2023年高二上学期开学考试数学试题(含答案)
- 格式:doc
- 大小:154.18 KB
- 文档页数:6
2024~2025学年高二10月质量检测卷数学(A 卷)考生注意:1.本试卷分选择题和非选择题两部分。
满分150分,考试时间120分钟。
2.答题前,考生务必用直径0.5毫米黑色墨水签字笔将密封线内项目填写清楚。
3.考生作答时,请将答案答在答题卡上。
选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效。
4.本卷命题范围:人教A 版选择性必修第一册第一章~第二章。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知直线经过,两点,则的倾斜角为()A.B.C.D.2.已知圆的方程是,则圆心的坐标是( )A. B. C. D.3.在长方体中,为棱的中点.若,,,则()A. B. C. D.4.两平行直线,之间的距离为( )B.3D.5.曲线轴围成区域的面积为( )l (A (B l 6π3π23π56πC 2242110x y x y ++--=C ()2,1-()2,1-()4,2-()4,2-1111ABCD A B C D -M 1CC AB a = AD b =1AA c = AM =111222a b c -+ 111222a b c ++12a b c-+12a b c++ 1:20l x y --=2:240l x y -+=y =xA. B. C. D.6.已知平面的一个法向量,是平面内一点,是平面外一点,则点到平面的距离是( )A. B.D.37.在平面直角坐标系中,圆的方程为,若直线上存在点,使以点为圆心,1为半径的圆与圆有公共点,则实数的取值范围是( )A. B.C. D.8.在正三棱柱中,,,为棱上的动点,为线段上的动点,且,则线段长度的最小值为( )A.2二、选择题:本题共3小题,每小题6分,共18分。
注意事项:1.答题前,考生须将自己的姓名、班级、考场/座位号填写在答题卡指定位置上,并粘贴条形码.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.3.回答非选择题时,请使用0.5毫米黑色字迹签字笔将答案写在答题卡各题目的答题区域内,超出答题区域或在草稿纸、本试题卷上书写的答案无效.4.保持卡面清洁,不要折叠、不要弄皱、弄破,不准使用涂改液、修正带、刮纸刀. 一、单选题:本题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项东北师范大学附属中学2023-2024学年高二上学期期末考试数学试题是符合题目要求的.1. 直线1:10l ax y ++=与直线()2:2320l x a y +−+=平行,则a 的值为( )A. 2−B. 1−C. 1D. 2【答案】D 【解析】【分析】先根据12l l //求解出a 的值,然后再进行检验是否重合,由此求解出a 的值.【详解】因为12l l //,所以()3120a a ×−−×=,解得1a =或2a =, 当1a =时,1:10l x y ++=,2:2220l x y ++=,此时12,l l 重合,舍去; 当2a =时,1:210l x y ++=,2:220l x y ++=,此时12l l //满足, 故选:D.2. 据典籍《周礼·春官》记载,“宫、商、角、徵、羽”这五音是中国古乐的基本音阶,成语“五音不全”就是指此五音.如果把这五个音阶全用上,排成一个五音阶音序,要求“宫”不为末音节,“羽”不为首音节,可以排成不同音序的种数是( ) A. 36 B. 60C. 72D. 78【答案】D 【解析】【分析】将“宫”看为特殊元素,分类讨论:“宫”为首音节、“宫”不为首音节,由此求解出总的排法数. 【详解】①若“宫”为首音节,可排成的音序有44A 24=种,②若“宫”不为首音节,从“宫”“羽”之外的三个音阶中选一个作为首音节有13C 种选法, 再安排“宫”音阶有13C 种排法,剩余三个音阶可以全排列有33A 种排法,所以②一共有113333C C A 54××=种排法, 由分类加法计数原理可知,一共有245478+=种排法, 故选:D.3. 已知点()5,0A ,点B 在圆22(1)4x y −+=上运动,则线段AB 的中点M 的轨迹方程是( ) A. 22680x y x +−+= B. 22650x y x +−+= C. 22680x y x +++= D. 22650x y x +++=【答案】A 【解析】【分析】设出,B M 的坐标,利用相关点法求解出M 的轨迹方程. 【详解】设()()00,,,B x y M x y ,由题意可知005202x x y y+ =+ = ,所以00252x x y y =− = , 又因为()220014x y −+=, 所以()()2225124x y −−+=, 化简可得22680x y x +−+=,所以M 的轨迹方程为22680x y x +−+=, 故选:A.4. 已知直线0ax y +=是双曲线2221(0)4x y a a −=>的一条渐近线,则该双曲线的半焦距为( )A.B.C.D.【答案】A【解析】【分析】根据双曲线的标准方程和渐近线方程求出a 值,求出半焦距,判断选项.【详解】由0ax y +=是双曲线22214x y a −=()0a >的一条渐近线,则2a a=,解得a =故222246c a b =+=+=,则c =故选:A5. 将4名志愿者分别安排到,,A B C 三个社区进行社会实践活动,要求每个社区至少安排一名志愿者,每名志愿者只能去一个社区,若志愿者甲必须安排到A 社区,不同的安排方法有( )种 A. 6 B. 9C. 12D. 36【答案】C 【解析】【分析】根据A 社区的志愿者人数进行分类讨论,然后由分类加法计数原理求解出结果. 【详解】①若A 社区仅有志愿者甲,则剩余3名志愿者需要分成2组并分配到,B C 社区,此时安排的方法数为:1232C A 6×=种; ②若A 社区还有另外一名志愿者,则先选出这名志愿者有13C 种方法, 再将剩余2名志愿者分配到,B C 社区有22A 种方法,根据分步乘法计数原理可知②的安排方法数为:1232C A 6×=种, 所以一共有6612+=种安排方法, 故选:C.6. 已知B 是椭圆2213x y +=的上顶点,点M 是椭圆上的任意一点,则MB 的最大值为( )A. 2B.C.D.92【答案】C 【解析】【分析】设出M 点坐标,利用坐标表示出MB 并进行化简,再根据椭圆的有界性结合二次函数的性质求解出MB 的最大值.【详解】设()00,M x y ,()0,1B ,且220013x y +=,所以MB =,又因为[]01,1y ∈−,所以当012y =−时取最大值,所以max MB = 故选:C.7. 一枚硬币掷三次,已知一次正面朝上,那么另外两次都是反面朝上的概率为( ) A.17B.37C.18D.38【答案】B 【解析】【分析】先分析试验的基本事件总数,然后考虑“有一次正面朝上”的基本事件数,再分析“另外两次都是反面朝上”的基本事件数,根据基本事件数的比值可求结果.(正正正),(正正反),(正反正),(正反反),(反正正),(反正反),(反反正),(反反反),共8个, 有正面朝上的基本事件有:(正正正),(正正反),(正反正),(正反反),(反正正),(反正反),(反反正),共7个, 其中有两次都是反面朝上的基本事件有: (正反反),(反正反),(反反正),共3个, 故所求概率为37, 故选:B.8. 已知抛物线2:8E x y =,直线:360l ax y a +−−=,过抛物线的焦点F 作直线l 的垂线,垂足为P ,若点Q 是拋物线E 上的动点,则FQ PQ +的最小值为( )A. 3B. 4C.72D.172【答案】C 【解析】【分析】通过直线l 过定点A ()3,6,得到P 在以AF 为直径的圆上,将Q 到P 的距离转化为到圆心的距离,再结合抛物线的定义即可求出FQ PQ +的最小值.【详解】因为直线:360l ax y a +−−=,即()-360a x y +−=,过定点()3,6,记作点A , 因为FP l ⊥,垂足为P ,所以90FPA ∠=°,又()0,2F , 故点P 的轨迹为以FA 为直径的圆,半径1522rFA =,圆心为3,42,记作点B , 又因为Q 在抛物线2:8E x y =上,其准线为=2y −, 所以FQ 等于Q 到准线的距离,过点Q 做准线的垂线,垂足为R ,要使FQ PQ +取到最小,即RQ PQ +最小, 此时,,,P Q R 三点共线,且三点连线后直线PR 过圆心B ,如图所示,此时()min574222FQ PQBR r +=−=+−=. .二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9. 3名男生和3名女生站成一排,则下列结论中正确的有( ) A. 3名男生必须相邻的排法有144种 B. 3名男生互不相邻的排法有72种 C. 甲在乙的左边的排法有360种 D. 甲、乙中间恰好有2人的排法有144种【答案】ACD 【解析】【分析】A :利用捆绑法分析;B :利用插空法分析;C :先考虑6人全排列,然后甲在乙的左边的排法数占一半,由此求解出结果;D :先选2人与甲乙捆绑在一起,然后再看成3个元素全排列. 【详解】对于A :将3名男生捆绑在一起看成一个元素,所以排法有3434A A 144×=种,故A 正确;对于B :将3名男生放入到3名女生形成的4个空位中,所以排法有3334A A 144×=种,故B 错误; 对于C :3名男生和3名女生全排列,排法有66A 720=种, 其中甲在乙的左边的排法占总数的12,所以有17203602×=种排法,故C 正确; 对于D :先选2人与甲乙一起看成一个元素,再将此一个元素与剩余2人全排列,所以有排法223423A A A 144××=种,故D 正确; 故选:ACD.10. 二项式61)x−的展开式中( ) A. 前三项的系数之和为22 B. 二项式系数最大的项是第4项 C. 常数项为15D. 所有项的系数之和为64 【答案】BC 【解析】【分析】首先写出二项式展开式的通项,选项A 中根据通项求前三项系数之和即可;选项B 中二项式系数6C k(0,1,2,,6)k =…中最大的是36C ;选项C ,常数项满足通项中x 的指数为0,可得2k =;选项D 中将1x =代入即可.【详解】二项式61)x−展开式的通项为:()()36321661C 1C 0,1,2,,6kk kk kkk T x k x −−+ =⋅−=−=…; 对于选项A ,前三项的系数之和为:()()()0120126661C 1C 1C 10−+−+−=,A 错误;对于选项B ,二项式系数6C k (0,1,2,,6)k =…中最大的是36C ,恰好是第4项,B 正确;对于选项C ,常数项时,通项公式中满足3302k −=,得2k =,即3T =()22061C 15x −=,C 正确; 对于选项D ,将1x =代入,可得所有项的系数之和,结果为0,D 错误; 故选:BC.11. 盒子中有12个乒乓球,其中8个白球4个黄球,白球中有6个正品2个次品,黄球中有3个正品1个次品.依次不放回取出两个球,记事件=i A “第i 次取球,取到白球”,事件i B =“第i 次取球,取到正品”,1,2i =.则下列结论正确的是( )A. ()1123P A B =B. ()212P B =C. ()2113P A B = D. ()2134P B A =【答案】AD 【解析】【分析】利用古典概型的概率公式及排列组合数,求出()1P B ,()11P A B ,()2P B ,()21P A B ,()1P A ,()12P A B ,再利用条件概率公式即可判断各个选项.【详解】对A ,()193==124P B ,()1161==122P A B ,所以()()()111112==3P A B P A B P B ,故A 正确; 对B ,事件2B =“第2次取球,取到正品”,()2119392212A A A 3A 4P B +==,故B 错误; 对C ,事件21A B =“第1次取球,取到正品且第2次取球,取到白球”,包括(正白,正白),(正白,次白),(正黄,正白),(正黄,次白),共有65+62+36+32=66××××种情况,()21212661=A 2P A B =,故C 错误; 对D ,事件12A B =“第1次取球,取到白球且第2次取球,取到正品”,包括(白正,白正),(白正,黄正),(白次,白正),(白次,黄正),共有65+63+26+23=66××××种情况,()12212661=A 2P A B =,又因为()182==123P A ,()()()122113==4P A B P B A P A ,故D 正确; 故选:AD.12. 设12,F F 分别是双曲线22214x y b−=的左右焦点,过2F 的直线与双曲线的右支交于,A B 两点,12AF F △的内心为I ,则下列结论正确的是( ) A. 若1ABFB. 若直线OA 交双曲线的左支于点D ,则1//F D ABC. 若1,F H AI H ⊥为垂足,则2OH =D. 12AF F △的内心I 一定在直线4x =上 【答案】ABC 【解析】【分析】A :利用等边三角形性质以及双曲线定义得到,a c 关系式,则离心率可知;B :利用双曲线的对称性以及三角形的全等关系进行证明;C :根据角平分线的性质结合双曲线的定义求解出OH ;D :利用切线性质以及双曲线的定义进行求解.【详解】对于A :若1ABF 为正三角形,则AB x ⊥轴,由22221x c x y ab = −= 得2x cb y a = =± ,所以222b AF BF a ==, 由等边三角形性质可知:21222b AF AF a==,所以2122b AF AF a a −==, 所以22222a b c a ==−,所以2223c e a==,所以e =A 正确; 对于B :由双曲线的对称性可知OA OD =,如下图,又因为1212,OF OF DOF AOF =∠=∠,所以1DOF 与2AOF △全等, 所以12ODF OAF ∠=∠,所以1//F D AB ,故B 正确; 对于C :延长1F H 交AB 延长线于G ,如下图所示,由角平分线的性质可知1F AH GAH ∠=∠,且190,AHF AHG AH AH °∠===,所以1AHF 与AHG H GH =,所以H 为1F G 中点, 又因为O 为12F F 中点,所以212212222AG AF AF AF OH GF a −−=====,故C 正确; 对于D :设三个切点为,,M N P ,连接,,MI NI PI ,如下图,由切线性质可知:1122,,AM AN F M F P F PF N ===, 设OP x =,因为12121224AF AF F M AM AN F N F P F P a −=+−−=−==,所以()4c x c x +−−=,所以2x =, 所以12AF F △的内心I 一定在直线2x =上,故D 错误; 故选:ABC.【点睛】关键点点睛:本题考查双曲线性质的综合运用,涉及离心率、双曲线的对称性、焦点三角形的内切圆相关问题,对学生的分析与计算能力要求较高,难度较大.其中CD 选项在分析时,不仅要考虑内切圆的性质,同时需要考虑双曲线的定义,二者结合解决问题.三、填空题:本题共4小题,每小题5分,共20分.13. 某人忘记了他在一个网络平台的账户密码,而平台只允许试错三次,如果三次都试错,则账户就会锁定,无法继续试验.假设该用户每次能试中的概率为0.1,记试验的次数为X ,则()3P X ==______.【答案】0.81##81100【解析】【分析】试验次数为3X =,表示该用户前两次均试错,再利用相互独立事件的概率公式进行求解即可.【详解】试验的次数为3X =,表示该用户前两次均试错,所以()30.90.9=0.81P X ==×.故答案为:0.81.14. 已知抛物线2:8E y x =,焦点为,F A 在抛物线上,B 在y 轴上,且2=FA AB ,则AF =______. 【答案】83【解析】【分析】根据抛物线方程可知焦点坐标,根据向量共线可求A x ,结合焦半径公式可求AF . 【详解】因为2:8E y x =,所以()2,0F ,因为2=FA AB ,所以()22A B A x x x −=−, 因为B 在y 轴上,所以0B x =,所以23A x =, 所以282233A p AF x =+=+=, 故答案为:83. 的15. 某商店成箱出售玻璃杯,每箱装有10只.假设在各箱中有0,1,2只残次品的概率依次为0.6,0.25,0.15,顾客随机取出一箱,并从中取出4只查看,若无残次品,则买下该箱玻璃杯,否则退回.则顾客买下该箱玻璃杯的概率为______. 【答案】45##0.8 【解析】【分析】顾客买下这箱玻璃杯有3种情况:该箱中无残次品、该箱中有1只残次品、该箱中有2只残次品,然后由互斥事件的概率公式和全概率公式求解出结果.【详解】记事件B 为顾客买下该箱玻璃杯,事件i A 为取出的该箱中有i 只残次品,0,1,2i =,所以()()()0123130.6,0.25,0.155420P A P A P A ======, 且()()()4498012441010C C 311,,C 5C 3P B A P B A P B A =====, 由全概率公式可得:()()()()()()()001122P B P A P B A P A P B A P A P B A =++31331415452035=×+×+×=, 故答案为:45.16. 已知12,F F 分别为椭圆2222:1(0)x y C a b a b+=>>的左右焦点,B 为椭圆C 的下顶点,直线1BF 交椭圆C 于另一点P ,且260PF B °∠=,则椭圆C 的离心率为______.##【解析】【分析】利用余弦定理先求解出1PF ,然后再利用相似关系求解出P 点坐标,将坐标代入椭圆方程可求结果.【详解】设()10PF x x =>,由题意可知12BF BF a ==, 所以2,2PB a x PF a x =+=−, 在2PBF 中由余弦定理可知:22222222cos 60PB PF BF PF BF °+−××,化简可得252ax a =,所以25x a =, 过P 作PQ x ⊥轴交于Q 点,如下图,易知1PQF △∽1BOF ,所以111125PQ QF PF OBOF BF ===, 所以122,55PQ b QF c ==,所以72,55P c b−, 将P 代入椭圆方程可得222249412525c b a b +=, 所以22237c e a ==,所以e =,. 四、解答题:本题共6小题,共70分,解答应写出文字说明、解答过程或演算步骤.17. 已知(2)n x +展开式中的第三项和第四项的二项式系数相等,且2012(2)+=++++ n n n x a a x a x a x .(1)求01a a +的值;(2)求0123(1)1112482n n na a a a a −−+−++ 的值. 【答案】(1)112 (2)24332【解析】【分析】(1)先根据二项式系数的性质求出n ,进而可求出答案; (2)令12x =−,即可得解 【小问1详解】因为(2)n x +展开式中的第三项和第四项的二项式系数相等, 所以23C C n n =,所以5n =, 则5(2)(2)n x x +=+,所以05145501C 2C 2112a a =⋅+⋅=+; 【小问2详解】 令12x =−, 则()501235522(1)11124324823n a a a a a x −−+−+++== , 即0123(1)111243248232n n na a a a a −−+−++= . 18. ABC 的顶点()()1,0,2,0,A B ABC −△的垂心(三条高交点)为()1,1H . (1)求顶点C 的坐标; (2)求ABC 的外接圆方程. 【答案】(1)()1,2(2)22115222x y −+−=【解析】【分析】(1)设(),C m n ,根据,BC AH AC BH ⊥⊥,结合斜率公式即可得解;.(2)设ABC 的外接圆方程为()()()2220x a y b r r −+−=>,利用待定系数法求出2,,a b r 即可. 【小问1详解】 设(),C m n ,由题意得,BC AH AC BH ⊥⊥,1,12AH BH k k ==−, 所以112211BC AH AC BHn k k m n k k m=⋅=− − =−=− +,解得12m n = = ,所以顶点C 的坐标为()1,2; 【小问2详解】设ABC 的外接圆方程为()()()2220x a y b r r −+−=>,则()()()()()()2222222221212a b r a b r a b r −−+−=−+−=−+−=,解得2121252a b r= = =, 所以ABC 的外接圆方程为22115222x y −+−=. 19. 如图,在四棱锥P ABCD −中,PA ⊥平面ABCD ,四边形ABCD 是矩形,1,2AB AP AD ==E ,F 分别是,AP BC 的中点.(1)求证://EF 平面PCD ;(2)求平面CDE 与平面FDE 夹角的余弦值.【答案】(1)证明过程见详解; (2【解析】【分析】(1)取PB 的中点G ,由面面平行的判定定理证明平面//EFG 平面PCD ,再由面面平行的性质定理可得//EF 平面PCD ;(2)由,,AB AD AP 两两垂直建立空间直角坐标系,分别求出平面CDE 与平面FDE 的法向量,m n,设平面CDE 与平面FDE 夹角为θ,由公式cos cos ,m nm n m nθ⋅==⋅即可得出结果. 【小问1详解】取PB 的中点G ,连结,EG FG ,因为E ,F 分别是,AP BC 的中点,所以//EG AB ,//FG PC , 又因为//AB CD ,所以//EG CD ,又因为EG ⊄平面PCD ,CD ⊂平面PCD ,所以//EG 平面PCD ; 同理可得//FG 平面PCD ,又因为平,,EG FG G EG FG ∩=面EFG ,所以平面//EFG 平面PCD , 又因为EF ⊂平面EFG ,所以//EF 平面PCD .,【小问2详解】因为PA ⊥平面ABCD ,四边形ABCD 是矩形,所以,,AB AD AP 两两垂直, 以,,AB AD AP 所在直线分别为x 轴,y 轴,z 轴建立空间直角坐标系,设4=AD ,()2,4,0C ,()0,4,0D ,()0,0,1E ,()2,2,0F , ()2,0,0CD =− ,()0,4,1DE=− ,()2,2,0DF=−设平面CDE 的法向量(),,m x y z = ,所以2040CD m x DE m y z ⋅=−= ⋅=−+=, 取0,1,4x y z ===,所以()0,1,4m =; 设平面FDE 的法向量(),,n a b c = ,所以22040DF n a b DE n b c ⋅− ⋅=−+=, 取1,1,4a b c ===,所以()1,1,4n =, 设平面CDE 与平面FDE 夹角为θ,cos cos ,m n m n m nθ⋅∴===⋅, 故平面CDE 与平面FDE20. 已知抛物线2:2(0)C y px p =>,点()1,1M −到焦点F直线l 与抛物线C 交于,A B 两点,设直线,MA MB 斜率分别为12,k k . (1)求p ;(2)若121k k +=−,证明直线l 过定点,并求出满足条件的定点坐标. 【答案】(1)2p =(2)证明见解析,定点坐标()1,0 【解析】【分析】(1)根据两点间距离公式表示出MF ,由此可求p 的值;(2)根据直线l 的斜率是否存在进行分类讨论,斜率存在时,通过联立直线与抛物线得到横坐标的韦达定理形式,然后化简条件等式,得到,k m 的关系式即可求解出所过定点坐标,斜率不存在时直接分析即可. 