末)等腰三角形一边长为4,另一边长为9,则它的周长是.17.(2019春•南岸区期末)如图,在△ABC中,过A作DE∥BC交∠ABC的平分线BD于点D、交∠ACB的平分线CE于点E.若BC=7,DE=9,则△ABC的周长为.18.(2018秋•南岸区期末)如图,在平面直角坐标系中,将△ABC三个顶点的横坐标分别乘以﹣1,而纵坐标保持不变,得到△A′B′C′,则△A′B′C′和△ABC关于对称(横线上填“x轴”、“y轴”或“原点”).19.(2019春•渝中区校级期末)如图,△ABC中,AC=BC,CE为△ABC的中线,BD为AC边上的高,BF平分∠CBD交CE于点G,连接AG交BD于点M,若∠AFG=63°,则∠AMB的度数为°.20.(2018秋•渝中区期末)如图,已知∠BAC=65°,D为∠BAC内部一点,过D作DB⊥AB于B,DC⊥AC于C,设点E、点F分别为AB、AC上的动点,当△DEF的周长最小时,∠EDF的度数为.21.(2018秋•合川区期末)如图,在△ABC中,∠ACB=90°,CD是AB边上的高,∠BCD=60°,若BD=3cm,则AD=cm.22.(2018秋•渝北区期末)如图,∠ABC=20°,点D,E分别在射线BC,BA上,且BD=3,BE=3,点M,N 分别是射线BA,BC上的动点,求DM+MN+NE的最小值为.23.(2018秋•巴南区期末)如图,BE、CD分别是等边△ABC的高和角平分线,点O是它们的交点,若∠BOC=m°,则m=.24.(2018秋•江北区期末)在等腰△ABC中,一腰上的高与另一腰的夹角为26°,则底角的度数为.25.(2019春•沙坪坝区校级期末)如图,已知△ABC是等边三角形,点B、C、D、F在同一直线上,CD=CE,DF=DG,则∠F=度.26.(2019春•南岸区校级期末)如图,在等腰△ABC中,AB=BC,∠B=120°,线段AB的垂直平分线分别交AB、AC于点D、E,若AC=12,则DE=.27.(2019春•沙坪坝区校级期末)如图,在直角三角形ABC中,∠A=90°,AB=8,AC=15,BC=17.D,P分别是线段AC,BC上的动点,则BD+DP的最小值是.28.(2019春•渝中区校级期末)在△ABC中,AB=AC,AC的垂直平分线与AB所在直线相交所得的锐角为40°,∠C=.29.(2019春•渝中区校级期末)如图,△ABC中,AC=BC=5,AB=6,CD=4,CD为△ABC的中线,点E、点F分别为线段CD、CA上的动点,连接AE、EF,则AE+EF的最小值为.30.(2018秋•九龙坡区校级期末)在平面直角坐标系中,点P(﹣2,﹣3)关于x轴对称点的坐标为.参考答案一.填空题(共30小题)1.【解答】解:∵∠ABC =80°,∴∠BMN +∠BNM =100°,∵M 、N 分别在P A 、PC 的中垂线上,∴MA =MP ,NP =NC ,∴∠MP A =∠MAP =12∠BMN ,∠NPC =∠NCP =12∠BNM ,∴∠MP A +∠NPC =12×100°=50°,∴∠APC =180°﹣50°=130°, 故答案为:130°.2.【解答】解:如图所示,作点M 关于BD 的对称点M ',连接PM ',则PM '=PM ,BM =BM '=1, ∴PN +PM =PN +PM ',当N ,P ,M '在同一直线上,且M 'N ⊥AC 时,PN +PM '的最小值等于垂线段M 'N 的长,此时,∵Rt △AM 'N 中,∠A =30°,∴M 'N =12AM '=12(6﹣1)=52,∴PM +PN 的最小值为52, 故答案为:52.3.【解答】解:如图,过点P 作PK ⊥BC 于K ,过点A 作AH ⊥BC 于H .