【小问1详解】 因为,02p F,()1,1M −,所以MF =,解得2p =;【小问2详解】当直线l 的斜率存在时,由题意可知直线l 的斜率不为0,设:l y kx m =+,()()1122,,,A x y B x y , 联立24y kx m y x =+ =可得()222240k x km x m +−+=, 且()2222440km k m ∆=−−>,即1km <,所以212122242,km m x x x x k k−+==, 所以1212121212111111111y y kx m kx m k k x x x x −−+−+−+=+=+=−++++, 所以1212121111211111kx k m k kx k m k m k m kk x x x x ++−−++−−−−−−+=++=−++++,所以()()()()()12122111120k x x m k x x ++++−−++=, 所以()()()()121212211120k x x x x m k x x +++++−−++=, 代入韦达定理化简可得:()()40m k m k −++=, 当0m k +=时,:l y kx k =−,即():1l y k x =−过定点()1,0, 当40m k −+=时,():14l y k x =+−过定点()1,4−−; 当直线l 的斜率不存在时,设:l x n =,由24x n y x == 得x n y = =±,所以121k k +=−,解得1n =,所以:1l x =,此时l 过点()1,0;综上,由l 的斜率存在和斜率不存在的两种情况可知,l 过定点()1,0.【点睛】方法点睛:圆锥曲线中过定点问题的两种求解方法:(1)若设直线方程为y kx m =+或x ky m =+,则只需要将已知条件通过坐标运算转化为,m k 之间的线性关系,再用m 替换k 或用k 替换m 代入直线方程,则定点坐标可求;(2)若不假设直线的方程,则需要将直线所对应线段的两个端点的坐标表示出来,然后选择合适的直线方程形式表示出直线方程,由此确定出定点坐标.21. 某商场为了促销规定顾客购买满500元商品即可抽奖,最多有3次抽奖机会,每次抽中,可依次获得10元,30元,50元奖金,若没有抽中,则停止抽奖.顾客每次轴中后,可以选择带走所有奖金,结束抽奖;也可选择继续抽奖,若没有抽中,结束抽奖.小李购买了500元商品并参与了抽奖活动,己知他每次抽中的概率依次为211,,323,如果第一次抽中选择继续抽奖的概率为23,第二次抽中选择继续抽奖的概率为14,且每次是否抽中互不影响. (1)求小李第一次抽中且所得奖金归零的概率;(2)设小李所得奖金总数为随机变量X ,求X 的分布列. 【答案】(1)727(2)答案见解析 【解析】【分析】(1)设出事件,分两种情况讨论:第一次抽中但第二次没抽中,前两次抽中但第三次没抽中,结合独立事件和互斥事件的概率计算公式求解出结果;(2)先分析X 的可能取值,然后计算出对应概率,由此可求X 的分布列. 【小问1详解】记小李第i 次抽中为事件()1,2,3i A i =,则有()()()123211,,323P A P A P A ===,且123,,A A A 两两互相独立,记小李第一次抽中但奖金归零为事件A , 则()()()12123221221117113323324327P A P A A P A A A =+=××−+××××−= ; 【小问2详解】由题意可知X 的可能取值为:0,10,40,90,()()21601327P X P A ==+−= ,()222101339P X ==×−= ,()2211140133246P X ==×××−= , ()221111903324354P X ==××××=, 所以X 的分布列为:22.已知O 为坐标原点,双曲线2222:1(0,0)x y C a b a b −=>>()2,2.(1)求双曲线C 的标准方程;(2)圆224x y +=的切线l 与双曲线C 相交于,A B 两点. (ⅰ)证明:OA OB ⊥; (ⅱ)求OAB 面积的最小值.【答案】(1)22124x y −=(2)(ⅰ)证明过程见解析;(ⅱ)4 【解析】【分析】(1)待定系数法求解双曲线方程;(2)(ⅰ)考虑切线l 斜率为0和不为0两种情况,设出切线方程x my t =+,联立双曲线方程,得到两根之和,两根之积,求出0OA OB ⋅=得到垂直关系;(ⅱ)在(ⅰ)的基础上,求出当切线l 的斜率为0时的三角形面积,再得到切线l 的斜率不为0时OAB 面积表达式,求出其取值范围,得到面积的最小值. 【小问1详解】由题意得ca =()2,2代入双曲线中得22441a b−=, 又222c a b =+,解得222,4a b ==, 故双曲线C 的标准方程为22124x y −=;【小问2详解】(ⅰ)当切线l 的斜率为0时,方程为2y =±,不妨设2y =,此时222124x −=,解得2x =±,不妨设()()2,2,2,2A B −,则()()2,22,2440OA OB ⋅=−⋅=−+= ,所以OA OB ⊥;当切线斜率不为0时,设为x t =,2=,故2244t m =+,联立x my t =+与22124x y −=得,()222214240m y mty t −++−=, 则()()22222210Δ16424210m m t t m −≠=−−−> ,又2244t m =+,解得m ≠ 设()()1122,,,A x y B x y ,则2121222424,2121mt t y y y y m m −−+==−−, 故()()()2212121212x x my t my t m y y mt y y t =++=+++,故()()22121212121x x y y y O O m y m B t t A y y ⋅=+=++++的()222222222222222222442424421212121t m t t m t m m t m t t m t m m m −−+−−+−=+−+=−−− 22244021t m m −−=−, 故OA OB ⊥;(ⅱ)当切线l 斜率为0时,OAB的面积为11422OA OB =×=, 当切线斜率不为0时,AB=, 因为2244t m =+,点O 到切线AB 的距离为2,故122OAB S AB =×= 当2210m −>时,令2210m t −=>,则212t m +=,故OAB S = , 因为0t >,所以4OAB S => , 同理,当0t >时,4OAB S >,综上,OAB 面积的最小值为4. 的【点睛】圆锥曲线中最值或范围问题的常见解法:(1)几何法,若题目的条件和结论能明显体现几何特征和意义,则考虑利用几何法来解决;(2)代数法,若题目的条件和结论能体现某种明确的函数关系,则可首先建立目标函数,再求这个函数的最值或范围.。
2022-2023学年高二上数学选择性必修第一册:直线与圆的位置关系【考点梳理】考点一:直线Ax +By +C =0与圆(x -a )2+(y -b )2=r 2的位置关系位置关系相交相切相离公共点个数2个1个0个判断方法几何法:设圆心到直线的距离为d =|Aa +Bb +C |A 2+B 2d <r d =r d >r代数法:由Ax +By +C =0,(x -a )2+(y -b )2=r 2,消元得到一元二次方程,可得方程的判别式ΔΔ>0Δ=0Δ<0考点二:直线与圆的方程解决实际问题审题→建立数学模型→解答数学模型→检验,给出实际问题的答案.【题型归纳】题型一:判断直线与圆的位置关系1.(2021·全国高二单元测试)直线10mx y -+=与圆22(2)(1)5x y -+-=的位置关系是()A .相交B .相切C .相离D .与m 的值有关2.(2021·浙江高二期末)直线:1l y ax a =-+与圆224x y +=的位置关系是()A .相交B .相切C .相离D .与a 的大小有关3.(2021·北京房山·高二期末)已知直线10l kx y k -+-=:和圆C :2240x y x +-=,则直线l 与圆C 的位置关系为()A .相交B .相切C .相离D .不能确定题型二:由直线与圆的位置关系求参数4.(2021·云南省云天化中学高二期末(文))直线30x y a ++=是圆22240x y x y ++-=的一条对称轴,则a =()A .1-B .1C .3-D .35.(2021·内蒙古赤峰市·)若直线()200,0ax by a b --=>>被圆22 2210x y x y +-++=截得的弦长为2,则11a b+的最小值为()A .14B .4C .12D .26.(2020·大连市红旗高级中学)若直线:1l y kx =-与圆()()22:212C x y -+-=相切,则直线l 与圆()22:23D x y -+=的位置关系是()A .相交B .相切C .相离D .不确定题型三:圆的弦长问题7.(2021·汕头市澄海中学高二月考)若圆22:160C x x y m +++=被直线3440x y ++=截得的弦长为6,则m =()A .26B .31C .39D .438.(2021·湖南长沙市·长郡中学高二期中)圆22:(2)4C x y -+=与直线40x y --=相交所得弦长为()A .1B .2C .2D .229.(2021·湖北十堰市·高二期末)直线3410x y ++=被圆220x y x y +-+=所截得的弦长为()A .710B .57C .75D .145题型四:圆的弦长求参数或者切线方程10.(2021·上海闵行中学高二期末)圆()()22134x y -+-=截直线10ax y +-=所得的弦长为23,则a =()A .43-B .34-C .3D .211.(2021·广西河池市·高二期末(文))已知斜率为1-的直线l 被圆C :222430x y x y ++-+=截得的弦长为6,则直线l 的方程为()A .2210x y ++=或2230x y +-=B .0x y +=或20x y +-=C .2220x y +-=或22320x y ++=D .20x y +-=或220x y ++=12.(2021·长春市第二十九中学高二期末(理))直线220ax by -+=被222440x y x y ++--=截得弦长为6,则ab 的最大值是()A .9B .4C .12D .14题型五:直线与圆的应用13.(2021·广东深圳市·高三月考)一座圆拱桥,当水面在如图所示位置时,拱顶离水面3米,水面宽12米,当水面下降1米后,水面宽度最接近()A .13.1米B .13.7米C .13.2米D .13.6米14.(2021·渝中区·重庆巴蜀中学高一期中)如图,某个圆拱桥的水面跨度是20米,拱顶离水面4米;当水面下降1米后,桥在水面的跨度为()A .230米B .202米C .430米D .125米15.(2020·重庆市万州沙河中学高二月考)一艘海监船上配有雷达,其监测范围是半径为26km 的圆形区域,一艘外籍轮船从位于海监船正东40km 的A 处出发径直驶向位于海监船正北30km 的B 处岛屿,船速为10km/h 这艘外籍轮船能被海监船监测到且持续时间长约为()小时A .1B .2C .3D .4题型六:直线与圆的位置关系的综合应用16.(2021·贵州遵义市·高二期末(理))已知O 圆心在直线2y x =+上,且过点()1,0A 、()2,1B .(1)求O 的标准方程;(2)已知过点()3,1的直线l 被所截得的弦长为4,求直线l 的方程.17.(2020·永丰县永丰中学高二期中(文))已知圆C 经过点()()1,0,2,1A B ,且圆心在直线:l y x =上.(1)求圆C 的方程;(2)若(,)P x y 为圆C 上的动点,求22y x +-的取值范围.18.(2020·黑龙江哈尔滨·哈九中高二期中(文))已知线段AB 的端点B 的坐标是()6,8,端点A 在圆2216x y +=上运动,M 是线段AB 的中点,且直线l 过定点()1,0.(1)求点M 的轨迹方程;(2)记(1)中求得的图形的圆心为C ,(i )若直线l 与圆C 相切,求直线l 的方程;(ii )若直线l 与圆C 交于,P Q 两点,求CPQ 面积的最大值,并求此时直线l 的方程.【双基达标】一、单选题19.(2021·嘉兴市第五高级中学高二期中)直线:1l y x =-截圆22:1O x y +=所得的弦长是()A .2B .3C .2D .120.(2021·陆良县中枢镇第二中学高二月考)经过点()2,3P -作圆22:224C x y x ++=的弦AB ,使得点P 平分弦AB ,则弦AB 所在直线的方程为()A .50x y --=B .50x y +-=C .50x y -+=D .50x y ++=21.(2021·云南保山市·高二期末(文))若直线m :0kx y +=被圆()2224x y -+=所截得的弦长为2,则点()0,23A 与直线m 上任意一点P 的距离的最小值为()A .1B .3C .2D .2322.(2021·四川省乐至中学高二期末)圆222410x y x y ++-+=关于直线220ax by -+=(),a b R ∈对称,则ab 的取值范围是()A .1,4⎛⎤-∞ ⎥⎝⎦B .10,4⎛⎤⎥⎝⎦C .1,04⎛⎤- ⎥⎝⎦D .1,4⎛⎫-∞ ⎪⎝⎭23.(2021·全国高二专题练习)直线3y kx =+与圆()()22324x y -+-=相交于M ,N 两点,若23MN =,则k 的值是()A .34-B .0C .0或34-D .3424.(2021·广西桂林市·(理))圆222420x x y y -+++=到直线2220x y -+=的距离为1的点有()A .1个B .2个C .3个D .0个25.(2021·全国)已知圆C 的方程为22(3)(4)1x y -+-=,过直线:350l x ay +-=上任意一点作圆C 的切线.若切线长的最小值为15,则直线l 的斜率为()A .4B .-4C .34-D .43-26.(2021·全国高二期中)在平面直角坐标系中,动圆222:(1)(1)C x y r -+-=与直线1(2)()y m x m R +=-∈相切,则面积最大的圆的标准方程为()A .22(1)(1)4x y -+-=B .22(1)(1)5x y -+-=C .22(1)(1)6x y -+-=D .22(1)(1)8x y -+-=27.(2021·山西晋中·高二期末(理))已知圆22:20C x y x +-=,直线:10l x y ++=,P 为l 上的动点,过点P 作圆C 的两条切线PA 、PB ,切点分别A 、B ,当·PC AB 最小时,直线AB 的方程为()A .0x y +=B .0x y -=C .2210x y -+=D .2210x y ++=28.(2021·克拉玛依市第一中学高二月考)已知圆22:4210C x y x y +--+=及直线():2l y kx k k R =-+∈,设直线l 与圆C 相交所得的最长弦长为MN ,最短弦为PQ ,则四边形PMQN 的面积为()A .42B .22C .8D .82【高分突破】一:单选题29.(2021·全国高二专题练习)已知圆()()22224244100x y mx m y m m m +--++++=≠的圆心在直线70x y +-=上,则该圆的面积为()A .4πB .2πC .πD .2π30.(2021·南昌市豫章中学(文))若圆22224120x y ax y a +-++-=上存在到直线4320x y --=的距离等于1的点,则实数a 的取值范围是()A .2921,44⎡⎤-⎢⎥⎣⎦B .91,44⎡⎤-⎢⎥⎣⎦C .91,,44⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭D .2921,,44⎛⎤⎡⎫-∞-⋃+∞ ⎪⎥⎢⎝⎦⎣⎭31.(2021·浙江丽水·高二期中)已知圆22:1O x y +=,直线:20l x y ++=,点P 为l 上一动点,过点P 作圆O 的切线PA ,PB (切点为A ,B ),当四边形PAOB 的面积最小时,直线AB的方程为()A .10x y -+=B .20x y -+=C .10x y ++=D .20x y +-=32.(2021·云南师大附中(理))已知在圆()2222x y r ++=上到直线40x y +-=的距离为2的点恰有三个,则r =()A .23B .26C .42D .833.(2021·四川(理))已知圆221x y +=与直线310ax by ++=(a ,b 为非零实数)相切,则2213a b+的最小值为()A .10B .12C .13D .1634.(2021·黑龙江哈尔滨市·哈尔滨三中高二其他模拟(理))若过点()4,3A 的直线l 与曲线()()22231x y -+-=有公共点,则直线l 的斜率的取值范围为()A .3,3⎡⎤-⎣⎦B .()3,3-C .33,33⎡⎤-⎢⎥⎣⎦D .33,33⎛⎫- ⎪ ⎪⎝⎭35.(2021·全国高二专题练习)已知三条直线1:0l mx ny +=,2:30l nx my m n -+-=,3:0l ax by c ++=,其中m ,n ,a ,b ,c 为实数,m ,n 不同时为零,a ,b ,c 不同时为零,且2a c b +=.设直线1l ,2l 交于点P ,则点P 到直线3l 的距离的最大值是()A .52102+B .105822+C .58102+D .105222+二、多选题36.(2021·全国高二专题练习)已知直线:20l kx y k -+=和圆22:16O x y +=,则()A .直线l 恒过定点()2,0B .存在k 使得直线l 与直线0:220l x y -+=垂直C .直线l 与圆O 相交D .若1k =-,直线l 被圆O 截得的弦长为437.(2020·河北武强中学高二月考)直线l 经过点()5,5P ,且与圆22:25C x y +=相交,截得弦长为45,则直线l 的方程为()A .250x y --=B .250x y -+=C .250x y -+=D .250x y --=38.(2021·全国高二专题练习)设直线():1l y kx k =+∈R 与圆22:5C x y +=,则下列结论正确的为()A .l 与C 可能相离B .l 不可能将C 的周长平分C .当1k =时,l 被C 截得的弦长为322D .l 被C 截得的最短弦长为439.(2021·山东菏泽·高二期末)已知直线:(2)10l mx m y m --+-=,圆22:20C x y x +-=,则下列结论正确的是()A .直线l 与圆C 恒有两个公共点B .圆心C 到直线l 的最大距离是2C .存在一个m 值,使直线l 经过圆心CD .当1m =时,圆C 与圆22(1)1y x +-=关于直线l 对称三、填空题40.(2021·合肥百花中学高二期末(理))设直线1y x =+与圆22(1)4x y ++=交于,A B 两点,则AB =__________.41.(2021·绵阳市·四川省绵阳江油中学(文))已知点(),x y 在圆22(2)(3)1x y -++=上,则x y +的最大值是________.42.(2021·上海高二期中)在平面直角坐标系中,过点()2,2M 且与圆2220x y x +-=相切的直线方程为__________.43.(2021·江苏南京市·南京一中高二期末)已知直线1l :()0kx y k R +=∈与直线2l :220x ky k -+-=相交于点A ,点B 是圆()()22232x y +++=上的动点,则AB 的最大值为___________.四、解答题44.(2021·合肥百花中学高二期末(理))已知圆22:20C x y x my +-+=,其圆心C 在直线y x =上.(1)求m 的值;(2)若过点(1,1)-的直线l 与圆C 相切,求直线l 的方程.45.(2021·荆州市沙市第五中学高二期中)已知圆C 经过()2,4,()1,3两点,圆心C 在直线10x y -+=上,过点()0,1A 且斜率为k 的直线l 与圆C 相交于M ,N 两点.(1)求圆C 的方程;(2)若12OM ON ⋅=(O 为坐标原点),求直线l 的方程.46.(2021·台州市书生中学高二期中)已知圆()22:15C x y +-=,直线:10l mx y m -+-=.(1)求证:对m R ∈,直线l 与圆C 总有两个不同交点;(2)设l 与圆C 交与不同两点,A B ,求弦AB 的中点M 的轨迹方程;(3)若直线过点()1,1P ,且P 点分弦AB 为12AP PB =,求此时直线l 的方程.47.(2020·安徽六安市·立人中学高二期中(理))已知圆C 经过两点(1,3),(3,1)P Q ---,且圆心C 在直线240x y +-=上,直线l 的方程为(1)2530k x y k -++-=.(1)求圆C 的方程;(2)证明:直线l 与圆C 一定相交;(3)求直线l 被圆C 截得的弦长的取值范围.48.(2020·吉安县立中学(文))已知两个定点(0,4)A ,(0,1)B ,动点P 满足||2||PA PB =,设动点P 的轨迹为曲线E ,直线l :4y kx =-.(1)求曲线E 的轨迹方程;(2)若l 与曲线E 交于不同的C 、D 两点,且120COD ∠=︒(O 为坐标原点),求直线l 的斜率;(3)若1k =,Q 是直线l 上的动点,过Q 作曲线E 的两条切线QM 、QN ,切点为M 、N ,探究:直线MN 是否过定点,若存在定点请写出坐标,若不存在则说明理由.2022-2023学年高二上数学选择性必修第一册:直线与圆的位置关系【答案详解】1.A 【详解】10mx y -+=过定点()0,1,且()22(214501)+-=<-,故()0,1在圆内,故直线和圆相交.故选:A 2.A 【详解】直线l :1=-+y ax a ,即()11y a x =-+恒过()1,1,而221124+=<,故()1,1点在圆内,故直线与圆必然相交.故选:A .3.A 【详解】直线方程整理为(1)10k x y --+=,即直线过定点(1,1)P ,而22114120+-⨯=-<,P 在圆C 内,∴直线l 与圆C 相交.故选:A .4.B 【详解】由22240x y x y ++-=,得22(1)(2)5x y ++-=,则圆心坐标为(12)-,,又直线30x y a ++=是圆22240x y x y ++-=的一条对称轴,由圆的对称性可知,该圆的圆心(12)-,在直线30x y a ++=上,则3(1)121a =-⨯--⨯=,故选:B .5.D 【详解】由圆的方程22 2210x y x y +-++=,可得圆心坐标为(1,1)-,半径为1r =,因为直线20ax by --=被圆截得的弦长为2,可直线20ax by --=必过圆心(1,1)-,代入可得2a b +=,又因为0,0a b >>,则1111111()()(2)(22)2222b a b aa b a b a b a b a b+=⋅++=⋅++≥⋅+⋅=,当且仅当b aab=时,即1a b ==时,等号成立,所以11a b+的最小值为2.故选:D.6.A 【详解】由圆C 方程知其圆心()2,1C ,半径为2,直线l 与圆C 相切,221121k k --∴=+,解得:23k =±,由圆D 方程知其圆心()2,0D ,半径3r =,∴圆心D 到直线l 距离2211k d k -=+;当23k =+时,()()2222323330843231d r +-=-=-<+++,即d r <,此时圆D 与直线l 相交;当23k =-时,()()2222323330843231d r --=-=-<--+,即d r <,此时圆D 与直线l 相交;综上所述:圆D 与直线l 相交.故选:A.7.C 【详解】将圆化为22(8)64(64)x y m m ++=-<,所以圆心到直线3440x y ++=的距离d =24445-+=,该距离与弦长的一半及半径组成直角三角形,所以224364m +=-,解得39.m =8.D 【详解】圆22:(2)4C x y -+=的圆心坐标为()20,,半径为2,圆心到直线40x y --=的距离为204211d --==+,故弦长为:24222-=,故选:D.9.C 【详解】由220x y x y +-+=可得22111222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭,则圆心坐标为11,22⎛⎫- ⎪⎝⎭,半径22r =,所以圆心到直线3410x y ++=的距离为22113412211034d ⎛⎫⨯+⨯-+ ⎪⎝⎭==+,所以所求弦长为22725r d -=.故选:C.10.B 【详解】由题意圆心到直线的距离为()()2222222222232241111a a a d r d a a a a +++=∴=-=-∴=∴=+++34-故选:B 11.B 【详解】圆C 的标准方程为22(1)(2)2x y ++-=,设直线l 的方程为0x y m ++=,可知圆心到直线l 的距离为2262(2)22⎛⎫-= ⎪ ⎪⎝⎭,有|1|222m +=,有0m =或2-,直线l 的方程为0x y +=或20x y +-=.故选:B【详解】将222440x y x y ++--=化为标准形式:22(1)(2)9x y ++-=,故该圆圆心为(1,2)-,半径为3.因为直线截圆所得弦长为6,故直线过圆心,所以2220a b --+=,即1a b +=,所以2124a b ab +⎛⎫≤= ⎪⎝⎭(当且仅当12a b ==时取等号),故选:D.13.C 【详解】如图建立平面直角坐标系,则圆心在y 轴上,设圆的半径为r ,则圆的方程为222(+)x y r r +=,∵拱顶离水面3米,水面宽12米,∴圆过点(6,3)-,∴2236(3+)r r +-=,∴152r =∴圆的方程为2215225(+)24x y +=,当水面下降1米后,可设水面的端点坐标为(,4)t -,则244t =,∴211t =±,∴当水面下降1米后,水面宽度为411,约为13.2,故选:C.14.C 【详解】以圆拱桥的顶点为坐标原点,建立如图所示的平面直角坐标系,则圆拱所在圆的圆心位于y 轴负半轴上,设该圆的圆心为()0,a -,0a >,则该圆的方程为()222x y a a ++=,记水面下降前与圆的两交点为A ,B ;记水面下降1米后与圆的两交点为C ,D ;由题意可得,()10,4A --,则()()222104a a -+-+=,解得292a =,所以圆的方程为222292922x y ⎛⎫⎛⎫++= ⎪ ⎪⎝⎭⎝⎭,水面位下降1米后,可知C 点纵坐标为5y =-,所以2222929522x ⎛⎫⎛⎫+-+= ⎪ ⎪⎝⎭⎝⎭,解得2120x =,则此时的桥在水面的跨度为22120430CD x ===米.故选:C.15.B根据题意以海监船的位置为坐标原点,其正东方向为x 轴,正北方向为y 轴,所以()()40,0,0,30A B ,圆22:676O x y +=,记从N 处开始被监测,到M 处监测结束,所以:14030AB x y l +=,即:341200AB l x y +-=,因为O 到:341200AB l x y +-=的距离为221202434OO -'==+,所以22220MN MO OO '=-=,所以监测时间持续2010=2小时,故选:B.16.(1)()2225x y +-=;(2)1y =或34130x y +-=.由点()1,0A 、()2,1B 可得AB 中点坐标为31,22⎛⎫⎪⎝⎭,10121AB k -==-,所以直线AB 的垂直平分线的斜率为1-,可得直线AB 的垂直平分线的方程为:1322y x ⎛⎫-=-- ⎪⎝⎭即20x y +-=,由202x y y x +-=⎧⎨=+⎩可得:02x y =⎧⎨=⎩,所以圆心为()0,2O ,()()2210025r OA ==-+-=,所以O 的标准方程为()2225x y +-=,(2)设直线的方程为()13y k x -=-即310kx y k --+=,圆心()0,2O 到直线的距离2131k d k --=+,则()2222134521k k ⎛⎫--⎛⎫=- ⎪ ⎪⎝⎭+⎝⎭可得()222135211k k +=-=+,即2430k k +=,解得:0k =或34k =-,所以直线l 的方程为10y -=或()3134y x -=--,即1y =或34130x y +-=17.(1)22(1)(1)1x y -+-=;(2)4,3⎛⎤-∞- ⎥⎝⎦.【详解】(1)设所求圆的方程为222()()x a y b r -+-=由题意得222222(1)(0)(2)(1)a b r a b r b a ⎧-+-=⎪-+-=⎨⎪=⎩,解得1a b r ===所以,圆的方程为22(1)(1)1x y -+-=(2)由(1)得()()22111x y -+-=,则圆心为()1,1,半径为1;而22y x +-表示圆上的点(,)P x y 与定点()2,2M -连线的斜率,当过点()2,2M -的直线与圆相切时,不妨设直线方程为:()22y k x +=-,即220kx y k ---=,则圆心()1,1到直线220kx y k ---=的距离为212211k k k ---=+,解得43k =-,因此22y x +-的取值范围是4,3⎛⎤-∞- ⎥⎝⎦;18.【详解】(1)设(),M x y ,()00,A x y ,M 是线段AB 中点,006282x x y y+⎧=⎪⎪∴⎨+⎪=⎪⎩,整理可得:002628x x y y =-⎧⎨=-⎩,A 在圆2216x y +=上,()()22262816x y ∴-+-=,整理可得M 点轨迹方程为:()()22344x y -+-=.(2)(i )由(1)知:圆心()3,4C ,半径2r =,当直线l 斜率不存在时,方程为1x =,是圆的切线,满足题意;当直线l 斜率存在时,设其方程为()1y k x =-,即kx y k 0--=,∴圆心到直线l 距离23421k k d k --==+,解得:34k =,:3430l x y ∴--=;综上所述:直线l 的方程为1x =或3430x y --=;(ii )由直线l 与圆C 交于,P Q 两点知:直线l 斜率存在且不为0,设其方程为:()1y k x =-,即kx y k 0--=,∴圆心到直线l 距离22342411k k k d k k ---==++,()2222222144222CPQd d S PQ d d r d d d⎡⎤-+=⋅=-=-≤=⎢⎥⎣⎦(当且仅当224d d -=,即22d =时取等号),由22d=得:()222421k k -=+,解得:1k =或7k =,∴CPQ 面积的最大值为2,此时l 方程为:10x y --=或770x y --=.19.C圆心(0,0)到直线10x y --=的距离|1|122d -==,因为圆的半径为1,则弦长为2212122⎛⎫-= ⎪⎝⎭.故选:C.20.A 【详解】由题意,圆22:224C x y x ++=,可得圆心坐标为(1,0)C -,点()2,3P -在圆C 内,则过点P 且被点P 平分的弦所在的直线和圆心与P 的连线垂直,又由3012(1)CP k --==---,所以所求直线的斜率为1,且过点()2,3P -,可得所求直线方程为(3)1(2)y x --=-⨯-,即50x y --=.故选:A 21.B 【详解】根据题意,圆()2224x y -+=的圆心为()2,0,半径为2,设圆心到直线0kx y +=的距离为d ,则221k d k =+,若直线0kx y +=被圆()2224x y -+=所截得的弦长为2,则2222r d =-,所以214d +=,又0d >,解得3d =,所以2321k d k==+,解得3k =±,点()0,23A 与直线m 上任意一点P 的最小值为点到直线的距离122331d k ==+,故选:B .22.A 【详解】解:把圆的方程化为标准方程得:22(1)(2)4x y ++-=,∴圆心坐标为(1,2)-,半径2r =,根据题意可知:圆心在已知直线220ax by -+=上,把圆心坐标代入直线方程得:2220a b --+=,即1b a =-,则设2211(1)24m ab a a a a a ⎛⎫==-=-+=--+ ⎪⎝⎭,∴当12a =时,m 有最大值,最大值为14,即ab 的最大值为14,则ab 的取值范围是(-∞,1]4.故选:A .23.C由题意,知23MN =,圆心为(3,2).设圆的半径为r ,则2r =,所以圆心到直线的距离224312MN d r ⎛⎫=-=-= ⎪⎝⎭.由点到直线的距高公式,得232311k k -+=+,解得0k =或34k =-.故选:C.24.B 【详解】由222420x x y y -+++=,得22(1)(2)3x y -++=,则圆心为(1,2)-,半径3r =,因为圆心(1,2)-到直线2220x y -+=的距离为22222243381d +++==>+,且2242243333133d ++--=-=<,所以圆222420x x y y -+++=到直线2220x y -+=的距离为1的点有2个,故选:B25.C 【详解】解:由22(3)(4)1x y -+-=,得圆心(3,4)C ,过直线:350l x ay +-=上任意一点作圆C 的切线,要使切线长最小,即要使圆心到直线l 的距离最小,根据题意作图,如图所示:圆的半径为1,切线长为15,∴圆心到直线l 的距离等于221(15)4+=,∴由点到直线的距离公式得2|3345|49a a ⨯+-=+,解得4a =,此时直线l 的斜率为34-.故选:C .26.B 【详解】解:根据题意,直线1(2)y m x +=-,恒过定点(2,1)-,动圆222:(1)(1)C x y r -+-=,其圆心为(1,1),半径为r ,若圆的面积最大,即圆心到直线l 的距离最大,且其最大值22(12)(11)5CP =-++=,即圆的面积最大时,圆的半径5r =,此时圆的方程为:22(1)(1)5x y -+-=,故选:B .27.A 【详解】圆C 的标准方程为()2211x y -+=,圆心为()1,0,半径为1r =.依圆的知识可知,四点P ,A ,B ,C 四点共圆,且AB ⊥PC ,所以14422PAC PC AB S PA AC PA ⋅==⨯⨯⋅=△,而21PA PC =-,当直线PC ⊥l 时,PA 最小,此时PC AB ⋅最小.结合图象可知,此时切点为()()0,0,1,1-,所以直线AB 的方程为y x =-,即0x y +=.故选:A28.A 【详解】将圆C 方程整理为:()()22214x y -+-=,则圆心()2,1C ,半径2r =;将直线l 方程整理为:()12y k x =-+,则直线l 恒过定点()1,2,且()1,2在圆C 内;最长弦MN 为过()1,2的圆的直径,则4MN =;最短弦PQ 为过()1,2,且与最长弦MN 垂直的弦,21112MN k -==-- ,1PQ k ∴=,∴直线PQ 方程为21y x -=-,即10x y -+=,∴圆心C 到直线PQ 的距离为21122-+==d ,22224222PQ r d ∴=-=-=;∴四边形PMQN 的面积114224222S MN PQ =⋅=⨯⨯=.故选:A.29.A 【详解】圆的方程可化为()()()222210x m y m m m -+--=≠,其圆心为(),21m m +.依题意得,2170m m ++-=,解得2m =,∴圆的半径为2,面积为4π,故选:A 30.A 【详解】解:将圆的方程化为标准形式得圆()()22216x a y -++=,所以圆心坐标为(),2a -,半径为4r =因为圆22224120x y ax y a +-++-=上存在到直线4320x y --=的距离等于1的点,所以圆心到直线的距离d 满足15d r ≤+=,即4455a d +=≤,解得:2921,44a ⎡⎤∈-⎢⎥⎣⎦故选:A31.C 【详解】设四边形PAOB 的面积为S ,2||||||PAO S S AO AP AP === ,222||||||||1AP OP OA OP =-=-,所以,当||OP 最小时,||AP 就最小,|002|||22min o l OP d -++===,所以||211min min S AP ==-=.此时OP l ⊥.所以||||||||1OA AP PB OB ====,四边形PAOB 是正方形,由题得直线OP 的方程为y x =,联立20y x x y =⎧⎨++=⎩得(1,1)--P ,所以线段OP 的中点坐标为11(,)22--,由题得直线AB 的斜率为1,-所以直线AB 的方程为11()[()]22y x --=---,化简得直线AB 的方程为10x y ++=.故选:C 32.C 【详解】解:因为圆()2222x y r ++=的圆心为()2,0-,半径为r ,圆心()2,0-到直线40x y +-=的距离22432d --==,因为在圆()2222x y r ++=上到直线40x y +-=的距离为2的点恰有三个,所以32242r =+=.故选:C .33.D 【详解】因为圆221x y +=与直线310ax by ++=相切,所以2200113a b++=+,所以2231a b +=,所以()2222222222222213133310616310a b a b a b ab b a b b a a ⎛⎫+=+=++≥+⋅= ⎪⎭+⎝,取等号时2214a b ==,所以2213a b +的最小值为16.故选:D.34.C 【详解】由题意,易知,直线l 的斜率存在,设直线l 的方程为()34y k x -=-,即340kx y k -+-=曲线()()22231x y -+-=表示圆心()2,3,半径为1的圆,圆心()2,3到直线340kx y k -+-=的距离应小于等于半径1,2233411k kk-+-∴≤+,即221k k -≤+,解得3333k -≤≤.故选:C.35.D 【详解】由于1:0l mx ny +=,2:30l nx my m n -+-=,且()0mn n m +⋅-=,12l l ∴⊥,易知直线1l 过原点,将直线2l 的方程化为()()130n x m y ---=,由1030x y -=⎧⎨-=⎩,解得13x y =⎧⎨=⎩,所以,直线2l 过定点()1,3M ,所以10OM =,因为2a c b +=,则2a cb +=,直线3l 的方程为02a c ax y c +++=,直线3l 的方程可化为1022y y a x c ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭,由02102y x y ⎧+=⎪⎪⎨⎪+=⎪⎩,解得12x y =⎧⎨=-⎩,所以,直线3l 过定点()1,2N -,如下图所示:设线段OM 的中点为点E ,则13,22E ⎛⎫⎪⎝⎭,若点P 不与O 或M 重合,由于OP PM ⊥,由直角三角形的性质可得EP EO EM ==;若点P 与O 或M 重合,满足12l l ⊥.由上可知,点P 的轨迹是以OM 为直径的圆E ,该圆圆心为13,22E ⎛⎫ ⎪⎝⎭,半径为102.设点E 到直线3l 的距离为d ,当3EN l ⊥时,d EN =;当EN 不与3l 垂直时,d EN <.综上,22135212222d EN ⎛⎫⎛⎫≤=-+--=⎪ ⎪⎝⎭⎝⎭.所以,点P 到直线3l 的距离的最大值为521022OM EN ++=.故选:D.36.BC 【详解】解:对于A 、C ,由:20l kx y k -+=,得(2)0k x y +-=,令200x y +=⎧⎨-=⎩,解得20x y =-⎧⎨=⎩,所以直线l 恒过定点(2,0)-,故A 错误;因为直线l 恒过定点(2,0)-,而()2220416-+=<,即(2,0)-在圆22:16O x y +=内,所以直线l 与圆O 相交,故C 正确;对于B ,直线0:220l x y -+=的斜率为12,则当2k =-时,满足直线l 与直线0:220l x y -+=垂直,故B 正确;对于D ,1k =-时,直线:20l x y ++=,圆心到直线的距离为22002211d ++==+,所以直线l 被圆O 截得的弦长为()22222242214r d -=-=,故D 错误.故选:BC.37.BD 【详解】圆心为原点,半径为5,依题意可知直线l 的斜率存在,设直线l 的方程为()55y k x -=-,即550kx y k -+-=,所以()2225552521k k k -=-⇒=+或12k =.所以直线l 的方程为25520x y -+-⨯=或1155022x y -+-⨯=,即250x y --=或250x y -+=.故选:BD38.BD 【详解】对于A 选项,直线l 过定点()0,1,且点()0,1在圆C 内,则直线l 与圆C 必相交,A 选项错误;对于B 选项,若直线l 将圆C 平分,则直线l 过原点,此时直线l 的斜率不存在,B 选项正确;对于C 选项,当1k =时,直线l 的方程为10x y -+=,圆心C 到直线l 的距离为22d =,所以,直线l 被C 截得的弦长为2225322⎛⎫-= ⎪ ⎪⎝⎭,C 选项错误;对于D 选项,圆心C 到直线l 的距离为2111d k =≤+,所以,直线l 被C 截得的弦长为2254d -≥,D 选项正确.故选:BD.39.AD 【详解】解:由直线:(2)10l mx m y m --+-=,即(1)210m x y y +--+=,得10210x y y +-=⎧⎨-+=⎩,解得1212x y ⎧=⎪⎪⎨⎪=⎪⎩,则直线l 过定点1(2P ,1)2,圆22:20C x y x +-=化为22(1)1x y -+=,圆心坐标为(1,0)C ,22112||(1)(0)1222PC =-+-=< ,点P 在圆C 内部,∴直线l 与圆C 恒有两个公共点,故A正确;圆心C 到直线l 的最大距离为2||2PC =,故B 错误; 直线系方程(2)10mx m y m --+-=不包含直线10x y +-=(无论m 取何值),而经过1(2P ,1)2的直线只有10x y +-=过(1,0)C ,故C 错误;当1m =时,直线l 为0x y -=,圆C 的圆心坐标为(1,0),半径为1,圆22(1)1y x +-=的圆心坐标为(0,1),半径为1,两圆的圆心关于直线0x y -=对称,半径相等,则当1m =时,圆C 与圆22(1)1y x +-=关于直线l 对称,故D 正确.故选:AD .40.22【详解】圆22(1)4x y ++=的圆心为()0,1-,半径为2,则圆心()0,1-到直线的距离为()22011211++=+-,所以()2222222AB =-=,故答案为:2241.21-【详解】令t x y =+,则y x t =-+,t 表示直线在y 轴上的截距,所以x y +的最大值是直线在y 轴上截距的最大值,此时直线与圆相切,则圆心到直线的距离等于半径,即2312td --==,解得21t =-.故答案为:21-42.x =2或3420x y +=-.【详解】圆2220x y x +-=的标准式为:()2211x y -+=,容易验证x =2与圆相切,若切线的斜率存在,则设其方程为:()22220y k x kx y k -=-⇒-+-=,于是圆心到直线的距离2|2|3141k d k k -+==⇒=+,则切线:310342042x y x y -+=⇒-+=.故答案为:x =2或3420x y +=-.43.522+解:因为直线1l :()0kx y k R +=∈恒过定点(0,0)O ,直线2l :220x ky k -+-=恒过定点(2,2)C ,且12l l ⊥,所以两直线的交点A 在以OC 为直径的圆D 上,且圆的方程为22:(1)(1)2D x y -+-=,要求AB 的最大值,转化为在22:(1)(1)2D x y -+-=上找上一点A ,在()()22232x y +++=上找一点B ,使AB 最大,根据题意可知两圆的圆心距为22(12)(13)5+++=,所以AB 的最大值为522+,故答案为:522+44.(1)2m =-;(2)20x y -+=或0x y +=.【详解】解:(1)圆C 的标准方程为:222(1)()124m m x y -++=+,所以,圆心为(1,)2m -由圆心C 在直线y x =上,得2m =-.所以,圆C 的方程为:22(1)(1)2x y -+-=.(2)由题意可知直线l 的斜率存在,设直线l 的方程为:1(1)y k x -=+,即10kx y k -++=,由于直线l 和圆C 相切,得2|2|21k k =+解得:1k =±所以,直线方程为:20x y -+=或0x y +=.45.(1)()()22231x y -+-=;(2)1y x =+.【详解】解:(1)设圆C 的方程为()()222x a y b r -+-=,则依题意,得()()()()22222224,13,10,a b r a b r a b ⎧-+-=⎪⎪-+-=⎨⎪-+=⎪⎩解得2,3,1,a b r =⎧⎪=⎨⎪=⎩∴圆C 的方程为()()22231x y -+-=(2)设直线l 的方程为1y kx =+,设11(,)M x y ,22(,)N x y ,将1y kx =+,代入22(2)(3)1x y -+-=并整理,得22(1)4(1)70k x k x +-++=,∴1224(1)1k x x k++=+,12271x x k =+∴()()()212121212241118121k k OM ON x x y y k x x k x x k +⋅=+=++++=+=+ ,即()24141k k k +=+,解得1k =,又当1k =时0∆>,∴1k =,∴直线l 的方程为1y x =+46.(1)圆()22:15C x y +-=的圆心()0,1C ,半径为5,所以圆心()0,1C 到直线l 的距离为22151m m d m m --=<=<+,所以直线l 与圆C 相交,故对m R ∈,直线l 与圆C 总有两个不同交点;(2)当M 与P 不重合时,连接,CM CP ,则CM MP ⊥,所以222CM MP CP +=,设()(),1M x y x ≠,则()()()22221111x y x y +-+-+-=,整理得()222101x y x y x +--+=≠,当M 与P 重合时,1x y ==也满足22210x y x y +--+=,故弦AB 的中点M 的轨迹方程为22210x y x y +--+=;(3)设()()1122,,,A x y B x y ,由12AP PB =,得12AP PB = ,所以()121112x x -=-,即2132x x =-,又()221015mx y m x y -+-=⎧⎪⎨+-=⎪⎩,消去y 得()22221250m x m x m +-+-=,所以212221m x x m +=+,()()4222441516200m m m m ∆=-+-=+>,由2121223221x x m x x m =-⎧⎪⎨+=⎪+⎩得21231m x m +=+,将21231m x m+=+带入()22221250m x m x m +-+-=得1m =±,所以此时直线l 的方程为0x y -=或20x y +-=.47.(1)因为(1,3),(3,1)P Q ---,所以PQ 的中垂线为11(2)2y x +=+上,由24011(2)2x y y x +-=⎧⎪⎨+=+⎪⎩,解得21x y =⎧⎨=⎩,所以圆心为()2,1C ,又半径||5r PC ==,∴圆C 的方程为22(2)(1)25x y -+-=.(2)直线l 的方程可化为(3)(25)0k x x y ----=,令30250x x y -=⎧⎨--=⎩可得3x =,1y =-,∴直线l 过定点(3,1)M -,由22(32)(11)25-+--<可知M 在圆内,∴直线l 与圆C 一定相交.(3)设圆心C 到直线l 的距离为d ,弦长为L ,则2222225L r d d =-=-,∵0||d CM ≤≤,即05d ≤≤,∴4510L ≤≤,即弦长的取值范围是[45,10].48.(1)224x y +=;(2)15±;(3)存在,(1,1)-.(1)由题,设点P 的坐标为(,)x y ,因为||2||PA PB =,即2222(4)2(1)x y x y +-=+-,整理得224x y +=,所以所求曲线E 的轨迹方程为224x y +=.(2)依题意,2OC OD ==,且120COD ∠= ,由圆的性质,可得点O 到边CD 的距离为1,即点(0,0)O 到直线:40l kx y --=的距离为2411k =+,解得15k =±,所以所求直线l 的斜率为15±.(3)依题意,,ON QN OM QM ⊥⊥,则,M N 都在以OQ 为直径的圆F 上,Q 是直线:4l y x =-上的动点,设(,4)Q t t -,则圆F 的圆心为4(,)22t t -,且经过坐标原点,即圆的方程为22(4)0x y tx t y +---=,又因为,M N 在曲线22:4E x y +=上,由22224(4)0x y x y tx t y ⎧+=⎨+---=⎩,可得(4)40tx t y +--=,即直线MN 的方程为(4)40tx t y +--=,由t R ∈且()440t x y y +--=,可得0440x y y +=⎧⎨+=⎩,解得11x y =⎧⎨=-⎩,所以直线MN 过定点(1,1)-.。