∵AB =AC =10,AH ⊥BC ,∴BH =CH =4,∴∠AHB =90°,∴AH =√AA 2−AA 2=√102−42=2√21,∵BD 平分∠ABC ,PM ⊥AB ,PK ⊥BC ,∴PM =PK ,∴P A +PM =P A +PK ≥AH ,∴P A +PM ≥2√21,∴P A +PM 的最小值为2√21.4.【解答】解:∵AB =AC ,∠B =50°,∠AED =73°,∴∠EDB =23°,∵当△DEP 是以DE 为腰的等腰三角形,①当点P 在AB 上,∵DE =DP 1,∴∠DP 1E =∠AED =73°,∴∠EDP 1=180°﹣73°﹣73°=34°,②当点P 在AC 上,∵AB =AC ,D 为BC 的中点,∴∠BAD =∠CAD ,过D 作DG ⊥AB 于G ,DH ⊥AC 于H ,∴DG =DH ,在Rt △DEG 与Rt △DP 2H 中,{AA =AA 2AA =AA, ∴Rt △DEG ≌Rt △DP 2H (HL ),∴∠AP 2D =∠AED =73°,∵∠BAC =180°﹣50°﹣50°=80°,∴∠EDP 2=134°,③当点P 在AC 上,同理证得Rt △DEG ≌Rt △DPH (HL ),∴∠EDG =∠P 3DH ,∴∠EDP 3=∠GDH =180°﹣80°=100°,④当点P 在AB 上,EP =ED 时,∠EDP =12(180°﹣73°)=53.5°.故答案为:34°或53.5°或100°或134°.5.【解答】解:∵在△ABC 中,∠ACB =90°,∠B =15°,∴∠BAC=90°﹣15°=75°,∵DE垂直平分AB,BE=6cm,∴BE=AE=6cm,∴∠EAB=∠B=15°,∴∠EAC=75°﹣15°=60°,∵∠C=90°,∴∠AEC=30°,∴AC=12AE=12×6cm=3cm,故答案为:3cm.6.【解答】解:∵点A(a,b)与点B(1,﹣2)关于y轴对称,∴a=﹣1,b=﹣2,∴a+b=﹣3,故答案为:﹣3.7.【解答】解:∵∠ABC的平分线与∠ACB的外角平分线相交于点D,∴∠ABD=∠DBC,∠ACD=∠DCM,设∠ABD=∠DBC=x,∠ACD=∠DCM=y,∵∠A+∠ABC=∠ACM,∴12∠A+12∠ABC=12∠ACM,即30°+x=y,∵∠D+∠DBC=∠DCM,∴∠D+x=y,∴∠D=30°,∵EFD与△EFH关于直线EF对称,∠BEH=84°,∴∠DEG=∠HEG=180°−84°2=48°,∴∠HFG=n°=∠DFG=48°+30°=78°则n=78.故答案为:78.8.【解答】解:∵DE是△ABC中边AB的垂直平分线,∴AD=BD,AB=2AE=2×4=8(cm),∵△ADC的周长为10cm,即AD+AC+CD=BD+CD+AC=BC+AC=10cm,∴△ABC的周长为:AB+AC+BC=8+10=18(cm).故答案为:18.9.【解答】解:∵BD平分∠ABC,∴∠ABD=∠CBD,∵EF∥BC,∴∠EDB=∠DBC,∴∠ABD=∠EDB,∴BE=ED,同理DF=CF,∴EF=3+CF=5,∴CF=2,故答案为:2.10.【解答】解:设∠B=x.∵DB=DE,∴∠DEB=∠B=x,∴∠ADE=∠DEB+∠B=2x,∴∠ACB=2∠ADE=4x.∵AB=BC,∴∠ACB=∠A=4x.在△ABC中,∵∠A+∠B+∠C=180°,∴4x+x+4x=180°,∴x=20°.即∠B=20°∴∠A=4x=80°故答案为:80°11.【解答】解:点P(1,﹣5)关于x轴对称点的点的坐标是:(1,5).故答案为:(1,5).12.【解答】解:过C作CE⊥AB于E,交AD于F,连接BF,则BF+EF最小(根据两点之间线段最短;点到直线垂直距离最短),由于C和B关于AD对称,则BF+EF=CE,∵等边△ABC中,BD=CD,∴AD⊥BC,∴AD是BC的垂直平分线(三线合一),∴C和B关于直线AD对称,∴CF=BF,即BF+EF=CF+EF=CE,∵AD⊥BC,CE⊥AB,∴∠ADB =∠CEB =90°,在△ADB 和△CEB 中,{∠AAA =∠AAAAAAA =AAAA AA =AA,∴△ADB ≌△CEB (AAS), ∴CE =AD =4cm ,即BF +EF =4cm .故答案为:4.13.【解答】解:∵AB =AC ,∴∠B =∠C ,在△BAD 和△CAE 中,{∠AAA =∠AAA AA =AAAA =AA ,∴△BAD ≌△CAE (ASA ),∴BD =CE =7,故答案为:7.14.【解答】解:连接CD ,BD ,∵AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC ,∴DF =DE ,∠F =∠DEB =90°,∠ADF =∠ADE , ∴AE =AF ,∵DG 是BC 的垂直平分线,∴CD =BD ,在Rt △CDF 和Rt △BDE 中,{AA =AA AA =AA, ∴Rt △CDF ≌Rt △BDE (HL ),∴BE =CF ,∴AB =AE +BE =AF +BE =AC +CF +BE =AC +2BE , ∵AB =6,AC =3,∴BE =1.5.故答案为:1.5.15.【解答】解:线段的垂直平分线所在的直线是对称轴,是轴对称图形,符合题意;直角的角平分线所在的直线就是对称轴,是轴对称图形,符合题意;等腰三角形底边中线所在的直线是对称轴,是轴对称图形,符合题意;直角三角形不一定是轴对称图形,不符合题意.故成轴对称图形的是:线段、直角、等腰三角形.故答案为:线段、直角、等腰三角形.16.【解答】解:当等腰三角形的三边为:4、4、9时,不符合三角形三边关系,因此这种情况不成立;当等腰三角形的三边为:4、9、9时,符合三角形三边关系,则三角形的周长为:4+9+9=22.因此等腰三角形的周长为22.故填22.17.【解答】解:∵DE∥BC,∴∠E=∠ECB,∠D=∠DBC,∵CE平分∠ACB,BD平分∠ABC,∴∠ECB=∠ACE,∠DBC=∠ABD,∴∠E=∠ACE,∠D=∠ABD,∴AE=AC,AB=AD,∵AB+AC=AD+AE=DE=9,BC=7,∴△ABC的周长为AB+AC+BC=DE+BC=9+7=16.故答案为16.18.【解答】解:∵横坐标乘以﹣1,∴横坐标相反,又纵坐标不变,∴关于y轴对称.故答案为:y轴.19.【解答】解:∵BD为AC边上的高,∴BD⊥AC,∴∠BDF=90°,∵∠AFG=63°,∴∠DBF=90°﹣63°=27°,∵BF平分∠CBD交CE于点G,∴∠CBD=2∠DBF=54°,∴∠ACB=90°﹣∠CBD=36°,∵AC=BC,∴∠CAB=∠CBA=12(180°﹣36°)=72°,∴∠ABD=72°﹣54°=18°,∴∠ABG=27°+18°=45°,∵CE为△ABC的中线,∴CE⊥AB,∴CE垂直平分AB,∴AG=BG,∴∠GAB=∠GBA=45°,∴∠AMB=180°﹣45°﹣18°=117°,故答案为:117.20.【解答】解:如图所示:延长DB和DC至M和N,使MB=DB,NC=DC,连接MN交AB、AC于点E、F,连接DE、DF,此时△DEF的周长最小.∵DB⊥AB,DC⊥AC,∴∠ABD=∠ACD=90°,∠BAC=65°,∴∠BDC=360°﹣90°﹣90°﹣65°=115°,∴∠M+∠N=180°﹣115°=65°根据对称性质可知:DE=ME,DF=NF,∴∠EDM=∠M,∠FDN=∠N,∴∠EDM+∠FDN=65°,∴∠EDF=∠BDC﹣(∠EDM+∠FDN)=115°﹣65°=50°.故答案为50°.21.