广西桂林市阳朔县阳朔中学2022-2023学年高二上学期期中考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.直线50x y ++=的倾斜角为()A .135︒B .120︒C .60︒D .45︒2.在空间直角坐标系O xyz -中,点()1,2,3P 关于原点对称的点的坐标是()A .()1,2,3B .()1,2,3-C .()1,2,3-D .()1,2,3---3.抛物线22y x =的焦点到准线的距离为()A .4B .2C .1D .124.已知圆1C :221x y +=与圆2C :()()223416x y -+-=,则两圆的位置关系()A .相交B .相离C .外切D .内切5.若方程22154x y m m +=-+表示的图形是双曲线,则m 的取值范围是()A .m >5B .m <-4C .m <-4或m >5D .-4<m <56.已知双曲线C :22221x y a b-=(0a >,0b >)的一条渐近线为y=2x ,则C 的离心率为()A BC .2D7.已知过点1,12P ⎛⎫ ⎪⎝⎭的直线l 与圆()22:24C x y +-=交于,A B 两点,则当弦AB 最短时直线l 的方程为()A .2430x y -+=B .430x y -+=C .2430x y ++=D .2410x y ++=8.已知()2,4A ,()10B ,,动点P 在直线=1x -上,当PA PB +取最小值时,点P 的坐标为()A .81,5⎛⎫- ⎪⎝⎭B .211,5⎛⎫- ⎪⎝⎭C .()1,2-D .()1,1-二、多选题9.已知直线l 的一个方向向量为()μ=,且l 经过点()1,2-,则下列结论中正确的是()A .l 的倾斜角等于120︒B .l 在x 轴上的截距等于3C .l320y -+=垂直D .l 上的点与原点的距离最小值为1810.如图,在平行六面体1111ABCD A B C D -中,AC 和BD 的交点为O ,设AB a = ,AD b =,1AA c =,则下列结论正确的是()A .BD b a=- B .1BD a b c =-+ C .1AC a b c=++D .11122A O a b c=++ 11.已知曲线C :2219x y m+=,F 1,F 2分别为曲线C 的左、右焦点,则下列说法正确的是()A .若3m =-,则曲线C 的渐近线方程为y =B .若27m =-,则曲线C 的离心率2e =C .若5m =,P 为C 上一个动点,则1PF 的最大值为5D .若=3m ,P 为C 上一个动点,则12PF F △面积的最大值为12.已知直线l 0y -=过抛物线C :22y px =(0p >)的焦点F ,且与抛物线C 交于A ,B 两点,过A ,B 两点分别作抛物线准线的垂线,垂线分别为M ,N ,则下列说法错误的是()A .抛物线的方程为24y x=B .线段AB 的长度为183C .90MFN ∠=︒D .线段AB 的中点到y 轴的距离为83三、填空题13.双曲线2243x y -=1的右焦点F 到其中一条渐近线的距离为________.14.若向量a =(1,1,x ),b=(1,2,1),c =(1,1,1)满足条件·22()c a b - =-,则x=________.15.已知P 为抛物线24y x =上任意一点,F 为抛物线的焦点,()4,2M 为平面内一定点,则PF PM +的最小值为__________.16.在平面直角坐标系xOy 中,点1F ,2F 分别是椭圆22221x y a b+=(0)a b >>的左、右焦点,过点2F 且与x 轴垂直的直线与椭圆交于A ,B 两点.若1AF B ∠为锐角,则该椭圆的离心率的取值范围是_____四、解答题17.分别求出满足下列条件的直线l 的方程:(1)经过直线1:320l x y -+=和2:2340l x y ++=的交点,且与直线2l 垂直;(2)过点(2,1)P -,且在x 轴上的截距是在y 轴上的截距的4倍.18.已知()1,2,1a =- ,()2,4,2b =-;(1)若()ka b b +⊥,求实数k 的值;(2)若a c ∥ ,且c = c 的坐标.19.(1)求过点(1,6)M 且与圆22230x y x ++-=相切的切线方程.(2)已知圆22:4670C x y x y +--+=,过点(1,0)P 作直线与圆C 交于,A B 两点,且2AB =,求直线AB 的方程20.已知抛物线2:2(0)C y px p =>经过点()06,P y ,F 为抛物线的焦点,且||10PF =.(1)求0y 的值;(2)点Q 为抛物线C 上一动点,点M 为线段 FQ 的中点,试求点M 的轨迹方程.21.已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别为()1,0F c -和()2,0F c ,长轴长为8,直线x c =被椭圆截得的弦长等于2.(1)求椭圆C 的标准方程;(2)若直线:220+-=l x y 与椭圆相交于,A B 两点,O 为坐标原点,求△OAB 的面积.22.已知双曲线22122:1(0,0)x y C a b a b -=>>(6,4)A 在C 上.(1)求双曲线C 的方程.(2)设过点(1,0)B 的直线l 与双曲线C 交于D ,E 两点,问在x 轴上是否存在定点P ,使得PD PE ⋅为常数?若存在,求出点P 的坐标以及该常数的值;若不存在,请说明理由,参考答案:1.A【分析】根据方程得到直线的斜率,然后可得答案.【详解】由50x y ++=可得此直线的斜率为1-,倾斜角为135︒,故选:A 2.D【分析】由空间坐标系中点对称,结合中点坐标公式求对称的点的坐标即可.【详解】若()1,2,3P 关于原点对称的点的坐标为(,,)M x y z ,∴,P M 的中点为(0,0,0),由中点坐标公式可得:1,2,3x y z =-=-=-,∴(1,2,3)M ---.故选:D 3.C【分析】利用抛物线的标准方程可得1p =,由焦点到准线的距离为p ,从而得到结果.【详解】抛物线22y x =的焦点到准线的距离为p ,由抛物线标准方程22y x =可得1p =,故选:C.4.C【分析】根据圆心距以及两个圆的半径来判断出两圆的位置关系.【详解】圆1C :221x y +=的圆心为()10,0C ,半径11r =;圆2C :()()223416x y -+-=的圆心为()23,4C ,半径24r =,圆心距12125C C r r ==+,所以两圆相外切.故选:C 5.D【分析】由方程表示双曲线有(5)(4)0m m -+<,即可求参数范围.【详解】由题设,(5)(4)0m m -+<,可得45m -<<.故选:D 6.D【分析】由条件可得2ba =,又因为222c ab =+,计算得到c a【详解】因为双曲线2222:1x y C a b-=的一条渐近线为2y x =,所以2b a =,所以双曲线C 的离心率为c a ===故选:D.7.A【分析】根据直线过定点P ,当AB PC ⊥时弦AB 最短,由互相垂直的直线斜率乘积为1-,求出直线方程,然后由点斜式求出直线方程,可得答案.【详解】因为直线l 过定点1,12P ⎛⎫⎪⎝⎭,由22+(2)=4x y -,则圆心()0,2C ,半径=2r ,当AB PC ⊥时,弦AB 最短,此时直线CP 的斜率12==212CP k --,所以直线l 的斜率12AB k =,故直线l 为111=22y x --⎛⎫⎪⎝⎭,则24+3=0x y -.故选:A.8.A【分析】利用两点之间线段最短,先求点()10B ,关于直线=1x -对称的点1B ,可得PA PB +1=PA PB +,当A 、P 、1B 三点共线时()11min PA PB AB +=,可得答案.【详解】点B 关于直线=1x -对称的点为()13,0B -.=PA PB +11PA PB AB +≥,当且仅当当A 、P 、1B 三点共线时,等号成立.此时PA PB +取最小值,直线1AB 的方程为()4032(3)y x -=+--,即()435y x =+,令=1x -,得85y =.所以点P 的坐标为:81,5⎛⎫- ⎪⎝⎭故选:A .【点睛】本题主要考查了解析几何中的最值问题,利用几何意义和平面几何中的常用结论,非常巧妙,属于中档题.9.AC【分析】由方向向量求出直线斜率,即可求出直线方程,由倾斜角与斜率的关系可判断A ;令=0y 求出x 轴上的截距,可判断B ;由斜率与垂直关系可判断C ;l 上的点与原点的距离最小值为原点到直线l 的距离,求出点线距离即可判断D【详解】直线l 的方向向量为()μ=,则斜率k =l 为)21y x +=-,即2y =,对A ,∵tan k α==()0,180α∈︒︒,故120α=︒,A 对;对B ,由20y ==得13x =-,B 错;对C 320y -+=斜率1k =11kk =-得l 320y -+=垂直,C 对;对D ,l 上的点与原点的距离最小值为原点到直线l 12=-,D 错;故选:AC 10.AC【分析】求得BD判断选项A ;求得1BD 判断选项B ;求得1AC uuu r 判断选项C ;求得1AO 判断选项D.【详解】选项A :BD AD AB b a =-=-.判断正确;选项B :11=BD AD DD AB b c a =+-+- .判断错误;选项C :11=AC AB BC CC a b c =++++.判断正确;选项D :111111()222A O AO AA AB AD AA a b c =-=+-=+-.判断错误.故选:AC 11.BCD【分析】根据m 的值不同,判断出每个选项中C 代表的是椭圆或双曲线,再根据其性质即可判断.【详解】对于选项A ,若3m =-,曲线C :22193x y -=表示焦点在x 轴上的双曲线,渐近线方程为y =,A 错误;对于选项B ,若27m =-,曲线C :221927x y -=,则222229,27,36,a b c a b ===+=离心率623e ==,B 正确;对于选项C ,若5m =,曲线C :22195x y +=,222229,5,4a b c a b ===-=,根据椭圆的性质,PF 1的最大值为5a c +=,C 正确;对于选项D ,若=3m ,曲线C :22193x y +=,此时a =3,b =,c =质,12PF F △面积的最大值为11222c b ⨯⨯=D 正确;故选:BCD .12.BD【分析】求出抛物线的焦点坐标,可得2p =,即可判断A;联立方程求出A,B 坐标,可得AB ,判断B ;确定M,N 坐标,可计算NF MF k k ⋅,判断C;求出线段AB 的中点坐标,即可判断D.【详解】由题意不妨设点A 在点B 上方,直线l 0y -=与x 轴交点()1,0,又l 经过22y px =的焦点,故()1,0F ,可得2p =,即抛物线方程为C :24y x =,A 正确.由204y y x-==⎪⎩,可得231030x x -+=,解得3x =或13,可得(3,A ,1,33B ⎛⎫- ⎪ ⎪⎝⎭,所以163AB ==,B 错误.由以上分析可知,(1,M -,231,3N ⎛--⎪⎝⎭,()1,0F,可得3122NF MFk k ⋅=⨯=--,则MF NF ⊥,即90MFN ∠= ,C 正确.因为(3,A,1,33B ⎛⎫- ⎪ ⎪⎝⎭,故线段AB的中点为5,33⎛ ⎝⎭,则线段AB 的中点到y 轴的距离为53,D 错误,故选:BD .13【分析】利用点到直线的距离公式直接求解即可.【详解】由题意可知:2243a b c ==⇒==,所以右焦点F的坐标为,该双曲线的一条渐近线的方程为:202y x y =⇒-=,所以F14.2【分析】利用空间向量的坐标运算和数量积表示求解.【详解】解:(0,0,1)c a x -=-()2(0,0,1)(2,4,2)222c a b x x ∴-=-=-=-,解得2x =故答案为:215.5【分析】利用抛物线的定义,将PF 转化为P 到准线的距离,再由三点共线求最小值.【详解】由题意,抛物线的准线为=1x -,焦点坐标为(1,0)F ,过点P 向准线作垂线,垂足为A ,则||||P M P M A P P F =++,当,,P M A 共线时,和最小;过点P 向准线作垂线,垂足为B ,则||||||5PA P M P P M F M B +=+≥=,所以最小值为5.故答案为:5.16.1,1)【分析】由题设知F 1(﹣c ,0),F 2(c ,0),A (﹣c ,2b a ),B (﹣c ,2b a-),由△1AF B 是锐角三角形,知tan ∠AF 1F2<1,所以22b a c <1,由此能求出椭圆的离心率e 的取值范围.【详解】解:∵点F 1、F 2分别是椭圆2222x y a b+=1(a >b >0)的左、右焦点,过F 1且垂直于x 轴的直线与椭圆交于A 、B 两点,∴F 1(﹣c ,0),F 2(c ,0),A (c ,2b a ),B (c ,2b a-),∵△1AF B 是锐角三角形,∴∠AF 1F2<45°,∴tan ∠AF 1F2<1,∴22b a c<1,整理,得b 2<2ac ,∴a 2﹣c 2<2ac ,两边同时除以a 2,并整理,得e 2+2e ﹣1>0,解得e -1,或e <-1,(舍),∴0<e <1,∴椭圆的离心率e 1,1).1,1).【点睛】本题考查椭圆的离心率的取值范围的求法,解题时要认真审题,仔细解答,注意合理地进行等价转化.17.(1)3260x y -+=(2)20x y +=或420x y +-=.【分析】(1)先求出两直线交点坐标,然后根据垂直可得斜率,再结合点斜式方程即可得到结果.(2)分截距为0与截距不为0两种情况讨论,当截距为0时,即过原点,从而得到直线方程,当截距不为0的时,结合截距式即可得到结果.【详解】(1)由3202340x y x y -+=⎧⎨++=⎩,解得2,0,x y =-⎧⎨=⎩∴1l 和2l 的交点为()2,0-.∵2l 的斜率为23-,而直线l 与直线2l 垂直,∴直线l 的斜率为32,∴直线l 的方程为()322y x =+,即3260x y -+=.(2)当l 在x 轴和y 轴上的截距均为0时,可设l 的方程为y kx =,把点()2,1P -代入可得12k =-,此时直线l 的方程为20x y +=;当l 在x 轴和y 轴上的截距均不为0时,可设l 的方程为()104x y λλλ+=≠,把点()2,1P -代入可得2114λλ-+=,得12λ=,此时直线l 方程的一般式为420x y +-=.综上可得l 的方程为20x y +=或420x y +-=.18.(1)6k =-(2)(2,4,2)c =- 或(2,4,2)c =-- 【分析】(1)利用()0ka b b +⋅= ,即可计算求解.(2)由已知,可设c a λ= (0)λ≠,根据c = c .【详解】(1)由已知得,2()0ka b b ka b b +⋅=⋅+= ,得222(282)2420k ⋅-+-+++=,解得6k =-(2)设c a λ= (0)λ≠,由c = ,可得222424λλλ++=,得到24λ=,求得2λ=±,2c a ∴=± ,则(2,4,2)c =- 或(2,4,2)c =-- 19.(1)1x =或43140x y -+=;(2)1122y x -=或2+2y x =-【分析】(1)判断点在圆外,判断切线斜率不存在时适合题意,当斜率存在时,利用圆心到切线的距离等于半径,求出斜率,可得答案.(2)求出圆心到直线的距离,判断直线斜率是否存在,存在时,设出直线方程,利用圆心到直线的距离列方程,求出斜率,可得答案.【详解】(1)因为22162130++⨯->,所以点(1,6)M 在圆22230x y x ++-=外,所以过点(1,6)M 的切线有2条,22230x y x ++-=即224(+1)x y +=,当直线的斜率不存在时:切线方程为1x =,符合题意,当直线的斜率存在时,设过点(1,6)M 的切线为()61y k x -=-,即60kx y k -+-=,圆22230x y x ++-=的圆心()1,0-,半径2r =,所以圆心()1,0-到直线的距离为2d ==,解得:43k =,所以切线方程为:414033x y -+=,即43140x y -+=.所以过点(1,6)M 且与圆22230x y x ++-=相切的切线方程为1x =或43140x y -+=.(2)圆22:4670C x y x y +--+=即圆22:(2)(3)6C x y -+-=,因为2AB =,所以圆心到直线AB =当直线AB 斜率不存在时,方程为1x =,圆心(2,3)到直线AB 的距离为1,不满足题意;所以设直线AB 的方程为()1y k x =-=22+32=0k k -,解得12k =或2k =-,故直线AB 的方程为1122y x -=或2+2y x =-.20.(1)±(2)2816y x =-.【解析】(1)根据题意,由||10PF =,可得6102p +=,解得8p =,再由点()06,P y ,代入即可得解;(2)2:16C y x =,设11(,)Q x y ,(,)M x y ,根据点M 为线段FQ 的中点,可得:11422x x y y +=⎧⎨=⎩,由点Q 为抛物线C 上,代入即可得解,【详解】(1)由抛物线2:2(0)C y px p =>经过点()06,P y 可得:2012y p =,又||10PF =,可得6102p +=,解得8p =,0y =±(2)由(1)知2:16C y x =,则(4,0)F ,设11(,)Q x y ,(,)M x y ,根据点M 为线段FQ 的中点,可得:11422x x y y +=⎧⎨=⎩,即11242x x y y =-⎧⎨=⎩,由点Q 为抛物线C 上,所以2(2)16(24)y x =-,整理可得点M 的轨迹方程为2816y x =-.21.(1)221164x y +=【分析】(1)由题意列方程求出,a b ,可得椭圆方程;(2)直线与椭圆联立方程组,求出,A B 两点坐标,得到AB ,原点到直线的距离为△OAB 的高,可求面积.【详解】(1)由22221x y a b +=,令x c =得22221c y a b +=,解得2b y a=±,所以222b a=,结合28a =,解得4,2a b ==,所以椭圆C 的标准方程为221164x y +=.(2)由221164220x y x y ⎧+=⎪⎨⎪+-=⎩,解得111x y ⎧=⎪⎨⎪⎩221x y ⎧=-⎪⎨=⎪⎩即111,122A B ⎛⎛⎫ ⎪ ⎪⎝⎭⎝⎭,所以AB =,原点到直线:220+-=l x y的距离为d ==所以12OAB S = .22.(1)22142x y -=(2)存在点13,04P ⎛⎫ ⎪⎝⎭,使PD PE ⋅ 为常数10516【分析】(1)根据离心率和椭圆上的点列方程组求解即可;(2)设出直线方程,与双曲线联立,利用韦达定理计算PD PE ⋅,利用系数比相同可求出点P 的坐标以及该常数的值.【详解】(1)因为双曲线C的离心率为2,所以22212b a ⎛⎫=+ ⎪ ⎪⎝⎭,化简得222a b =.将点(6,4)A 的坐标代入222221x y b b-=,可得2218161b b -=,解得22b =,所以C 的方程为22142x y -=;(2)设()11,D x y ,()22,E x y ,直线l 的斜率必存在,设其方程为(1)y k x =-,联立方程组()221,1,42y k x x y ⎧=-⎪⎨-=⎪⎩消去y 得()2222124240k x k x k -+--=,由题可知2120-≠k 且0∆>,即223k <且212k ≠,所以2122412k x x k +=--,21222412k x x k +=--.设存在符合条件的定点(,0)P t ,则()11,PD x t y =- ,()22,PE x t y =- ,所以()()()()()2222211212121PD PE x t x t y y k x x t k x x t k ⋅=--+=+-++++ 所以()()()()()2222222212441212k k k t k t k k PD PE k +--++++-⋅=- ,化简得()()2222245421k t t t PD PE k -+-+-⋅=-+ .因为PD PE ⋅ 为常数,所以22245421t t t -+--=-,解得134t =.此时该常数的值为2105416t -=,所以在x 轴上存在点13,04P ⎛⎫ ⎪⎝⎭,使得PD PE ⋅ 为常数,该常数为10516.。
慈溪市2023学年第一学期期末测试卷高二数学学科试卷(答案在最后)说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟,本次考试不得使用计算器,请考生将所有题目都做在答题卡上.第Ⅰ卷(选择题,共60分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在空间直角坐标系O-xyz 中,点()2,3,4P --关于平面yOz 对称的点的坐标为()A.()2,3,4--- B.()2,3,4- C.()2,3,4- D.()2,3,42.双曲线229436x y -=的一个焦点坐标为()A.)B.( C.)D.(3.已知曲线2by ax x=+在点()1,4处的切线方程为50x y +-=,则a b -=()A.1B.0C.1- D.2-4.已知等差数列{}n a 的前5项和5120S =,且()123454a a a a a ++=+,则公差d =()A.6- B.7- C.8- D.9-5.过点()0,2与圆22410x y x ++-=相切的两条直线的夹角为α,则cos α=()A.14B.4C.4-D.14-6.已知正四面体ABCD 的棱长为2,E 是BC 的中点,F 在AC 上,且2AF FC =,则AE DF ⋅=()A.53-B.23-C.0D.537.已知A ,B 是椭圆E :222125x y b+=(05b <<)的左右顶点,若椭圆E 上存在点M 满足49MA MB k k ⋅<-,则椭圆E 的离心率的取值范围为()A.0,9⎛⎫⎪ ⎪⎝⎭ B.0,3⎛⎫⎪ ⎪⎝⎭ C.,19⎛⎫⎪ ⎪⎝⎭ D.,13⎛⎫⎪ ⎪⎝⎭8.已知定义在R 上的函数()f x 的导函数为()f x ',若()11f =,()()ln 210f x f x ⎡'+⎤⎣⎦->,则()A.()20ef -> B.()40442023ef < C.()22ef < D.()40462024ef >二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知直线1l 的方程为210x ay +-=,直线2l 的方程为()3110a x ay ---=,()A.则直线1l 的斜率为12a-B.若12//l l ,则16a =C.若12l l ⊥,则1a =或12D.直线2l 过定点()1,3--10.下列函数的导数计算正确的是()A.若函数()()cos f x x =-,则()sin f x x '=B.若函数()xf x a-=(0a >且1a ≠),则()ln xf x aa-'=-C.若函数()lg f x x =,则()lg ef x x '=(e 是自然对数的底数)D.若函数()tan f x x =,则()21cos f x x='11.任取一个正数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次步骤后,必进入循环圈1→4→2→1.这是数学史上著名的“冰雹猜想”(又称“角谷猜想”等).现给出冰雹猜想的递推关系如下:已知数列{}n a 满足:1a m =(m 为正整数),1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数(*n ∈N ).若51a =,记数列{}n a 的前n 项和为n S ,则()A.2m =或16B.20241a = C.20244721S = D.312n a +=12.如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,2AB AC ==,13AA =,M 是AB 的中点,N 是11B C 的中点,P 是1BC 与1B C 的交点.Q 是线段1A N 上动点,R 是线段PQ 上动点,则()A.当Q 为线段1A N 中点时,PQ ∥平面1A CMB.当Q 为111A B C △重心时,R 到平面1A CM 的距离为定值C.当Q 在线段1A N 上运动时,直线PQ 与平面1A CM 所成角的最大角为π3D.过点P 平行于平面1A CM 的平面α截直三棱柱111ABC A B C -+第Ⅱ卷(非选择题,共90分)三、填空题:本题共4小题,每小题5分,共20分.13.已知圆C 的方程为222230x y ax a +--+=,则圆C 的半径为______.14.已知等比数列{}n a 的前n 项和为n S ,且510S =,1030S =,则20S =______.15.已知函数()(ln 2)f x x x ax =-有两个极值点,则实数a 的取值范围是_________.16.设F 为抛物线24y x =的焦点,直线l 与抛物线交于,A B 两点,且FA FB ⊥,则AFB △的面积最小值为______.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数()ln f x a x x =-.