【解答】解:∵在△ABC中,∠ACB=90°,CD是AB边上的高,∠BCD=60°,BD=3cm,∴BC=2CD,可得:BC2﹣CD2=4CD2﹣CD2=9,解得:CD=√3cm,∴BC=2√3cm,∴AC=AA√3=2cm,∴AB=4cm,∴AD=4﹣3=1cm.故答案为:122.【解答】解:如图所示:作点D关于AB的对称点G,作点E关于BC的对称点H,连接GH交AB于点M、交BC于点N,连接DM、EN,此时DM+MN+NE的值最小.根据对称的性质可知:DB=BG=3,∠GBE=∠DBE=20°,BH=BE=3,∠HBD=∠EBD=20°,∴∠GBH=60°,∴△BGH是等边三角形,∴GH=GB=HB=3,∴DM+MN+NE的最小值为3.故答案为3.23.【解答】解:∵BE、CD分别是等边△ABC的高和角平分线,∴∠ODB=90°,∠ABE=30°,∴∠BOC=∠ODB+∠DBE=90°+30°=120°,故答案为:12024.【解答】解:①∵AB=AC,∠ABD=26°,BD⊥AC,∴∠A=64°,∴∠ABC=∠C=(180°﹣64°)÷2=58°.②∵AB=AC,∠ABD=26°,BD⊥AC,∴∠BAC=26°+90°=116°∴∠ABC=∠C=(180°﹣116°)÷2=32°.故答案为:58°或32°.25.【解答】解:∵△ABC是等边三角形,∴∠ACB=60°,∠ACD=120°,∵CE=CD,∴∠CDE=30°,∠FDG=150°,∵DF=DG,∴∠F=15°.故答案为:15.26.【解答】解:连接BE,∵AB=BC,∠B=120°,∴∠A=∠C=30°,∵DE是线段AB的垂直平分线,∴EA=EB,∴∠EBA=∠A=30°,∴∠CBE=90°,又∠C=30°,∴BE=12EC,∴AE=12EC,∴AE=13AC=4,在Rt△ADE中,∠A=30°,∴DE=12AE=2,故答案为:2.27.【解答】解:作B关于AC的对称点E,过E作EP⊥BC于P,交AD于D,则AE=AB=8,此时,BD+DP的值最小,BD+DP的最小值=EP,∵∠BAC=∠BPE=90°,∠C=∠E,∴△ABC∽△PBE,∴AAAA=AAAA,∴1617=AA 15,∴PE =24017, 故答案为:24017.28.【解答】解:当△ABC 为锐角三角形时,如图1,设AC 的垂直平分线交线段AB 于点D ,交AC 于点E ,∵∠ADE =40°,DE ⊥AC ,∴∠A =90°﹣40°=50°,∵AB =AC ,∴∠C =12(180°﹣∠A )=65°;当△ABC 为钝角三角形时,如图2,设AC 的垂直平分线交AC 于点E ,交AB 于点D ,∵∠ADE =40°,DE ⊥AC ,∴∠DAC =50°,∵AB =AC ,∴∠B =∠C ,∵∠B +∠C =∠DAB ,∴∠C =25°;综上可知∠C 的度数为65°或25°,故答案为:65°或25°.29.【解答】解:过B 作BF ⊥AC 于F ,交CD 于E , 则BF 的长即为AE +EF 的最小值,∵AC =BC =5,CD 为△ABC 的中线,∴AD =12AB =3,∵S △ABC =12AB •CD =12AC •BF ,∴BF =6×45=245, ∴AE +EF 的最小值为245, 故答案为:245.30.【解答】解:点P (﹣2,﹣3)关于x 轴对称点的坐标为:(﹣2,3). 故答案为:(﹣2,3).。