(1)当1a =时,求函数()f x 的单调区间;(2)当0a >时,求函数()f x 的最大值.18.已知圆224x y +=内有一点,12M ⎛⎫- ⎪ ⎪⎝⎭,直线l 过点M ,与圆交于A ,B 两点.(1)若直线l 的倾斜角为120°,求AB ;(2)若圆上恰有三个点到直线l 的距离等于1,求直线l 的方程.19.如图,在直四棱柱ABCD A B C D -''''中,底面ABCD 是正方形,2AB =,'3AA =,,E F 分别是棱,AB BC 上的动点.(1)若,E F 分别为棱,AB BC 中点,求证:DE ⊥平面A AF ';(2)若()1AE BF t t ==>,且三棱锥A BEF '-的体积为38,求平面B EF '与平面A EF '的夹角的余弦值.20.已知数列{}n a 的首项123a =,且满足121n n na a a +=+(*n ∈N ).(1)求证:数列11n a ⎧⎫-⎨⎬⎩⎭为等比数列;(2)若()()621nn b n =-+,令n n n c a b =,求数列{}n c 的前n 项和n S .21.已知函数()2e 1xx f x a =-+(0x >).(其中e 是自然对数的底数)(1)若对任意的210x x >>时,都有()()2121f x f x x x ->-,求实数a 的取值范围;(2)若6a ≤,求证:()0f x >.(参考数据:ln 20.693≈,ln 3 1.099≈)22.已知双曲线C 的渐近线方程为22y x =±,且点()2,1M -在C 上.(1)求C 的方程;(2)点,A B 在C 上,且,,MA MB MD AB D ⊥⊥为垂足.证明:存在点N ,使得DN 为定值.慈溪市2023学年第一学期期末测试卷高二数学学科试卷说明:本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分.考试时间120分钟,本次考试不得使用计算器,请考生将所有题目都做在答题卡上.第Ⅰ卷(选择题,共60分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在空间直角坐标系O-xyz 中,点()2,3,4P --关于平面yOz 对称的点的坐标为()A.()2,3,4--- B.()2,3,4- C.()2,3,4- D.()2,3,4【答案】B 【解析】【分析】根据对称即可求解.【详解】点()2,3,4P --关于平面yOz 对称的点的坐标为()2,3,4-,故选:B2.双曲线229436x y -=的一个焦点坐标为()A.)B.( C.)D.(【答案】A 【解析】【分析】根据标准方程即可求解.【详解】双曲线229436x y -=转化为标准方程为22149x y -=,故224,9,a b c ====,故焦点为)和(),故选:A3.已知曲线2by ax x=+在点()1,4处的切线方程为50x y +-=,则a b -=()A .1B.0C.1- D.2-【答案】D 【解析】【分析】求导,根据()()11,14f f '=-=即可求解1,3a b ==,进而可求解.【详解】()22bf x ax x '=-,则()121f a b '=-=-,又()14f a b =+=,所以1,3a b ==,故2a b -=-,故选:D4.已知等差数列{}n a 的前5项和5120S =,且()123454a a a a a ++=+,则公差d =()A.6-B.7- C.8- D.9-【答案】C 【解析】【分析】根据等差数列的性质即可求解.【详解】由()123454a a a a a ++=+可得()5123454545512024S a a a a a a a a a =++++=+=⇒+=,1232239632a a a a a ++==⇒=,故274578a a a a a +=+⇒=-,所以7258a a d =+=-,解得8d =-.故选:C5.过点()0,2与圆22410x y x ++-=相切的两条直线的夹角为α,则cos α=()A.14B.4C.4-D.14-【答案】A 【解析】【分析】设圆心为C ,点()0,2为点D ,切点为,A B ,先利用勾股定理求出切线长,再求出cos ,sin ADC ADC ∠∠,再根据二倍角的余弦公式即可得解.【详解】因为2202421110++⨯-=>,所以点()0,2在圆外,设圆心为C ,点()0,2为点D ,切点为,A B ,圆22410x y x ++-=化为标准方程得()2225x y ++=,则圆心()2,0C -,半径r =,在Rt ACD △中,CD AC ==AD ==,故cosADC ADC ∠=∠=由圆的切线的性质可得ADC BDC ∠=∠,所以351cos cos cos 2884ADB ADC α=∠=∠=-=.故选:A.6.已知正四面体ABCD 的棱长为2,E 是BC 的中点,F 在AC 上,且2AF FC = ,则AE DF ⋅=()A.53-B.23-C.0D.53【答案】C 【解析】【分析】先将,AE DF 分别用,,AB AC AD表示,再根据数量积得运算律即可得解.【详解】由正四面体ABCD ,得60BAC BAD CAD ∠=∠=∠=︒,则2,2,2AB AC AB AD AD AC ⋅=⋅=⋅=,由E 是BC 的中点,得()12AE AB AC =+,由2AF FC =,得23AF AC = ,则23DF AF AD AC AD =-=- ,所以()1223A A AB AC C AD E DF ⎛⎫+⋅- ⎪⎝⋅=⎭2122233AB AC AB AD AC AD AC ⎛⎫=⋅-⋅+-⋅ ⎪⎝⎭148220233⎛⎫=⨯-+-= ⎪⎝⎭.故选:C.7.已知A ,B 是椭圆E :222125x y b+=(05b <<)的左右顶点,若椭圆E 上存在点M 满足49MA MB k k ⋅<-,则椭圆E 的离心率的取值范围为()A.0,9⎛⎫⎪ ⎪⎝⎭B.0,3⎛⎫⎪ ⎪⎝⎭C.,19⎛⎫⎪ ⎪⎝⎭D.,13⎛⎫⎪ ⎪⎝⎭【答案】B 【解析】【分析】根据斜率公式,即可得21009b >,进而根据离心率公式即可求解.【详解】设(),M m n ,则222125m n b+=,()5,0,(5,0)A B -,故2222221255529524525MA MBk m b n n n b m k m m m ⎛⎫- ⎪⎝⎭=⋅==-+--=<⋅--,所以21009b >,故离心率为3c e a ===,又01e <<,故0,3e ⎛⎫∈ ⎪ ⎪⎝⎭,故选:B8.已知定义在R 上的函数()f x 的导函数为()f x ',若()11f =,()()ln 210f x f x ⎡'+⎤⎣⎦->,则()A.()20e f -> B.()40442023ef < C.()22ef < D.()40462024ef >【答案】D 【解析】【分析】由()()ln 210f x f x ⎡⎤-+>⎣⎦',可得()()20f x f x -'>,构造函数()()2e xf xg x =,利用导数判断出函数的单调性,再根据函数()g x 的单调性逐一判断即可.【详解】因为()()ln 210f x f x ⎡⎤-+>⎣⎦',所以()()211f x f x +'->,即()()20f x f x -'>,令()()2exf xg x =,则()()()220exf x f xg x '-'=>,所以函数()g x 是增函数,对于A ,由()()01g g <,得()2210e e f -<=,故A 错误;对于B ,由()()20231g g >,得()4046220231e ef >,所以()40442023ef >,故B 错误;对于C ,由()()21g g >,得()4221e ef >,所以()22e f >,故C 错误;对于D ,由()()20241g g >,得()4048220241e e f >,所以()40462024ef >,故D 正确.故选:D.【点睛】关键点点睛:构造函数()()2e xf xg x =,利用导数判断出函数的单调性是解决本题的关键.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知直线1l 的方程为210x ay +-=,直线2l 的方程为()3110a x ay ---=,()A.则直线1l 的斜率为12a-B.若12//l l ,则16a =C.若12l l ⊥,则1a =或12 D.直线2l 过定点()1,3--【答案】CD 【解析】【分析】根据0a =时,直线1l 的斜率不存在,即可判断A ;根据两直线平行的充要条件计算即可判断B ;根据两直线垂直的充要条件计算即可判断C ;令a 的系数等于零求出定点即可判断D .【详解】对于A ,当0a =时,直线1l 的斜率不存在,故A 错误;对于B ,若12//l l ,则()2310a a a ---=,解得0a =或16a =,经检验,两个都符合题意,所以0a =或16a =,故B 错误;对于C ,若12l l ⊥,则23120a a --=,解得1a =或12,故C 正确;对于D ,直线2l 的方程化为()310x y a x ---=,令3010x y x -=⎧⎨--=⎩,解得13x y =-⎧⎨=-⎩,所以直线2l 过定点()1,3--,故D 正确.故选:CD.10.下列函数的导数计算正确的是()A.若函数()()cos f x x =-,则()sin f x x '=B.若函数()xf x a-=(0a >且1a ≠),则()ln xf x a a-'=-C.若函数()lg f x x =,则()lg ef x x '=(e 是自然对数的底数)D.若函数()tan f x x =,则()21cos f x x='【答案】BCD 【解析】【分析】根据复合函数的求导法则,结合基本初等函数求导公式以及求导法则即可逐一求解.【详解】对于A ,()()cos cos f x x x =-=,所以()sin f x x =-',A 错误,对于B ,()()'ln ln x x f x a a x a a --=⨯-=-',故B 正确,对于C ,()1ln e lg eln10ln10f x x x x=='=,C 正确,对于D ,()()()222cos sin sin sin 1tan cos cos cos x x x x f x x x x x ''--⎛⎫='=== ⎪⎝⎭,D 正确,故选:BCD11.任取一个正数,若是奇数,就将该数乘3再加上1;若是偶数,就将该数除以2.反复进行上述两种运算,经过有限次步骤后,必进入循环圈1→4→2→1.这是数学史上著名的“冰雹猜想”(又称“角谷猜想”等).现给出冰雹猜想的递推关系如下:已知数列{}n a 满足:1a m =(m 为正整数),1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数(*n ∈N ).若51a =,记数列{}n a 的前n 项和为n S ,则()A.2m =或16B.20241a = C.20244721S = D.312n a +=【答案】ABD 【解析】【分析】先根据2a 的奇偶性求出2a ,再根据1a 的奇偶性即可求出m ,即可判断A ;分类讨论m ,求出数列的周期,进而可判断BCD.【详解】因为51a =,由“冰雹猜想”可得432,4a a ==,①若2a 为偶数,则2342a a ==,所以28a =,当1a 为偶数时,则1282aa ==,所以116a =,即16m =,当1a 为奇数时,则21318a a =+=,解得173a =(舍去),②若2a 为奇数,则32314a a =+=,解得21a =,当1a 为偶数时,则1212a a ==,所以12a =,即2m =,当1a 为奇数时,则21311a a =+=,解得10a =(舍去),综上所述,2m =或16,故A 正确;当2m =时,由1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数,得234561,4,2,1,4a a a a a =====,所以数列{}n a 从第三项起是以3为周期的周期数列,因为202423674-=⨯,所以520241a a ==,()2024216744214721S =++⨯++=,当16m =时,由1,231,nn n n n a a a a a +⎧⎪=⎨⎪+⎩为偶数为奇数,23456788,4,2,1,4,2,1a a a a a a a =======,所以数列{}n a 从第三项起是以3为周期的周期数列,因为202423674-=⨯,所以520241a a ==,()20241686744214742S =++⨯++=,综上所述,20241a =,20244721S =或4742,故B 正确,C 错误;对于D ,数列{}n a 从第三项起是以3为周期的周期数列,所以3142n a a +==,故D 正确.故选:ABD.12.如图,在直三棱柱111ABC A B C -中,90BAC ∠=︒,2AB AC ==,13AA =,M 是AB 的中点,N 是11B C 的中点,P 是1BC 与1B C 的交点.Q 是线段1A N 上动点,R 是线段PQ 上动点,则()A.当Q 为线段1A N 中点时,PQ ∥平面1A CMB.当Q 为111A B C △重心时,R 到平面1A CM 的距离为定值C.当Q 在线段1A N 上运动时,直线PQ 与平面1A CM 所成角的最大角为π3D.过点P 平行于平面1A CM 的平面α截直三棱柱111ABC A B C -+【答案】BD 【解析】【分析】建立直角坐标系,利用法向量与方向向量的关系即可求解A ,根据线面角的向量法,结合不等式的性质即可判定C ,根据线面平行即可求解B,根据面面平行即可求解长度判断D.【详解】以A 为原点,以AC ,AB ,1AA 所在直线为坐标轴建立空间直角坐标系A xyz -,设12,3AB AC AA ===,则1(0A ,0,3),(2C ,0,0),(0B ,2,0),(0M ,1,0),(1N ,1,3),(1P ,1,3)2,所以1113(1,1,0),(1,1,(2,1,0),(2,0,3)2A N A P CM CA ==-=-=-,设平面1A CM 的法向量为(,,)n x y z =,则123020n CA x z n CM x y ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令3x =,可得(3,6,2)n = ,设11(,,0),(01)AQ mA N m m m ==≤≤ ,则113(1,1,)2PQ AQ A P m m =-=-- ,当Q 为线段1A N 中点时,12m =,则113(,,)222PQ =-- 3333022PQ n ⋅=--+=-≠ ,故此时PQ 不平行平面l A CM ,A 错误,当Q 为111A B C △重心时,则所以320m -=,即23m =,113(,,332PQ =-- ,此时1230PQ n ⋅=--+=,此时PQ ∥平面1A CM ,由于R 是线段PQ 上的点,故P 到平面1A CM 的距离即为R 到平面1A CM 的距离,故为定值,B 正确,由于3(1,1,)2PQ m m =-- ,设直线PQ 与平面1A CM 所成角为θ,则sin cos ,PQ n PQ n PQ n θ⋅===由于01,m ≤≤所以()()()2223232416999921444m m m --≤≤=-+,所以43sin ,72θ=≤=<ππ0,,23θθ⎡⎤∈∴<⎢⎥⎣⎦,故C 错误对于D ,取11A B 的中点H ,连接1,HB HC ,由于,H M 均为中点,所以11//,//HB A M C H CM ,而1A M ⊂平面1A CM ,CM ⊂平面1A CM ,而HB ⊄平面1A CM ,1C H ⊄平面1A CM ,故//HB 平面1A CM ,1//C H 平面1A CM ,11,,C H HB H C H HB ⋂=⊂平面1C HB ,故平面1//C HB 平面1A CM ,故过点P 平行于平面1A CM 的平面α即为平面1CHB ,故截面为三角形1C HB,由于111BH A M C H CM BC ======,D 正确,故选:BD【点睛】方法点睛:作截面的常用三种方法:直接法,截面的定点在几何体的棱上;平行线法,截面与几何体的两个平行平面相交,或者截面上有一条直线与几何体的某个面平行;延长交线得交点,截面上的点中至少有两个点在几何体的同一平面上.第Ⅱ卷(非选择题,共90分)三、填空题:本题共4小题,每小题5分,共20分.13.已知圆C 的方程为22222330x y ax ay a +--+=,则圆C 的半径为______.【答案】a 【解析】【分析】将一般式转化为标准式即可求解半径.【详解】由22222330x y ax ay a +--+=可得()()2223x a y a a -+=,所以半径为a ,故答案为:a14.已知等比数列{}n a 的前n 项和为n S ,且510S =,1030S =,则20S =______.【答案】150【解析】【分析】根据等比数列前n 项和的性质计算即可.【详解】由题意可得510515102015,,,S S S S S S S ---成等比数列,由510S =,1030S =,得10552S S S -=,得()1510105240S S S S -=-=,所以1570S =,则()20151510280S S S S -=-=,所以20150S =.故答案为:150.15.已知函数()(ln 2)f x x x ax =-有两个极值点,则实数a 的取值范围是_________.【答案】10,4⎛⎫ ⎪⎝⎭【解析】【分析】直接求导得()ln 14f x x ax '=+-,再设新函数()ln 14g x x ax =+-,首先讨论0a ≤的情况,当0a >时,求出导函数的极值点,则由题转化为11ln044g a a ⎛⎫=> ⎪⎝⎭,解出即可.【详解】2()ln 2(0)f x x x ax x =->,()ln 14f x x ax '=+-,令()ln 14g x x ax =+-,函数()()ln 2f x x x ax =-有两个极值点,则()0g x =在区间(0,)+∞上有两个实数根.114()4axg x a x x'-=-=,当0a ≤时,()0g x '>,则函数()g x 在区间(0,)+∞单调递增,因此()0g x =在区间(0,)+∞上不可能有两个实数根,应舍去.当0a >时,令()0g x '=,解得14x a=.令()0g x '>,解得104x a<<,此时函数()g x 单调递增;令()0g x '<,解得14x a>,此时函数()g x 单调递减.∴当14x a=时,函数()g x 取得极大值.当x 趋近于0与x 趋近于+∞时,()g x →-∞,要使()0g x =在区间(0,)+∞上有两个实数根,只需11ln 044g a a ⎛⎫=>⎪⎝⎭,解得10a 4<<.故答案为:10,4⎛⎫ ⎪⎝⎭.16.设F 为抛物线24y x =的焦点,直线l 与抛物线交于,A B 两点,且FA FB ⊥,则AFB △的面积最小值为______.【答案】12-【解析】【分析】设直线l 的方程为()()1122,,,,x my t A x y B x y =+,联立方程,利用韦达定理求出1212,y y y y +,由FA FB ⊥,得0FA FB ⋅=,求出,m t 的关系,进而可求出t 的范围,再根据1211122AFB S t y y t =--=- 计算即可.【详解】由已知()1,0F ,设直线l 的方程为()()1122,,,,x my t A x y B x y =+,联立24x my ty x =+⎧⎨=⎩,消x 得2440y my t --=,216160m t ∆=+>,则12124,4y y m y y t +==-,由FA FB ⊥,得0FA FB ⋅=,即()()()()112212121,1,110x y x y x x y y -⋅-=--+=,所以()()1212110my t my t y y +-+-+=,化简得()()()()2212121110m y y m t y y t ++-++-=,所以()()()222414110t m mt t -++-+-=,化简得224610m t t =-+≥,解得3t ≥+3t ≤-则()()222Δ161646116410m t t t t t =+=-++=->,则1t >或1t <,所以3t ≥+3t ≤-1211122AFB S t y y t =--=-()211122t t t =-=-=-,所以当3t =-()(2min 212AFB S =-=- ,所以AFB △的面积最小值为12-故答案为:12-【点睛】方法点睛:圆锥曲线中的最值问题解决方法一般分两种:一是几何法,特别是用圆锥曲线的定义和平面几何的有关结论来求最值;二是代数法,常将圆锥曲线的最值问题转化为二次函数或三角函数的最值问题,然后利用基本不等式、函数的单调性或三角函数的有界性等求最值.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.已知函数()ln f x a x x =-.(1)当1a =时,求函数()f x 的单调区间;(2)当0a >时,求函数()f x 的最大值.【答案】(1)()f x 在(0,1)上为增函数;()f x 在(1,)+∞上为减函数;(2)(ln 1)a a -【解析】【分析】(1)直接利用函数的导数确定函数的单调区间.(2)求导根据函数的单调性即可求解最值.【小问1详解】()f x 的定义域为(0,)+∞,当1a =时,()ln f x x x =-,()111x f x x x-=-=',当()10xf x x -'=>,解得:01x <<,当()10xf x x-'=<,解得:1x >.()f x ∴在(0,1)上为增函数;()f x 在(1,)+∞上为减函数;【小问2详解】()f x 的定义域为(0,)+∞,()1a a xf x x x-=-=',当0a >时,令()0f x '>,得0x a <<,令()0f x '<时,得x a >,()f x ∴的递增区间为()0,a ,递减区间为(),a +∞.max ()ln (ln 1)f x a a a a a =-=-.18.已知圆224x y +=内有一点,12M ⎛⎫- ⎪⎪⎝⎭,直线l 过点M ,与圆交于A ,B 两点.(1)若直线l 的倾斜角为120°,求AB ;(2)若圆上恰有三个点到直线l 的距离等于1,求直线l 的方程.【答案】(1)372(2)10y -=或70y -+=.【解析】【分析】(1)由已知条件可得直线l 的方程,再结合点到直线的距离公式即可求出弦AB 的长;(2)由已知条件可求出圆心到直线l 的距离12d r =,再分类讨论,结合点到直线的距离公式可求出k 值,则直线l 的方程可求.【小问1详解】直线l 过点,12M ⎛⎫- ⎪ ⎪⎝⎭,且斜率为tan120k ==∴直线l的方程为1y x -=+,即210y ++=, 圆心(0,0)到直线的距离为14d =,||2AB ∴==;【小问2详解】圆上恰有三点到直线l 的距离等于1,∴圆心(0,0)到直线l 的距离为12rd ==,当直线l 垂直于x轴时,直线方程为2x =-,不合题意;当直线l 不垂直于x 轴时,设直线l的方程为1(2y k x -=+,即10kx y -++=,由1d ==,可得20k -=,解得0k =或k =,故直线l 的方程为10y -=或70y -+=.19.如图,在直四棱柱ABCD A B C D -''''中,底面ABCD 是正方形,2AB =,'3AA =,,E F 分别是棱,AB BC上的动点.(1)若,E F 分别为棱,AB BC 中点,求证:DE ⊥平面A AF ';(2)若()1AE BF t t ==>,且三棱锥A BEF '-的体积为38,求平面B EF '与平面A EF '的夹角的余弦值.【答案】(1)证明见解析(2)287【解析】【分析】(1)以点D 为原点建立空间直角坐标系,利用向量法求证即可;(2)先根据三棱锥的体积求出t ,再利用向量法求解即可.