八年级数学上册第十三章《轴对称》测试-人教版(含答案)题号一二三总分19 20 21 22 23 24分数一、选择题(每题3分,共30分)1以下列各组数据为边长,可以构成等腰三角形的是()A.1,1,2 B.1,1,3 C.2,2,1 D.2,2,52如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD3如图,DE是△ABC中AB边的垂直平分线,若BC=6,AC=8,则△BCE的周长为()A.10 B.12 C.14 D.164.如图,直线m是多边形ABCDE的对称轴,其中∠A=120°,∠B=110°,那么∠BCD的度数为( )A.50° B.60° C.70° D.80°5.如图,在等腰△ABO中,∠ABO=90°,腰长为2,则A点关于y轴的对称点的坐标为()A.(﹣2,2)B.(﹣2,﹣2)C.(2,2)D.(2,﹣2)6.以下叙述中不正确的是()A.等边三角形的每条高线都是角平分线和中线B.有一内角为60°的等腰三角形是等边三角形C.等腰三角形一定是锐角三角形D.在一个三角形中,如果两条边不相等,那么它们所对的角也不相等;反之,如果两个角不相等,那么它们所对的边也不相等7.如图①,在边长为4cm的正方形ABCD中,点P从点A出发,沿AB→BC的路径匀速运动,当点C停止,过点P作PQ∥BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(s)的函数关系图象如图②所示,当点P运动2.5s时,PQ的长是()cm.A.B.C.D.8.如图13-5,P是∠AOB外的一点,M,N分别是∠AOB两边上的点,点P关于OA的对称点Q 恰好落在线段MN上,点P关于OB的对称点R恰好落在MN的延长线上.若PM=2.5 cm,PN=3 cm,MN=4 cm,则线段QR的长为()A.4.5 cmB.5.5 cmC.6.5 cmD.7 cm图13-5 图13-69.如图13-6,已知在△ABC中,∠ABC=90°,∠A=30°,BD⊥AC,DE⊥BC,D,E分别为垂足,下列结论中正确的是()A.AC=2ABB.AC=8ECC.CE=12BDD.BC=2BD10. 如图,△ABE、△ADC和△ABC分别是关于AB,AC边所在直线的轴对称图形,若∠1:∠2:∠3=7:2:1,则∠α的度数为()A.90°B.108°C.110°D.126°二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.17.如图,在△ABC中,AB=AC,∠A=32°,以点C为圆心、BC的长为半径作弧,交AB于点D,交AC于点E,连接BE,则∠ABE的大小为______.18.如图,△ABC中,BC的垂直平分线DP与∠BAC的平分线相交于点D,垂足为点P,若∠BAC =84°,则∠BDC=______.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC,(1)分别画出与△ABC关于x轴、y轴对称的图形△A1B1C1和△A2B2C2;(2)直接写出B1和B2点坐标.20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.21.如图,△ABC中,AB=AC,DE是腰AB的垂直平分线.(1)若∠A=40°,求∠DBC的度数;(2)若AB=9,BC=5,求△BDC的周长.22.如图,在△ABC中,BC的垂直平分线交BC于点D,交AB延长线于点E,连接CE.求证:∠BCE=∠A+∠ACB.23.已知△ABC中,AC=BC,∠C=120°,点D为AB边的中点,∠EDF=60°,DE、DF分别交AC、BC于E、F点.(1)如图1,若EF∥AB.求证:DE=DF.(2)如图2,若EF与AB不平行.则问题(1)的结论是否成立?说明理由.24.已知等腰ABC,AC AB⊥交BA延长线于点D,点P在直线AC上=,30ABC∠=︒,CD AB运动,连接BP,以BP为边,并在BP的左侧作等边三角形BPE,连接AE.