【小问1详解】如图,以点D 为原点建立空间直角坐标系,则()()()()()()()2,0,0,2,0,3,2,2,0,2,2,3,0,2,0,2,1,0,1,2,0A A B B C E F '',故()()()2,1,0,0,0,3,1,2,0DE AA AF '===- ,因为0,0DE AA DE AF '⋅=⋅= ,所以,DE AA DE AF '⊥⊥,又,,AA AF A AA AF ''⋂=⊂平面A AF ',所以DE ⊥平面A AF ';【小问2详解】因为()1113232328A BEF V S BEF AA t t '-'=⋅=⨯⨯⨯-⨯= ,解得12t =或32t =,又因为1t >,所以32t =,故312,,0,,2,022E F ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭,所以33110,,3,,,0,0,,32222A E EF B E ⎛⎫⎛⎫⎛⎫''=-=-=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,设平面A EF '的法向量为(),,n x y z = ,则有330231022n A E y z n EF x y ⎧⋅=-=⎪⎪⎨⎪⋅=-+=⎪⎩' ,可取()2,6,3n = ,设平面B EF '的法向量为(),,m a b c = ,则有130231022m B E b c m EF a b ⎧⋅=--=⎪⎪⎨⎪⋅=-+=⎪⎩' ,可取()2,6,1m =-- ,所以cos,287m nm nm n⋅===,所以平面B EF'与平面A EF'的夹角的余弦值为287.20.已知数列{}n a的首项123a=,且满足121nnnaaa+=+(*n∈N).(1)求证:数列11na⎧⎫-⎨⎬⎩⎭为等比数列;(2)若()()621nnb n=-+,令n n nc a b=,求数列{}n c的前n项和n S.【答案】(1)证明见解析(2)()()117214,672242,7nn nn nSn n++⎧--≤⎪=⎨-+≥⎪⎩【解析】【分析】(1)根据递推公式证明11111nnaa+--为定值即可;(2)先利用错位相减法求出数列{}n a的前n项和,再分6n≤和7n≥两种情况讨论即可.【小问1详解】由121nnnaaa+=+,得1112121111221111121n n n n n n n n n n n n n n na a a a a a a a a a a a a a a +-+---+====----,所以数列11n a ⎧⎫-⎨⎬⎩⎭是以11112a -=为首项,12为公比的等比数列;【小问2详解】由(1)得1112n n a -=,所以221n n n a =+,所以()62nn n n c a b n ==-,设数列{}n a 的前n 项和为n T ,则()2352423262nn T n =⨯+⨯+⨯++- ,()()234125242327262n n n T n n +=⨯+⨯+⨯++-+- ,两式相减得()2311022262n n n T n +-=------ ()()()21112121062721412n n n n n -++-=-+-=-+-,所以()17214n n T n +=--,令()620n n c n =-≥,则6n ≤,令()620n n c n =-<,则6n >,故当6n ≤时,n n c c =,当7n ≥时,n n c c =-,所以当6n ≤时,()1127214n n n n S c c c S n +=+++==-- ,当7n ≥时,()()1267862n n nS c c c c c c S S =+++-+++=- ()()11228721472242n n n n ++⎡⎤=---=-+⎣⎦,综上所述,()()117214,672242,7n n n n n S n n ++⎧--≤⎪=⎨-+≥⎪⎩.21.已知函数()2e 1xx f x a =-+(0x >).(其中e 是自然对数的底数)(1)若对任意的210x x >>时,都有()()2121f x f x x x ->-,求实数a 的取值范围;(2)若6a ≤,求证:()0f x >.(参考数据:ln 20.693≈,ln 3 1.099≈)【答案】(1)(],1-∞(2)证明见解析【解析】【分析】(1)令()()x f x x ϕ=-,由题意可得函数()x ϕ在()0,∞+上单调递增,()0x ϕ'≥在()0,∞+上恒成立,分离参数,进而可得出答案;(2)要证()()00f x x >>,即证2e 1x a x +<,令()()2e 10x g x x x+=>,利用导数求出()min 6g x >即可得证.【小问1详解】对任意的210x x >>时,都有()()2121f x f x x x ->-,即对任意的210x x >>时,都有()()2211f x x f x x ->-,令()()x f x x ϕ=-,则函数()x ϕ在()0,∞+上单调递增,则()()12e 10xx f x a ϕ''=-=--≥在()0,∞+上恒成立,即2e 1x a ≤-在()0,∞+上恒成立,因为当0x >时,2e 11x ->,所以1a ≤,经检验符合题意,所以实数a 的取值范围为(],1-∞;【小问2详解】要证()()00f x x >>,即证2e 1x a x+<,令()()2e 10x g x x x +=>,则()22e 2e 1x x x g x x--'=,令()()2e 2e 10x x h x x x =-->,则()()2e 00xh x x x '=>>,所以函数()h x 在()0,∞+上单调递增,又()7671110,e 163h h ⎛⎫=-<=- ⎪⎝⎭,因为6ln 36 1.099 6.5947≈⨯=<,所以7ln 36>,所以76e 3>,所以7671e 1063h ⎛⎫=-> ⎪⎝⎭,故存在071,6x ⎛⎫∈ ⎪⎝⎭,使得()00002e 2e 10x x h x x =--=,即()00g x '=,当00x x <<时,()0g x '<,当0x x >时,()0g x '>,所以函数()g x 在()00,x 上单调递减,在()0,x +∞上单调递增,所以()()00min 02e 1x g x g x x +==,因为0002e 2e 10x x x --=,所以0012e 1x x =-,所以()00min 0001112e 111x x g x x x x +-+===-,因为071,6x ⎛⎫∈ ⎪⎝⎭,所以0161x >-,即()min 6g x >,又因为6a ≤,所以2e 1x a x+<,所以若6a ≤,()0f x >.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.22.已知双曲线C的渐近线方程为2y x =±,且点()2,1M -在C 上.(1)求C 的方程;(2)点,A B 在C 上,且,,MA MB MD AB D ⊥⊥为垂足.证明:存在点N ,使得DN 为定值.【答案】(1)2212x y -=(2)证明见解析【解析】【分析】(1)设双曲线的方程为()2202x y λλ-=≠,利用待定系数法求出λ即可得解;(2)分直线AB 的斜率是否为零两种情况讨论,根据MA MB ⊥,可得121211122y y x x ++⋅=---,双曲线方程可变形为()()22222222211x y x y =-=-+-+-,再由直线AB 的方程x my t =+可得()12112x m y t m ⎡⎤--+=⎣⎦--,代入变形后的双曲线方程,再利用韦达定理即可得出,t m 间的关系,进而可求出直线AB 所过的定点,即可得出结论.【小问1详解】设双曲线的方程为()2202x y λλ-=≠,因为点()2,1M -在C 上,所以412λ-=,解得1λ=,所以C 的方程为2212x y -=;【小问2详解】设()()1122,,,A x y B x y ,当直线AB 的斜率为0时,则()11,B x y -,因为点,A B 在C 上,所以221112x y -=,则221122x y =+,由MA MB ⊥,得0MA MB ⋅=,即()()()221111112,12,14410x y x y x y -+⋅--+=-+++=,()()2211422410y y -++++=,解得13y =或11y =-(舍去),故直线AB 的方程为3y =,当直线AB 的斜率不等于0时,设直线AB 的方程为x my t =+,当MA 的斜率不存在时,则MB 的斜率为0,此时直线MA 的方程2x =,直线MB 的方程为1y =-,联立22212x x y =⎧⎪⎨-=⎪⎩,解得1y =(1y =-舍去),联立22112y x y =-⎧⎪⎨-=⎪⎩,解得2x =-(2x =舍去),所以()()2,1,2,1A B --,则12AB k =,所以直线AB 的方程为()1122y x -=-,令3y =,则6x =,故直线AB 过点()6,3,同理可得当MB 的斜率不存在时,则MB 的斜率为0,此时直线AB 的方程为()1122y x -=-,直线AB 过点()6,3,当直线,MA MB 的斜率都存在且都不等于零时,因为MA MB ⊥,所以121211122y y x x ++⋅=---,由2212x y -=,得()()22222222211x y x y =-=-+-+-()()()()22242421412x x y y =-+-+-+++-,所以()()()()2224221410x x y y -+--+++=,由x my t =+,得()221x m y m t -+=+-+,则()212x m y m t --+=-+-,所以()12112x m y t m ⎡⎤--+=⎣⎦--,所以()()()()22124221212x x x m y y t m ⎡⎤-+---+-+⎣⎦--()()1412102y x m y t m ⎡⎤++--+=⎣⎦--,整理得()()()()2224424222110222t m m t m x x y y t m t m t m +---+-+-+-+=------即224214412022222t m y m y t m t m x t m x t m-++-++-⎛⎫-+⋅+= ⎪--------⎝⎭,所以()1212211221242222422t m y y t m t m t m x x t m t m+-+++---⋅===--+----+---所以63t m =-,所以直线AB 得方程为()6336x my m y m =+-=-+,所以直线AB 过定点()6,3,综上所述,直线AB 过定点()6,3Q ,因为MD AB ⊥,所以存在MQ 的中点()4,1N,使得12DN MQ ==.【点睛】方法点睛:求解直线过定点问题常用方法如下:(1)“特殊探路,一般证明”:即先通过特殊情况确定定点,再转化为有方向、有目的的一般性证明;(2)“一般推理,特殊求解”:即设出定点坐标,根据题设条件选择参数,建立一个直线系或曲线的方程,再根据参数的任意性得到一个关于定点坐标的方程组,以这个方程组的解为坐标的点即为所求点;(3)求证直线过定点()00,x y ,常利用直线的点斜式方程()00y y k x x -=-或截距式y kx b =+来证明.。
滨城高中联盟2024-2025学年度上学期高二10月份考试数学试题(时间:120分钟,满分:150分)第I 卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.在四面体中,已知点是的中点,记,则等于( )A. B.C. D.2.若平面的法向量为,直线的方向向量为,直线与平面的夹角为,则下列关系式成立的是( )A. B.C. D.3.若直线的一个法向量是,则该直线的倾斜角为( )A. B. C. D.4.已知空间向量,则向量在向量上的投影向量是( )A. B. C. D.5.设是的二面角内一点,是垂足,,则的长度为( )A.B.56.对于空间一点和不共线三点,且有,则( )A.四点共面B.四点共面ABCD E CD ,,AB a AC b AD c === BE 1122a b c -++ 1122a b c -+ 1122a b c -+ 1122a b c -++ αμ l vl αθcos v v μθμ⋅= cos v v μθμ⋅=sin v v μθμ⋅= sin v vμθμ⋅= AB )1a =- 30 60 120 150()()1,1,2,1,2,1a b =-=- a b ()1,1,1-555,,663⎛⎫- ⎪⎝⎭555,,636⎛⎫- ⎪⎝⎭111,,424⎛⎫- ⎪⎝⎭P 120 l αβ--,,,PA PB A B αβ⊥⊥4,3PA PB ==AB O ,,A B C 2OP PA OB OC =-+ ,,,O A B C ,,,P A B CC.四点共面D.五点共面7.将正方形沿对角线折成直二面角,下列结论不正确的是()A.B.,所成角为C.为等边三角形D.与平面所成角为8.正方形的边长为12,其内有两点,点到边的距离分别为3,2,点到边的距离也分别是3和2.如图,现将正方形卷成一个圆柱,使得和重合.则此时两点间的距离为( )二、多项选择题:体题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得6分,部分选对的按部分得分,有选错的得0分.9.下列说法中,正确的有( )A.直线必过定点B.方程是直线的一般式方程C.直线的斜率为D.点到直线的距离为110.已知空间单位向量两两垂直,则下列结论正确的是( )A.向量与共线B.问量C.可以构成空间的一个基底,,,O P B C ,,,,O P A B C ABCD BD AC BD⊥AB CD 60︒ADC V AB BCD 60︒11ABB A ,P Q P 111,AA A B Q 1,BB AB AB 11A B ,P Q ()32y ax a a =-+∈R ()3,20Ax By C ++=10x ++=()5,3-20y +=,,i j k i j + k j - i j k ++ {},,i j i j k +-D.向量和11.如图,已知正六棱柱的底面边长为2,所有顶点均在球的球面上,则下列说法错误的是( )A.直线与直线异面B.若是侧棱上的动点,则C.直线与平面D.球的表面积为第II 卷(非选择题)三、填空题:本题共3小题,每小题5分,共15分.12.已知点关于直线对称的点是,则直线在轴上的截距是__________.13.若三条直线相交于同一点,则点到原点的距离的最小值为__________.14.已知正三棱柱的底面边长为是其表面上的动点,该棱柱内切球的一条直径是,则的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明,证明过程或演算步骤.15.(本小题满分13分)已知直线与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线的方程:(1)过定点;(2)斜率为.16.(本小题满分15分)如图,在四面体中,面是的中点,是i j k ++ k ABCDEF A B C D E F ''''-''O DE 'AF 'M CC 'AM MD +'AF 'DFE 'O 18π()1,2A -y kx b =+()1,6B --y kx b =+x 2,3,100y x x y mx ny =+=++=(),m n ABC A B C '-''P MN PM PN ⋅ l l ()3,4A -16ABCD AD ⊥,2,BCD AD M =AD P的中点,点在棱上,且.请建立适当的空间直角坐标系,证明:面.17.(本小题满分15分)如图所示,平行六面体中.(1)用向量表示向量,并求;(2)求18.(本小题满分17分)如图,在五棱锥中,平面是等腰三角形.(1)求证:平面平面;(2)求直线与平面所成角的大小.19.(本小题满分17分)如图,在三棱柱中,棱的中点分别为在平面内的射影为是边长为2的等边三角形,且,点在棱上运动(包括端点).请建立适当的空间直角坐标系,解答下列问题:BM Q AC3AQ QC=PQ∥BCD1111ABCD A B C D-111ππ1,2,,23AB AD AA BAD BAA DAA∠∠∠======1,,AB AD AA1BD1BD1cos,BD ACP ABCDE-PA⊥,ABCDE AB∥,CD AC∥,ED AE∥,45,24,BC ABC AB BC AE PAB∠====VPCD⊥PACPB PCD111ABC A B C-1,AC CC1,,D E CABC,D ABCV12AA=F11B C(1)若点为棱的中点,求点到平面的距离;(2)求锐二面角的余弦值的取值范围.F 11B C F BDE F BD E --滨城高中联盟2024-2025学年度上学期高二10月份考试数学试题参考答案一、单选题1.A2.D3.B4.C5.D6.B7.D8.【答案】B【详解】解法一:如图建系设圆柱底面半径为,则,所以,则所以.解法二:如图,设过点且平行底面的截面圆心为,过点且平行底面的截面圆心为,设圆柱底面半径为,则,所以,则,.r 2π12r =6πr =33,3,,9ππQ P ⎫⎛⎫--⎪ ⎪⎪ ⎪⎭⎝⎭PQ =P 1O Q 2O r 2π12r =6πr =121122222π,,63πO P O Q PQ PO O O O Q +===++222211221212||22PQ PO O O O Q r O O PO O Q∴=++=++⋅ 222266π36262cos 336,ππ3πPQ ⎛⎫⎛⎫=⋅++⋅⋅=⋅+∴= ⎪ ⎪⎝⎭⎝⎭9.AD 10.BCD.11.【答案】AC【详解】对于A ,如图①,连接,则,所以,所以直线与直线共面,故A 错误;对于B ,将平面沿着翻折到与平面共面的位置,得到矩形,如图②所示.因为底面边长为,所以则的最小值为,故B 正确;对于C ,以为坐标原点,所在直线分别为轴、轴、轴,建立如图①所示的空间直角坐标系,则,所以.设平面的法向量为,则,即,令,得,所以平面的一个法向量为.设直线与平面所成角为,则,故C 错误;对于D ,如图③,设球的半径为,根据对称性可知,正六棱柱的外接球的球心在上下底面的中心的连线的中点处.,则,所以球的表面积,故D 正确.,AD A D ''AD ∥,A D A D ''''∥E F ''AD ∥E F ''DE 'AF 'ACC A ''CC 'CDD C ''ADD A ''2π2,3ABC ∠=AC =AM MD +'AD =='F ,,FA FD FF 'x y z ()(()()(2,0,0,,0,0,0,0,,A F F D E '-'(()(,0,,AF FD FE =''=-=- DFE '(),,m x y z = 00FD m FE m ⎧⋅=⎪⎨⋅=⎪'⎩ 00y x =⎧⎪⎨-++=⎪⎩1z =x =DFE ')m = AF 'DFE 'θ1sin 3θO R 12O O 1122,O C O O ==22222211922R OC O C O O ==+=+=O 294π4π18π2S R ==⨯=12.13.【答案】【详解】由解得把代入可得,所以,所以点到原点的距离当时等号成立,此时.所以点到原点的距离的最小值为14.【答案】【详解】由题意知内切球的半径为1,设球心为,则.因为.四、解答题15.【答案】(1)或.(2)或.【详解】(1)由题意知直线的斜率存在,设为则直线的方程为,它在轴,轴上的截距分别是,由已知,得,解得或.故直线的方程为或.(2)设直线在轴上的截距为,则直线的方程是,它在轴上的截距是,8-2,3,y x x y =⎧⎨+=⎩1,2.x y =⎧⎨=⎩()1,240mx ny ++=2100m n ++=102m n =--(),m n d ==4n =-2m =-(),m n []0,4O ()()PM PN PO OM PO ON ⋅=+⋅+ ()2OP PO OM ON OM ON =+⋅++⋅ 2||1PO =- []0,4PM PN ⋅∈ 2360x y +-=83120x y ++=660x y -+=660x y --=l kl ()34y k x =++x y 43,34k k--+()43436k k ⎛⎫+⨯+=± ⎪⎝⎭123k =-283k =-l 2360x y +-=83120x y ++=l y b l 16y x b =+x 6b -由已知,得,所以.所以直线的方程为或.16.解法一:以为坐标原点,所在直线为z 轴,线段的延长线为y 轴,建立如图所示空间直角坐标系,设,由题意得,因为,所以即即所以,所以又因为面BCD 的一个法向量为所以所以又因为面所以面.解法二:66b b -⋅=1b =±l 660x y -+=660x y --=D DA BD 2BD a =()()()10,2,0,0,0,2,0,0,1,0,,2B a A M P a ⎛⎫-- ⎪⎝⎭3AQ QC =34AQ AC = ()()3,,2,,24Q Q Q x y z x y -=-331,,442Q Q Q x x y y z ===331,,442Q x y ⎛⎫ ⎪⎝⎭33,,044PQ x y a ⎛⎫=+ ⎪⎝⎭()0,0,1n =0PQ n ⋅= PQ n⊥ PQ ⊄BCDPQ ∥BCD取的中点,连接,因为为BM 的中点,所以,所以平面,过作,交BC 于以为坐标原点,的方向分别为x 轴、y 轴、z 轴正方向,建立如图所示的空间直角坐标系.因为为中点,设则设点的坐标为.因为,所以.因为为的中点,故,又为的中点,故,所以又平面BCD 的一个法向量为,故,所以又平面BCD ,所以平面BC D.17.【答案】(1)2【详解】(1),BD O OP P OP ∥MD OP ⊥BCD O OE BD ⊥,E O ,,OE OD OP2,AD M =AD 2BD a=()()0,,2,0,,0A a B a -C ()00,,0x y 3AQ QC = 003131,,4442Q x a y ⎛⎫+ ⎪⎝⎭M AD ()0,,1M a P BM 10,0,2P ⎛⎫ ⎪⎝⎭00313,,0444PQ x a y ⎛⎫=+ ⎪⎝⎭()0,0,1n =0PQ n ⋅= PQ n⊥ PQ ⊄PQ ∥111,BD AD AA AB BD =+-= 111BD AD AB AD AA AB =-=+-则,所以.(2)由空间向量的运算法则,可得,因为且,因为是正方形,所以,则.18.【答案】(1)见详解(2)【详解】(1)证明:在中,因为,所以,因此故,所以,即又平面,所以.又平面,且,所以平面.又平面,所以平面平面.(或者建系求法向量,证明法向量垂直,略)(2)由(1)知两两相互垂直,分别以的方向为轴、轴、轴正方向,建立()2222211111222BD AD AA AB AD AA AB AD AA AD AB AB AA =+-=+++⋅-⋅-⋅ 111412*********=+++⨯⨯⨯--⨯⨯⨯=1BD = AC AB AD =+ 11,2AB AD AA ===11ππ,23BAD BAA DAA ∠∠∠===ABCD AC = ()()221111BD AC AD AA AB AB AD AD AB AD AA AB AA AD AB AD AB ⋅=+-⋅+=⋅++⋅+⋅--⋅ 22ππππ11cos121cos 21cos 111cos 22332=⨯⨯++⨯⨯+⨯⨯--⨯⨯=111cos ,BD AC BD AC BD AC ⋅===⋅ π6ABC V 45,4,ABC BC AB ∠=== 2222cos458AC AB BC AB BC =+-⋅⋅= AC =222BC AC AB =+90BAC ∠= AB AC⊥PA ⊥,ABCDE AB ∥CD ,CD PA CD AC ⊥⊥,PA AC ⊂PAC PA AC A ⋂=CD ⊥PAC CDC PCD PCD ⊥PAC ,,AB AC AP ,,AB AC AP x y z如图所示的空间直角坐标系,由于是等腰三角形,所以.又,因此,.因为,所以四边形是直角梯形.因为,所以,因此,故,所以.因此.设是面的一个法向量,则,解得.取,得.又,设表示向量与平面的法向量所成的角,则,又因为,所以,因此直线与平面所成的角为.PAB V PA AB ==AC =()()0,0,0,A B ()(0,,0,0,C P AC ∥,ED CD AC ⊥ACDE 2,45,AE ABC AE ∠== ∥BC 135BAE ∠= 45CAE ∠= sin452CD AE =⋅== ()D (()0,,CP CD =-= (),,m x y z =PCD 0,0m CP m CD ⋅=⋅= 0,x y z ==1y =()0,1,1m =(BP =- θBP PCD m1cos 2m BP m BP θ⋅==⋅ π0,2θ⎡⎤∈⎢⎥⎣⎦π3θ=PB PCD π619.【答案】(1(2)解法一:连接,因为在平面内的射影为,所以平面,由于平面,所以,由于三角形是等边三角形,所以,以为原点,分别以的方向为轴、轴、轴正方向,建立如图所示空间直角坐标系,则,因为所以又因为为中点,所以所以设面的一个法向量为则令,则所以所以点到平面的距离为(2)因为在棱上(包括端点)设12⎡⎢⎣1DC 1C ABC D 1DC ⊥ABC ,AC BD ⊂ABC 11,DC AC DC BD ⊥⊥ABC BD AC ⊥BD ==1DC ==D 1,,DB DA DC x y z (())11,0,1,0,,0,2C C B E ⎛-- ⎝)11C B CB == 1B F 11B C 12F 12BF ⎛= ⎝ BDE ()111,,m x y z =1(0,,2BD ED ⎛== ⎝ 111000x BD m y ED m ⎧=⎧⋅=⎪⎪⇒⎨⎨=⋅=⎪⎪⎩⎩ 11z =1y =()m = F BDE BF m m ⋅== F 11B C ()111,01C F C B λλ= ……因为,所以设平面的法向量为,令所以,设锐二面角为,则令,所以,设则二次函数的开口向上,对称轴为,所以当时,该二次函数单调递增,所以当时,该二次函数有最小值,当时,该二次函数有最大值,,即.所以锐二面角的余弦值的取值范围.解法二:(1)连接,因为在平面内的射影为,所以平面,由于平面,所以,)11C B = )1,,0C F λ=BDF ()222,,n x y z = 11,,0),DF DC C F λλ=+=+= 22220000DF n x y x DB n λ⎧⋅=++=⎪⇒⎨=⋅=⎪⎪⎩⎩ 2y =2z λ=-()m λ=- F BD E --θ1cos 2θ=[]()32,3t t λ-=∈cos θ==111,,32s s t ⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭cos θ=221112611244y s s s ⎛⎫=-+=-+ ⎪⎝⎭14s =11,32s ⎡⎤∈⎢⎥⎣⎦13s =21111261333⎛⎫⨯-⨯+= ⎪⎝⎭12s =2111261122⎛⎫⨯-⨯+= ⎪⎝⎭⎡⎣1cos 2θ⎡∈⎢⎣F BD E --12⎡⎢⎣1DC 1C ABC D 1DC ⊥ABC ,AC BD ⊂ABC 11,DC AC DC BD ⊥⊥由于三角形是等边三角形,所以,又以为原点,分别以的方向为轴、轴、轴正方向,建立如图所示空间直角坐标系,则,又,故,则设平面的法向量为,则,故可设,又,所以点到平面的距离为.(2)设,则,设平面的法向量为,则令,所以,所以,设锐二面角为,ABC ,BD AC BD ⊥==1DC ==D 1,,DCDB DCx yz (()()11,1,0,0,,2C C E B ⎛ ⎝()11C B CB ==-(11,2B F ⎛-- ⎝()1,,2DE DB ⎛== ⎝ BDE ()111,,m x y z =1111020m DE x z m DB ⎧⋅=+=⎪⎨⎪⋅==⎩ ()m = 1,2BF ⎛=- ⎝ F BDE BF m m ⋅== ()()1111101,C F C B C B λλ=≤≤=- (()(11111DF DC C F DC C B λλλ=+=+=+-=- BDF ()222,,n x y z =22220000DF n x y y DB n λ⎧⎧⋅=-++=⎪⎪⇒⎨⎨=⋅=⎪⎪⎩⎩ 2x =2z λ=)n λ=F BD E --θ则令,所以,设则二次函数的开口向上,对称轴为,所以当时,该二次函数单调递增,所以当时,该二次函数有最小值,当时,该二次函数有最大值,,即.所以锐二面角的余弦值的取值范围.1cos 2θ=[]()32,3t t λ-=∈cos θ==111,,32s s t ⎛⎫⎡⎤=∈ ⎪⎢⎥⎣⎦⎝⎭cos θ=221112611244y s s s ⎛⎫=-+=-+ ⎪⎝⎭14s =11,32s ⎡⎤∈⎢⎥⎣⎦13s =21111261333⎛⎫⨯-⨯+= ⎪⎝⎭12s =2111261122⎛⎫⨯-⨯+= ⎪⎝⎭⎡⎣1cos 2θ⎡∈⎢⎣F BD E --12⎡⎢⎣。
江门市2023年普通高中高二调研测试(一)数 学本试卷共6页,22小题,满分150分,考试时间120分钟。
注意事项:1.答题前,务必将自己的姓名、准考证号填写在答题卡规定的位置上。
2. 做选择题时,必须用2B 铅笔将答题卷上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
3. 答非选择题时,必须用黑色字迹钢笔或签字笔,将答案写在答题卡规定的位置上。
4. 所有题目必须在答题卡上作答,在试题卷上作答无效。
5. 考试结束后,将答题卡交回。
一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知数列{}n a 满足11+12,2(2N n n a a a n n -==-≥∈且),则该数列的第5项为 A .54B .65C .45D .562.已知(4,9)A ,(6,3)B 两点,以线段AB 为直径的圆的标准方程是A.()()225610x y +++= B.()()225620x y +++=C.()()225620x y -+-= D.()()225610x y -+-=3.20y ++=的倾斜角及在y 轴上的截距分别是A.60,2︒ B.60,2︒- C.120,2︒- D.120,2︒4.若{},,a b c 构成空间的一个基底,则下列向量不共面的是A .,,a c a a c +-B .,,c c b c b +-C .,,a b a b c +-D .,,a b c a b c c +-++5.已知M 是抛物线216y x =上的一点且在x 轴上方,F 是抛物线的焦点,以Fx 为始边,FM 为终边的角60xFM ∠=︒,则FM 等于A.16B.20C.4D.8内部资料·注意保存试卷类型:B6.直线0Ax By C ++=(A ,B 不同时为0),则下列选项正确的是A.无论A ,B 取任何值,直线都存在斜率B.当0A =,且0B ≠时,直线只与x 轴相交C.当0A ≠,或0B ≠时,直线与两条坐标轴都相交D.当0A ≠,且0B =,且0C =时,直线是y 轴所在直线7.已知{}n a 为等差数列,13545a a a ++=,24633a a a ++=,则10S 等于A.250B.410C.50D.628.已知椭圆2222:1(0)x y M a b a b+=>>的左顶点为A ,O 为坐标原点,B ,C 两点在M上,若四边形OABC 为平行四边形,且30OAB ∠=︒,则椭圆M 的离心率为A.322B.322 D.2二、选择题:本题共4小题,每小题5分,共20分。
石家庄市2023~2024学年度第一学期期末教学质量检测高二数学(答案在最后)(时间120分钟,满分150)注意事项:本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,答第I 卷前,考生务必将自己的姓名、准考证号、考试科目写在答题卡上.第I 卷(选择题,共60分)一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线10+-=的倾斜角为()A.30°B.60°C.120°D.150°2.空间直角坐标系O xyz -中,平行四边形ABCD 的,,A B C 三点坐标分别为()1,2,3A ,()2,1,0B -,()1,2,0C -,则D 的坐标为()A.()0,1,3-- B.()2,5,3- C.()4,1,3- D.()3,2,0-3.若圆心坐标为(2,2)的圆被直线0x y +=截得的弦长为,则该圆的一般方程为()A.224480x y x y +---=B.224480x y x y +++-=C.2244160x y x y +---= D.224440x y x y ++++=4.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=()A.12B.24C.30D.325.将一颗骰子先后抛掷2次,观察向上的点数,将第一次向上的点数记为m ,第二次向上的点数记为n ,则2n m n <≤的概率等于()A.56B.16C.34D.146.若抛物线22(0)y px p =>上的点(0A x 到其焦点的距离是A 到y 轴距离的3倍,则p 等于A.12B.1C.32D.27.斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即1,1,2,3,5,8,13,21,34,55,89,144,233,….在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列在现代物理及化学等领域也有着广泛的应用.斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则35720211a a a a ++++⋅⋅⋅+是斐波那契数列{}n a 中的第()项A.2020B.2021C.2022D.20238.在三棱锥A BCD -中,3AB AC BD CD ====,4AD BC ==,E 是BC 的中点,F 满足14AF AD =,则异面直线AE ,CF 所成角的余弦值为()A.15B.265C.7010D.3010二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给的四个选项中,有多项符合题目要求,全部选对得5分,选对但不全的得2分,有选错的得0分.)9.袋子中有六个大小质地相同的小球,编号分别为1,2,3,4,5,6,从中随机摸出两个球,设事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,事件C 为摸出的小球编号恰好只有一个奇数,则下列说法全部正确的是()A.事件A 与B 是互斥事件B.事件A 与C 是互斥事件C.事件B 与C 是对立事件D.事件A 与B 相互独立10.已知椭圆C :22162x y +=的左右焦点分别为1F ,2F ,P 是椭圆C 上的动点,点()1,1A ,则下列结论正确的是()A.12PF PF +=B.12PF F △面积的最大值是C.椭圆C 的离心率为63D.1PF PA +最小值为-11.已知向量()1,2,2a = ,(2,1,1)b =-,则下列说法不正确的是()A.向量(2,4,4)--与向量,a b共面B.向量b 在向量a上的投影向量为244,,999⎛⎫⎪⎝⎭C.若两个不同的平面,αβ的法向量分别是,a b,则αβ⊥D.若平面α的法向量是a ,直线l 的方向向量是b,则直线l 与平面α所成角的余弦值为1312.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++ ,数列{}n a 的前n 项为n S ,则()A.12nk += B.133n n a a +=- C.()2332n a n n =+ D.()133234n n S n +=+-第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.如图所示,在平行六面体1111ABCD A B C D -中,AB a =,AD b =,1AA c = ,点M 是11A D 的中点,点N 是1CA 上的点,且115CN CA = ,若MN xa yb zc =++,则x y z ++=___________.14.天气预报预测在今后的三天中,每天下雨的概率都为60%.现采用随机模拟的方法估计这三天中恰有两天下雨的概率,用1,2,3,4,5,6表示下雨,7,8,9,0表示不下雨.用计算机产生了10组随机数为180,792,454,417,165,809,798,386,196,206.据此估计这三天中恰有两天下雨的概率近似为____________.15.等差数列{}{},n n a b的前项和分别为n S 和n T ,若2132n n S n T n +=+,则31119715a a ab b ++=+_____.16.已知过点()1,1P 的直线l 与双曲线C :()222211,0x y a b a b-=≥>交于A 、B 两点,若点P 是线段AB 的中点,则双曲线C 的离心率取值范围是____________.四、解答题(本大题共6道小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.已知直线l 经过点()3,4P .(1)若向量()1,2a =-是直线l 的一个方向向量,求直线l 的方程;(2)若直线l 在两坐标轴上的截距相等,求直线l 的方程.18.已知圆C :()22222320x x y y λλλ+-+++-=.(1)当2λ=时,求直线y x =被圆C 截得的弦长;(2)若直线y x =与圆C 没有公共点,求λ的取值范围.19.已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .20.如图,在四棱锥P ABCD -中,PB ⊥平面,2,33ABCD PB AC AD PA BC =====.(1)证明:平面PAC ⊥平面PBC .(2)若AD AB ⊥,求平面PBC 与平面PAD 夹角的余弦值.21.甲,乙两人进行围棋比赛,采取积分制,规则如下:每胜1局得1分,负1局或平局都不得分,积分先达到2分者获胜;若第四局结束,没有人积分达到2分,则积分多的一方获胜;若第四周结束,没有人积分达到2分,且积分相等,则比赛最终打平.假设在每局比赛中,甲胜的概率为12,负的概率为13,且每局比赛之间的胜负相互独立.(1)求第三局结束时乙获胜的概率;(2)求甲获胜的概率.22.已知(2,0)A -是椭圆2222:1(0)x yC a b a b+=>>的左顶点,过点(1,0)D 的直线l 与椭圆C 交于P Q ,两点(异于点A ),当直线l 的斜率不存在时,3PQ =.(1)求椭圆C 的方程;(2)求APQ △面积的取值范围.石家庄市2023~2024学年度第一学期期末教学质量检测高二数学(时间120分钟,满分150)注意事项:本试卷分为第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,答第I 卷前,考生务必将自己的姓名、准考证号、考试科目写在答题卡上.第I 卷(选择题,共60分)一、单项选择题(本大题共8个小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线10+-=的倾斜角为()A.30°B.60°C.120°D.150°【答案】C 【解析】【分析】化成斜截式方程得斜率为k =.【详解】将直线一般式方程化为斜截式方程得:y =+,所以直线的斜率为k =,所以根据直线倾斜角与斜率的关系得直线的倾斜角为120︒.故选:C2.空间直角坐标系O xyz -中,平行四边形ABCD 的,,A B C 三点坐标分别为()1,2,3A ,()2,1,0B -,()1,2,0C -,则D 的坐标为()A.()0,1,3-- B.()2,5,3- C.()4,1,3- D.()3,2,0-【答案】B 【解析】【分析】利用在平行四边形ABCD 中有AB DC =,计算即可.【详解】结合题意:设D 的坐标为(),,x y z ,因为()1,2,3A ,()2,1,0B -,()1,2,0C -,所以()1,3,3AB =--,()1,2,DC x y z =---- ,因为在平行四边形ABCD 中有AB DC =,所以11323x y z =--⎧⎪-=-⎨⎪-=-⎩,解得253x y z =-⎧⎪=⎨⎪=⎩,所以D 的坐标为()2,5,3-.故选:B.3.若圆心坐标为(2,2)的圆被直线0x y +=截得的弦长为)A.224480x y x y +---=B.224480x y x y +++-=C.2244160x y x y +---=D.224440x y x y ++++=【答案】A 【解析】【分析】根据题意,设圆的半径为r ,求出圆心到直线0x y +=的距离,由直线与圆的位置关系可得r 的值,即可得圆的标准方程,变形可得答案.【详解】根据题意,设圆的半径为r ,圆心坐标为()2,2,到直线0x y +=的距离d ==,该圆被直线0x y +=截得的弦长为22216r =+=,则圆的方程为22221)6()(x y -+-=,变形可得224480x y x y +---=,故选:A.4.设{}n a 是等比数列,且1231a a a ++=,234+2a a a +=,则678a a a ++=()A.12 B.24 C.30D.32【答案】D 【解析】【分析】根据已知条件求得q 的值,再由()5678123a a a qa a a ++=++可求得结果.【详解】设等比数列{}n a 的公比为q ,则()2123111a a a a q q++=++=,()232234111112a a a a q a q a q a q q q q ++=++=++==,因此,()5675256781111132a a a a q a q a q a q q q q++=++=++==.故选:D.【点睛】本题主要考查等比数列基本量的计算,属于基础题.5.将一颗骰子先后抛掷2次,观察向上的点数,将第一次向上的点数记为m ,第二次向上的点数记为n ,则2n m n <≤的概率等于()A.56B.16C.34D.14【答案】D 【解析】【分析】根据题意,利用列举法求得所求事件中所包含的基本事件的个数,结合古典概型的概率计算公式,即可求解.【详解】由题意,将一颗骰子先后抛掷2次,第一次所得点数m ,第二次所得点数n ,记为(),m n .1,2,3,4,5,6m =,1,2,3,4,5,6n =,共有6636⨯=种结果,其中满足2n m n <≤的有:(2,1),(3,2),(4,2),(4,3),(5,3),(5,4)(6,3),(6,4),(6,5),,共有9种结果,由古典概型的概率计算公式,可得满足2n m n <≤的概率为91364P ==.故选:D.6.若抛物线22(0)y px p =>上的点(0A x 到其焦点的距离是A 到y 轴距离的3倍,则p 等于A.12B.1C.32D.2【答案】D 【解析】【分析】根据抛物线的定义及题意可知3x 0=x 0+2p,得出x 0求得p ,即可得答案.【详解】由题意,3x 0=x 0+2p ,∴x 0=4p ∴222p =∵p >0,∴p=2.故选D .【点睛】本题主要考查了抛物线的定义和性质.考查了考生对抛物线定义的掌握和灵活应用,属于基础题.7.斐波那契数列因意大利数学家斐波那契以兔子繁殖为例引入,故又称为“兔子数列”,即1,1,2,3,5,8,13,21,34,55,89,144,233,….在实际生活中,很多花朵(如梅花、飞燕草、万寿菊等)的瓣数恰是斐波那契数列中的数,斐波那契数列在现代物理及化学等领域也有着广泛的应用.斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则35720211a a a a ++++⋅⋅⋅+是斐波那契数列{}n a 中的第()项A.2020 B.2021C.2022D.2023【答案】C 【解析】【分析】根据题意,结合121a a ==,()*21N n n n a a a n ++=+∈,利用累加法,即可求解.【详解】由斐波那契数列{}n a 满足:121a a ==,()*21N n n n a a a n ++=+∈,则2231375720520211a a a a a a a a a =+++++++++⋅⋅⋅+ 45720216792021a a a a a a a a =++++=++++ 8920212022a a a a =+++== .故选:C.8.在三棱锥A BCD -中,3AB AC BD CD ====,4AD BC ==,E 是BC 的中点,F 满足14AF AD =,则异面直线AE ,CF 所成角的余弦值为()A.15B.5C.10D.10【答案】D 【解析】【分析】根据三棱锥A BCD -的对棱相等可以补成长方体AGBI HCJD -,计算长方体的长宽高,建立空间直角坐标系,利用空间向量的坐标运算即可求得异面直线AE ,CF 所成角的余弦值.【详解】解:三棱锥A BCD -中,由于3AB AC BD CD ====,4AD BC ==,则三棱锥A BCD -可以补在长方体AGBI HCJD -,则设长方体的长宽高分别为,,AG a AI b AH c ===,则2222222229,9,16a c AC a b AB b c AD +==+==+==,解得1,a b c ===,如图以C 为原点,,,CH CJ CG 分别为,,x y z轴建立空间直角坐标系,则((()()(1,0,,0,,0,0,0,1,,0,A B C D E ,所以(110,0,,4422AF AD ⎛⎫==-=- ⎪ ⎪⎝⎭,则(AE =-,(1,0,0,,1,,2222CF CA AF ⎛⎫⎛⎫=+=+-= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,所以cos ,10AE CF AE CF AE CF⋅===-⋅,则异面直线AE ,CF所成角的余弦值为10.故选:D .二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给的四个选项中,有多项符合题目要求,全部选对得5分,选对但不全的得2分,有选错的得0分.)9.袋子中有六个大小质地相同的小球,编号分别为1,2,3,4,5,6,从中随机摸出两个球,设事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,事件C 为摸出的小球编号恰好只有一个奇数,则下列说法全部正确的是()A.事件A 与B 是互斥事件B.事件A 与C 是互斥事件C.事件B 与C 是对立事件D.事件A 与B 相互独立【答案】BC 【解析】【分析】由题意可知摸出的两球的编号可能都是奇数或都是偶数或恰好一个奇数一个偶数,共三种情况,由此可判断,,A B C 之间的互斥或对立的关系,再由古典概型求出(),(),()P AB P A P B 判断是否相互独立可得答案.【详解】由题意知,事件A 为摸出的小球编号都为奇数,事件B 为摸出的小球编号之和为偶数,即摸出的小球编号都为奇数或都为偶数,故事件A ,B 不互斥,故A 错误;事件C 为摸出的小球编号恰好只有一个奇数,即摸出的两球编号为一个奇数和一个偶数,其反面为摸出的小球编号都为奇数或都为偶数,故B ,C 是对立事件,故C 正确;事件A ,C 不会同时发生,故A ,C 是互斥事件,故B 正确;每次摸出两个小球,所有基本事件为:()()()()()()()()1,2,1,3,1,4,1,5,1,6,2,3,2,4,2,5,()()()()2,6,3,4,3,5,3,6,()()()4,5,4,6,5,6,共有15个,所以由古典概型可得31()155P A ==,62()155P B ==,31()155P AB ==,所以()()()P AB P A P B ≠,故事件A 与B 不相互独立,故D 错误.故选:BC.10.已知椭圆C :22162x y +=的左右焦点分别为1F ,2F ,P 是椭圆C 上的动点,点()1,1A ,则下列结论正确的是()A.12PF PF += B.12PF F △面积的最大值是C.椭圆C 的离心率为3D.1PF PA +最小值为-【答案】ACD 【解析】【分析】A 选项,根据椭圆定义求出答案;B 选项,数形结合得到当P 在上顶点或下顶点时,12PF F △面积最大,求出最大值;C 选项,由ce a=直接求解即可;D 选项,作出辅助线,结合椭圆定义得到()12PF PA PA PF +=+-,当2,,P A F 三点共线且A 在2PF 之间时,2PA PF -取得最小值,得到答案.【详解】A 选项,由题意得2a b c ====,由椭圆定义可得122PF PF a +==A 正确;B 选项,当P 在上顶点或下顶点时,12PF F △面积最大,最大值为1212F F b bc ⋅==B 错误;C 选项,离心率3c e a ===,C 正确;D 选项,因为2211162+<,所以点()1,1A 在椭圆内,连接2PF ,由椭圆定义可知12PF PF +=,故12PF PF =,故()122PF PA PF PA PA PF +=-+=-,当2,,P A F 三点共线且A 在2PF 之间时,2PA PF -取得最小值,最小值为2AF -==,所以1PF PA +最小值为D 正确.故选:ACD11.已知向量()1,2,2a = ,(2,1,1)b =-,则下列说法不正确的是()A.向量(2,4,4)--与向量,a b共面B.