(1)如图1,当BP AC≌△△;⊥时,求证:ABP ACD(2)如图2,当点D与点E在直线CP同侧时,求证:AP AB AE=+;(3)在点P运动过程中,是否存在定直线,使得线段BE、CE始终关于这条直线对称,若存在,指出这一条直线,并加以证明:若不存在,请说明理由.参考答案一、选择题(每题3分,共30分)题号 1 2 3 4 5 6 7 8 9 10答案 C D C D C C D B D B二、填空题(每题3分,共24分)11如图所示,分别将标号为A,B,C,D的正方形沿图中的虚线剪开后,得到标号为P,Q,M,N的四个图形,按照“由哪个正方形剪开后拼成的轴对称图形”的对应关系:A与对应,B与对应,C与对应,D与对应.【考点】轴对称图形.【答案】见试题解答内容【分析】应根据各图形组成特征找出对应关系.【解答】解:A剪开后是三个三角形,B和C剪开后是两个直角梯形和一个三角形,D剪开后是两个三角形和一个四边形,因而,A与G对应,B与E对应,C与F对应,D与H对应.12如图,两车从南北方向的路段AB的A端出发,分别向东、向西行进相同的距离,到达C,D两地,此时可以判断C,D到B的距离相等,用到的数学道理是.【考点】线段垂直平分线的性质.【专题】三角形.【答案】见试题解答内容【分析】先根据题意得到AB垂直平分CD,然后根据线段垂直平分线的性质可判断C,D到B的距离相等.【解答】解:∵AB⊥CD,AC=AD,∴AB垂直平分CD,∴BC=BD,即C,D到B的距离相等.故答案为:垂直平分线上的点到线段两端点的距离相等.13如图在等边△ABC中,D是AB的中点,DE⊥AC于E,EF⊥BC于F,已知AB=8,则BF的长为.【考点】等边三角形的性质;含30度角的直角三角形.【专题】推理填空题.【答案】见试题解答内容【分析】根据等边三角形的性质得到AD=4,AC=8,∠A=∠C=60°,根据直角三角形的性质得到AE=AD=2,计算即可.【解答】解:等边△ABC中,D是AB的中点,AB=8,∴AD=4,BC=AC=8,∠A=∠C=60°,∵DE⊥AC于E,EF⊥BC于F,∴∠AFD=∠CFE=90°,∴AE=AD=2,∴CE=8﹣2=6,∴CF=CE=3,∴BF=5,故答案为:5.14设点P(2m﹣3,3﹣m)关于y轴的对称点在第二象限,则整数m的值为.【考点】解一元一次不等式组;一元一次不等式组的整数解;关于x轴、y轴对称的点的坐标.【专题】平面直角坐标系;数感;运算能力.【答案】2.【分析】由于点P关于y轴的对称点在第二象限,则点P在第一象限,再根据点的坐标特征,即可得出整数m的值.【解答】解:由于点P关于y轴的对称点在第二象限,则点P在第一象限.依题意有解得<m<3.因为m为整数,所以m=2,故答案为:2.15如图,点E在等边△ABC的边BC上,BE=6,射线CD⊥BC于点C,点P是射线CD上一动点,点F是线段AB上一动点,当EP+PF的值最小时,BF=7,则AC为.【考点】等边三角形的性质;轴对称﹣最短路线问题.【专题】平移、旋转与对称;推理能力.【答案】见试题解答内容【分析】根据等边三角形的性质得到AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,根据直角三角形的性质得到BG=2BF=14,求得EG=8,于是得到结论.【解答】解:∵△ABC是等边三角形,∴AC=BC,∠B=60°,作点E关于直线CD的对称点G,过G作GF⊥AB于F,交CD于P,则此时,EP+PF的值最小,∵∠B=60°,∠BFG=90°,∴∠G=30°,∵BF=7,∴BG=2BF=14,∴EG=8,∵CE=CG=4,∴AC=BC=10,故答案为:10.16定义:等腰三角形的顶角与其一个底角的度数的比值k称为这个等腰三角形的“特征值”.若等腰△ABC中,∠A=80°,则它的特征值k=.【考点】等腰三角形的性质.【专题】等腰三角形与直角三角形.【答案】见试题解答内容【分析】可知等腰三角形的两底角相等,则可求得底角的度数.从而可求解.【解答】解:①当∠A为顶角时,等腰三角形两底角的度数为:=50°∴特征值k==②当∠A为底角时,顶角的度数为:180°﹣80°﹣80°=20°∴特征值k==综上所述,特征值k为或故答案为或17.21°解析:∵AB=AC,∠A=32°,∴∠ABC=∠ACB=74°.依题意可知BC=EC,∴∠BEC =∠EBC=53°,∴∠ABE=∠ABC-∠EBC=74°-53°=21°.18.96°解析:如图,过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于点F.∵AD是∠BAC的平分线,∴DE =DF .∵DP 是BC 的垂直平分线,∴BD =CD .在Rt△DEB 和Rt△DFC 中,⎩⎨⎧DB =DC ,DE =DF ,∴Rt△DEB ≌Rt△DFC (HL).∴∠BDE =∠CDF ,∴∠BDC =∠EDF .∵∠DEB =∠DFA =90°,∠BAC =84°,∴∠BDC =∠EDF =360°-90°-90°-84°=96°.三.解答题(共46分,19题6分,20 ---24题8分)19.如图,已知△ABC ,(1)分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1和△A 2B 2C 2;(2)直接写出B 1和B 2点坐标.【分析】(1)分别作出点A 、B 、C 关于x 轴、y 轴对称的点,然后顺次连接;(2)根据坐标系的特点,写出点B 1和B 2的坐标.【解答】解:(1)所作图形如图所示:;(2)B1(2,2),B2(﹣2,﹣4).20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列四个条件:①∠EBD=∠DCO;②∠BEO=∠CDO;③BE=CD;④OB=OC.上述四个条件中,哪两个条件可判定△ABC是等腰三角形,选择其中的一种情形,证明△ABC是等腰三角形.【分析】①③;②③;①④;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形,首先证明△EBO≌△DCO,可得BO=CO,根据等边对等角可得∠OBC =∠OCB,进而得到∠ABC=∠ACB,根据等角对等边可得AB=AC,即可得到△ABC是等腰三角形.【解答】①③;②③;②④都可以组合证明△ABC是等腰三角形;选①③为条件证明△ABC是等腰三角形;证明:∵在△EBO和△DCO中,∵,∴△EBO≌△DCO(AAS),∴BO=CO,∴∠OBC=∠OCB,∴∠EBO+∠OBC=∠DCO+∠OCB,即∠ABC=∠ACB,∴AB=AC,∴△ABC是等腰三角形.21.解:(1)∵△ABC中,AB=AC,∠A=40°,∴∠ABC==70°.∵DE是腰AB的垂直平分线,∴AD=BD,∠DBA=∠A=40°,∴∠DBC=70°﹣40°=30°;(2)由(1)得:AD=BD,∴△BDC的周长=BD+CD+BC=AD+CD+BC=AC+BC=AB+BC=9+5=14.答:△BDC的周长是14.22.证明:∵BC的垂直平分线交BC于点D,交AB延长线于点E,∴CE=BE,∴∠ECB=∠EBC,∵∠EBC=∠A+∠ACB,∴∠BCE=∠A+∠ACB.23.【答案】(1)解:∵EF∥AB.∴∠FEC=∠A=30°.∠EFC=∠B=30°∴EC=CF.又∵AC=BC∴AE=BFD是AB中点.∴DB=AD∴△ADE≌△BDF.∴DE=DF(2)解:过D作DM⊥AC交AC于M,再作DN⊥BC交BC于N.∵AC=BC,∴∠A=∠B,又∵∠ACB=120°,∴∠A=∠B=(180°﹣∠ACB)÷2=30°,∴∠ADM=∠BDN=60°,∴∠MDN=180°﹣∠ADM﹣∠BDN=60°.∵AC=BC、AD=BD,∴∠ACD=∠BCD,∴DM=DN.由∠MDN=60°、∠EDF=60°,可知:一当M 与E 重合时,N 就一定与F 重合.此时:DM=DE 、DN=DF ,结合证得的DM=DN ,得:DE=DF .二当M 落在C 、E 之间时,N 就一定落在B 、F 之间.此时:∠EDM=∠EDF﹣∠MDF=60°﹣∠MDF,∠FDN=∠MDN﹣∠MDF=60°﹣∠MDF,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.三当M 落在A 、E 之间时,N 就一定落在C 、F 之间.此时:∠EDM=∠MDN﹣∠EDN=60°﹣∠EDN,∠FDN=∠EDF﹣∠EDN=60°﹣∠EDN,∴∠EDM=∠FDN,又∵∠DME=∠DNF=90°、DM=DN ,∴△DEM≌△DFN(ASA ),∴DE=DF.综上一、二、三所述,得:DE=DF .24. (1)证明∶如图1,∵CD ⊥AB , BP ⊥AC ,∴∠ADC =∠APB =90°,∵在△ABP 和△ACD 中,ADC APB CAD BAP AC AB ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△ABP ≌△ACD ;(2)证明:如图3,在PA 上取一点M ,使得PM =AB ,∵△BPE是等边三角形,∴BE=PE,∠BEP=60°,∵AB=AC,∠ABC=30°,∴∠ACB=∠ABC=30°,∴∠BAP=∠ABC+∠ACB=60*,∴∠BEP=∠BAP,∴∠EPM=∠EBA,∴△PEM≌△BEA,∴EM=AE,∠PEM=∠BEA,∴∠AEM=∠AEB+∠BEM=∠PEM+∠MEB=∠BEP=60°,∴△AEM是等边三角形,∵AE=AM,∴AP=AM+PM=AE+AB;(3)解∶存在定直线,使得线段BE、CE始终关于这条直线对称,理由如下:①当点D与点E在直线CP同侧时,连接CE,如图4,∵△AEM是等边三角形,∴∠EAM=60°,∵∠BAP =60°,∴∠DAE =180°-∠DAE -∠EAM =60°,∴∠CAE =CAD +∠DAE =120°,∠BAE =∠BAP +∠AEM =120°,∴∠CAE =∠BAE ,∵在△CAE 和△BAE 中AE AE CAE BAE AC AB =⎧⎪∠=∠⎨⎪=⎩, ∴△CAE ≌△BAE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;②当点D 与点E 在直线CP 两侧时,在PC 上取一点M ,使得PM = BA ,如图5,∵△BPE 是等边三角形,∴BE =PE ,∠BEP =60°,∵AB =AC ,∠ABC =30°,∴∠ACB =∠ABC =30°,∴∠BAP =∠ABC +∠ACB =60°,∴∠BEP =∠BAP ,∴∠EPM =∠EBA ,∴△PEM ≌△BEA ,∴∠PME =∠BAE , EM =AE ,∴∠PME =∠MAE ,∴∠MAE =∠BAE ,∵△ACE 和△ABE 中,CA AB MAE BAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴△ACE ≌△ABE ,∴CE =BE ,∴点E 在线段BC 的垂直平分线上,△CEB 是等腰三角形,∵等腰三角形CEB 的对称轴为线段BC 的垂直平分线,∴线段BE 、CE 始终关于线段BC 的垂直平分线对称;即∶在点P 运动过程中,存在定直线(线段BC 的垂直平分线),使得线段BE 、CE 始终关于这条直线对称.。