向量b 在向量a上的投影向量为244,,999⎛⎫⎪⎝⎭C.若两个不同的平面,αβ的法向量分别是,a b,则αβ⊥D.若平面α的法向量是a ,直线l 的方向向量是b,则直线l 与平面α所成角的余弦值为13【答案】ACD 【解析】【分析】根据空间向量的基本定理,可判定A 错误;根据投影向量的求法,可判定B 正确;根据20a b ⋅=≠,可判定C 错误;根据线面角的空间的向量求法,可判定D 错误.【详解】对于A 中,设()(2,4,4)1,2,2(2,1,1)x y --=+-,可得222424x y x y x y -=-⎧⎪+=-⎨⎪+=⎩,此时,方程组无解,所以向量(2,4,4)--与向量,a b不共面,所以A 错误;对于B 中,由向量()1,2,2,(2,1,1)a b ==-,可得向量b 在向量a 上的投影向量为21244(1,2,2),,33999a ba aa ⋅⎛⎫⋅=⨯⋅= ⎪⎝⎭,所以B 正确;对于C 中,若两个不同的平面,αβ的法向量分别是,a b,因为20a b ⋅=≠ ,所以a 与b不垂直,所以平面α与平面β不垂直,所以C 错误;对于D 中,若平面α的法向量是a ,直线l 的方向向量是b,设直线l 与平面α所成角为θ,其中π02θ≤≤,则·sin cos ,a b a b a b θ===,所以cos 9θ==,所以D 错误.故选:ACD.12.在数学课堂上,教师引导学生构造新数列:在数列的每相邻两项之间插入此两项的和,形成新的数列,再把所得数列按照同样的方法不断构造出新的数列.将数列1,2进行构造,第1次得到数列1,3,2;第2次得到数列1,4,3,5,2;…;第()*n n ∈N次得到数列1,123,,,,k x x x x ,2;…记1212n k a x x x =+++++ ,数列{}n a 的前n 项为n S ,则()A.12n k +=B.133n n a a +=- C.()2332n a n n =+ D.()133234n n S n +=+-【答案】ABD 【解析】【分析】根据数列的构造方法先写出前面几次数列的结果,寻找规律,再进行推理运算即可.【详解】由题意可知,第1次得到数列1,3,2,此时1k =第2次得到数列1,4,3,5,2,此时3k =第3次得到数列1,5,4,7,3,8,5,7,2,此时7k =第4次得到数列1,6,5,9,4,11,7,10,3,11,8,13,5,12,7,9,2,此时15k =第n 次得到数列1,123,,,,k x x x x ,2此时21n k =-所以12n k +=,故A 项正确;结合A 项中列出的数列可得:123433339339273392781a a a a =+⎧⎪=++⎪⎨=+++⎪⎪=++++⎩123333(*)n n a n N ⇒=++++∈ 用等比数列求和可得()33132n na -=+则()121331333322n n n a +++--=+=+23322n +=+又()3313333392n n a ⎡⎤-⎢⎥-=+-=⎢⎥⎣⎦22393332222n n +++--=+所以133n n a a +=-,故B 项正确;由B 项分析可知()()331333122n nn a -=+=+即()2332n a n n ≠+,故C 项错误.123n nS a a a a =++++ 23133332222n n+⎛⎫=++++ ⎪⎝⎭ ()231331322nn --=+2339424n n +=+-()133234n n +=+-,故D 项正确.故选:ABD.【点睛】本题需要根据数列的构造方法先写出前面几次数列的结果,寻找规律,对于复杂问题,著名数学家华罗庚指出:善于“退”,足够的“退”,退到最原始而不失重要的地方,是学好数学的一个诀窍.所以对于复杂问题我们应该先足够的退到我们最容易看清楚的地方,认透了,钻深了,然后再上去,这就是以退为进的思想.第Ⅱ卷(非选择题,共90分)三、填空题(本大题共4小题,每小题5分,共20分)13.如图所示,在平行六面体1111ABCD A B C D -中,AB a =,AD b =,1AA c = ,点M 是11A D 的中点,点N 是1CA 上的点,且115CN CA = ,若MN xa yb zc =++,则x y z ++=___________.【答案】310##0.3【解析】【分析】利用空间向量的加减及数乘运算,以{},,a b c为基底,用基向量表示MN ,再空间向量基本定理待定系数即可.【详解】在平行六面体1111ABCD A B C D -中,因为点M 是11A D 的中点,点N 是1CA 上的点,所以111114152MN A N A M A C A D =-=- ()()11111141415252AC AA A D AB AD AA A D =--=+--()14152AB AD AA AD =+--14345105AB AD AA =+-4345105a b c =+- .又MN xa yb zc =++ ,由空间向量基本定理得,434,,5105x y z ===-,则310x y z ++=.故答案为:310.14.天气预报预测在今后的三天中,每天下雨的概率都为60%.现采用随机模拟的方法估计这三天中恰有两天下雨的概率,用1,2,3,4,5,6表示下雨,7,8,9,0表示不下雨.用计算机产生了10组随机数为180,792,454,417,165,809,798,386,196,206.据此估计这三天中恰有两天下雨的概率近似为____________.【答案】25##0.4【解析】【分析】分析数据得到三天中恰有两天下雨的有417,386,196,206,得到答案.【详解】10组随机数中,表示三天中恰有两天下雨的有417,386,196,206,故这三天中恰有两天下雨的概率近似为42105=.故答案为:2515.等差数列{}{},n n a b的前项和分别为n S 和n T ,若2132n n S n T n +=+,则31119715a a ab b ++=+_____.【答案】129130【解析】【分析】利用等差数列前n 项和公式,将题目所求的式子中的,n n a b 有关的式子,转化为,n n S T 有关的式子来求解.【详解】原式11111212111111212132333322111292222223212130a a a a Sb b b b T +⨯+==⋅=⋅=⋅=⋅=+⨯+.【点睛】本小题主要考查了等差数列通项公式的性质,考查了等差数列前n 项和公式,考查了通项公式和前n 项和公式的转化.对于等比数列{}n a 来说,若m n p q +=+,则有m n p q a a a a +=+,而前n 项和公式()12n n a a n S +⋅=,可以进行通项和前n 项和的相互转化.属于基础题.16.已知过点()1,1P 的直线l 与双曲线C :()222211,0x y a b a b-=≥>交于A 、B 两点,若点P 是线段AB 的中点,则双曲线C 的离心率取值范围是____________.【答案】(【解析】【分析】利用点差法得到22l b k a=,根据题意和渐近线方程得到l b k a <,故01b a <<,从而求出离心率的取值范围.【详解】设()()1122,,,A x y B x y ,则2222221122222222b x a y a b b x a y a b ⎧-=⎨-=⎩,两式相减得()()()()2212121212b x x x x a y y y y +-=+-,若12x x =,则AB 的中点在x 轴上,不合要求,若12x x =-,则AB 的中点在y 轴上,不合要求,所以2121221212y y y y b x x x x a-+⋅=-+,因为()1,1P 为AB 的中点,所以1212212y y x x +==+,故22l b k a=,因为()222211,0x y a b a b-=≥>的渐近线方程为b y x a =±,要想直线l 与双曲线C :()222211,0x y a b a b -=≥>交于A 、B 两点,则l b k a <,即22b ba a <,解得01b a <<,所以离心率(c e a ==.故答案为:(【点睛】直线与圆锥曲线相交涉及中点弦问题,常用点差法,该法计算量小,模式化强,易于掌握,若相交弦涉及AM MB λ=的定比分点问题时,也可以用点差法的升级版—定比点差法,解法快捷.四、解答题(本大题共6道小题,共70分.解答应写出文字说明,证明过程或演算步骤.)17.已知直线l 经过点()3,4P .(1)若向量()1,2a =-是直线l 的一个方向向量,求直线l 的方程;(2)若直线l 在两坐标轴上的截距相等,求直线l 的方程.【答案】(1)2100x y +-=;(2)70x y +-=或430x y -=.【解析】【分析】(1)根据给定的方向向量,求出直线的斜率,利用直线的点斜式方程求解即得.(2)由已知,按截距是否为0,结合直线的截距式方程分类求解即得.【小问1详解】由向量()1,2a =-是直线l 的一个方向向量,得直线l 的斜率2k =-,又l 经过点()3,4P ,则l 方程为:()423y x -=--,即:2100x y +-=,所以直线l 的方程为2100x y +-=.【小问2详解】依题意,当直线l 过原点时,而直线l 又过点()3,4P ,则直线l 的方程为43y x =,即430x y -=;当直线l 不过原点时,设直线l 的方程为x y a +=,则有34a +=,解得7a =,即直线l 的方程为70x y +-=,所以直线l 的方程为70x y +-=或430x y -=.18.已知圆C :()22222320x x y y λλλ+-+++-=.(1)当2λ=时,求直线y x =被圆C 截得的弦长;(2)若直线y x =与圆C 没有公共点,求λ的取值范围.【答案】(1)(2)11,22⎛+⎝⎭【解析】【分析】(1)求出圆心和半径,得到圆心到直线的距离,利用垂径定理求出弦长;(2)求出圆心和半径,根据圆心()2,λλ--到y x =的距离大于半径得到不等式,求出答案.【小问1详解】当2λ=时,圆C :22410x y y ++-=,圆心()0,2C -,半径r =,所以圆心到直线的距离d ==设直线与圆交于A 、B 两点,则弦长AB ==故直线y x =被圆C截得的弦长为【小问2详解】圆C 方程为()()2222221x y λλλλ+-++=⎡-⎤⎣+⎦,22012221122λλλ⎛⎫-+=- ⎪+⎭>⎝恒成立,因为直线y x =与圆C 没有公共点,圆心()2,λλ--到y x =>所以22221λλ>-+,即22210λλ--<,解得:1122λ-<<,故λ的取值范围是11,22⎛+ ⎝⎭.19.已知{a n }是各项均为正数的等比数列,且121236,a a a a a +==.(I)求数列{a n }通项公式;(II){b n }为各项非零的等差数列,其前n 项和S n ,已知211n n n S b b ++=,求数列n n b a ⎧⎫⎨⎬⎩⎭的前n 项和n T .【答案】(Ⅰ)2n n a =.(Ⅱ)2552n nn T +=-.【解析】【详解】试题分析:(Ⅰ)列出关于1,a q 的方程组,解方程组求基本量;(Ⅱ)用错位相减法求和.试题解析:(Ⅰ)设{}n a 的公比为q ,由题意知:22111(1)6,a q a q a q +==.又0n a >,解得:12,2a q ==,所以2n n a =.(Ⅱ)由题意知:121211(21)()(21)2n n n n b b S n b +++++==+,又2111,0,n n n n S b b b +++=≠所以21n b n =+,令nn nb c a =,则212n nn c +=,因此12231357212122222n n n n n n T c c c --+=+++=+++++ ,又234113572121222222n n n n n T +-+=+++++ ,两式相减得2111311121222222n n n n T -++⎛⎫=++++- ⎪⎝⎭ 所以2552n nn T +=-.【考点】等比数列的通项,错位相减法求和.【名师点睛】(1)等比数列运算问题的一般求法是设出首项a 1和公比q ,然后由通项公式或前n 项和公式转化为方程(组)求解.等比数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,q ,n ,S n ,知其中三个就能求另外两个,体现了方程的思想.(2)用错位相减法求和时,应注意:在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”,以便下一步准确写出“S n -qS n ”的表达式,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.20.如图,在四棱锥P ABCD -中,PB ⊥平面,2,33ABCD PB AC AD PA BC =====.(1)证明:平面PAC ⊥平面PBC .(2)若AD AB ⊥,求平面PBC 与平面PAD 夹角的余弦值.【答案】(1)证明见解析(2)4515【解析】【分析】(1)先证明线面垂直,再应用面面垂直判定定理证明即可;(2)应用空间向量法求出二面角余弦.【小问1详解】因为PB ⊥平面ABCD ,所以PB AB ⊥.在Rt PAB中可求得AB ==在ABC 中,因为1,2BC AC ==,所以2225AC BC AB +==,所以ACBC ⊥.又PB ⊥平面ABCD ,所以AC PB ⊥.因为PB BC B ⋂=,PB BC ⊂,平面PBC ,所以AC ⊥平面PBC .又AC ⊂平面PAC ,所以平面PAC ⊥平面PBC .【小问2详解】因为,AB AD PB ⊥⊥平面ABCD ,所以分别以,,AD BA BP的方向为,,x y z轴的正方向,建立如图所示的空间直角坐标系,则()()()()0,2,,2,0,0,2,0,0,0,55P C D AD AP ⎛⎫-==- ⎪ ⎪⎝⎭.由(1)知AC ⊥平面PBC ,所以,,055AC ⎛⎫=- ⎪ ⎪⎝⎭ 为平面PBC 的一个法向量.设平面PAD 的法向量为(),,n x y z =r,可得2020x z =⎧⎪⎨+=⎪⎩,令2y =,得(n =.设平面PBC 与平面PAD 的夹角为θ,则cos cos ,15n AC n AC n ACθ⋅===.21.甲,乙两人进行围棋比赛,采取积分制,规则如下:每胜1局得1分,负1局或平局都不得分,积分先达到2分者获胜;若第四局结束,没有人积分达到2分,则积分多的一方获胜;若第四周结束,没有人积分达到2分,且积分相等,则比赛最终打平.假设在每局比赛中,甲胜的概率为12,负的概率为13,且每局比赛之间的胜负相互独立.(1)求第三局结束时乙获胜的概率;(2)求甲获胜的概率.【答案】(1)427(2)265432【解析】【分析】(1)对乙来说共有两种情况:(胜,不胜,胜),(不胜,胜,胜),根据独立事件的乘法公式即可求解.(2)以比赛结束时的场数进行分类,在每一类中根据相互独立事件的乘法公式即可求解.【小问1详解】设事件A 为“第三局结束乙获胜”由题意知,乙每局获胜的概率为13,不获胜的概率为23.若第三局结束乙获胜,则乙第三局必定获胜,总共有2种情况:(胜,不胜,胜),(不胜,胜,胜).故()121211433333327P A =⨯⨯+⨯⨯=【小问2详解】设事件B 为“甲获胜”.若第二局结束甲获胜,则甲两局连胜,此时的概率1111224P =⨯=.若第三局结束甲获胜,则甲第三局必定获胜,总共有2种情况:(胜,不胜,胜),(不胜,胜,胜).此时的概率211111112222224P =⨯⨯+⨯⨯=.若第四局结束甲得两分获胜,则甲第四局必定获胜,前三局为1胜2平或1胜1平1负,总共有9种情况:(胜,平,平,胜),(平,胜,平,胜),(平,平,胜,胜),(胜,平,负,胜),(胜,负,平,胜),(平,胜,负,胜),(负,胜,平,胜),(平,负,胜,胜),(负,平,胜,胜).此时的概率311111111562662263248P =⨯⨯⨯⨯3+⨯⨯⨯⨯=若第四局结束甲以积分获胜,则乙的积分为0分,总共有4种情况:(胜,平,平,平),(平,胜,平,平),(平,平,胜,平),(平,平,平,胜).此时的概率41111142666108P =⨯⨯⨯⨯=故()3124265432P B P P P P =+++=22.已知(2,0)A -是椭圆2222:1(0)x yC a b a b+=>>的左顶点,过点(1,0)D 的直线l 与椭圆C 交于P Q ,两点(异于点A ),当直线l 的斜率不存在时,3PQ =.(1)求椭圆C 的方程;(2)求APQ △面积的取值范围.【答案】(1)22143x y +=;(2)90,2⎛⎤ ⎥⎝⎦.【解析】【分析】(1)根据给定条件,确定椭圆C 过点3(1,)2,再代入求解作答.(2)设出直线l 的方程,与椭圆C 的方程联立,结合韦达定理求出APQ △面积的函数关系,再利用对勾函数的性质求解作答.【小问1详解】依题意,2a =,当直线l 的斜率不存在时,由3PQ =,得直线l 过点3(1,)2,于是219144b+=,解得23b =,所以椭圆C 的方程为22143x y +=.【小问2详解】依题意,直线l 不垂直于y 轴,设直线l 的方程为()()11221,,,,x ty P x y Q x y =+,由221143x ty x y =+⎧⎪⎨+=⎪⎩消去x 整理得()2234690t y ty ++-=,则12122269,3434t y y y y t t --+==++,APQ △的面积121||||2S AD y y =-=218134t ==++,令1u =≥,对勾函数13y u u=+在[1,)+∞上单调递增,则134u u+≥,即4≥,从而189012<≤+,当且仅当0t =时取等号,故APQ △面积的取值范围为90,2⎛⎤ ⎥⎝⎦.【点睛】思路点睛:圆锥曲线中的几何图形面积范围或最值问题,可以以直线的斜率、横(纵)截距、图形上动点的横(纵)坐标为变量,建立函数关系求解作答.。
德阳高2023级2024年秋季第一学月考试数学试题(答案在最后)考试范围:必修二第十章、选修第一册第一章;考试时间:120分钟;命题人:高二数学组注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)一、单选题1.已知集合{}2,0,1,3A =-,{}0,2,3B =,则A B = ()A.{}2,1- B.{}2,1,2- C.{}0,3 D.{}2,0,1,2,3-【答案】C 【解析】【分析】运用交集性质即可得.【详解】由{}2,0,1,3A =-,{}0,2,3B =,则{}0,3A B ⋂=.故选:C.2.2(2i)4z =+-在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【答案】B 【解析】【分析】将复数化为标准形式再根据复数的几何意义即可确定.【详解】2(2i)414i z =+-=-+,则z 在复平面内对应的点位于第二象限,故选:B.3.某实验中学共有职工150人,其中高级职称的职工15人,中级职称的职工45人,一般职员90人,现采用分层抽样抽取容量为30的样本,则抽取的高级职称、中级职称、一般职员的人数分别为()A.5、10、15B.3、9、18C.3、10、17D.5、9、16【答案】B 【解析】【分析】利用分层抽样的定义求出对应人数,得到答案.【详解】抽取的高级职称人数为15303150⨯=,中级职称人数为45309150⨯=,一般职员的人数为903018150⨯=,故抽取的高级职称、中级职称、一般职员的人数分别为3、9、18.故选:B4.已知一组数据:4,6,7,9,11,13,则这组数据的第50百分位数为()A .6B.7C.8D.9【答案】C 【解析】【分析】借助百分位数定义计算即可得.【详解】由60.53⨯=,故这组数据的中位数为7982+=.故选:C.5.从1,2,3,4,5中任取2个不同的数,取到的2个数之和为偶数的概率为()A.13B.23C.12D.25【答案】D 【解析】【分析】应用列举法求古典概型的概率即可.【详解】任取2个不同数可能有(1,2)、(1,3)、(1,4)、(1,5)、(2,3)、(2,4)、(2,5)、(3,4)、(3,5)、(4,5),共10种情况,其中和为偶数的情况有(1,3)、(1,5)、(2,4)、(3,5),共4种情况,所以取到的2个数之和为偶数的概率为42105=.故选:D6.已知空间中非零向量a ,b ,且1a = ,2b = , 60a b =,,则2a b - 的值为()A.1B.C.2D.4【答案】C 【解析】【分析】根据向量的模长公式即可求解.【详解】因为2222222(2)4444cos a b a b a a b b a a b a b b -=-=-⋅+=- ,14412442=-⨯⨯⨯+=,所以22a b -= .故选:C7.已知空间向量()1,2,3m = ,空间向量n 满足//m n u r r 且7⋅=m n ,则n =()A.13,1,22⎛⎫ ⎪⎝⎭B.13,1,22⎛⎫--- ⎪⎝⎭C.31,1,22⎛⎫--- ⎪⎝⎭ D.31,1,22⎛⎫⎪⎝⎭【答案】A 【解析】【分析】由空间向量共线的坐标表示与数量积的坐标表示求解即可.【详解】∵()1,2,3m = ,且空间向量n满足//m n u r r ,∴可设(),2,3n m λλλλ==,又7⋅= m n ,∴1233147λλλλ⨯+⨯+⨯==,得12λ=.∴113,1,222n m ⎛⎫== ⎪⎝⎭,故A 正确.故选:A.8.已知四棱柱ABCD -A 1B 1C 1D 1的底面是边长为2的正方形,侧棱与底面垂直,若点C 到平面AB 1D 1的距离为5,则直线1B D 与平面11AB D 所成角的余弦值为()A.B.3710C.1010D.10【答案】A 【解析】【分析】先由等面积法求得1AA 的长,再以1A 为坐标原点,建立如图所示的空间直角坐标系1A xyz -,运用线面角的向量求解方法可得答案.【详解】如图,连接11A C 交11B D 于O 点,过点C 作CH AO ⊥于H ,则CH ⊥平面11AB D,则5CH =,设1AA a =,则AO CO AC ===,则根据三角形面积得1122AOC S AO CH AC ∆=⨯⨯=⨯,代入解得a =以1A 为坐标原点,建立如图所示的空间直角坐标系1A xyz -.则1111(2,0,0),(0,2,0),(0,2,2(2,0,A B D D AD AB =-=-,1(B D =- ,设平面11AB D 的法向量为(n x =,y ,)z ,则1100n AD n AB ⎧⋅=⎨⋅=⎩,即2020y x ⎧-=⎪⎨-=⎪⎩,令x =,得n =.11110cos ,10||||B D n B D n B D n ⋅〈〉==,所以直线1B D 与平面1111D C B A故选:A.二、多选题9.设,A B 是两个概率大于0的随机事件,则下列结论正确的是()A.若A 和B 互斥,则A 和B 一定相互独立B.若事件A B ⊆,则()()P A P B ≤C.若A 和B 相互独立,则A 和B 一定不互斥D.()()()P A B P A P B <+ 不一定成立【答案】BC 【解析】【分析】对于AC :根据互斥事件和独立事件分析判断即可;对于B :根据事件间关系分析判断即可;对于D :举反例说明即可.【详解】由题意可知:()()0,0P A P B >>,对于选项A :若A 和B 互斥,则()0P AB =,显然()()()P AB P A P B ≠,所以A 和B 一定不相互独立,故A 错误;对于选项B :若事件A B ⊆,则()()P A P B ≤,故B 正确;对于选项C :若A 和B 相互独立,则()()()0P AB P A P B =>,所以A 和B 一定不互斥,故C 正确;对于选项D :因为()()()()P A B P A P B P AB =+- ,若A 和B 互斥,则()0P AB =,则()()()P A B P A P B =+ ,故D 错误;故选:BC.10.如图,点,,,,A B C M N 是正方体的顶点或所在棱的中点,则下列各图中满足//MN 平面ABC 的是()A. B.C. D.【答案】ACD 【解析】【分析】结合题目条件,根据线面平行的判断定理,构造线线平行,证明线面平行.【详解】对A :如图:连接EF ,因为,M N 为正方体棱的中点,所以//MN EF ,又//EF AC ,所以//MN AC ,AC ⊂平面ABC ,MN ⊄平面ABC ,所以//MN 平面ABC .故A 正确;对B :如图:因为,,,,A B C M N 是正方体棱的中点,所以//MN GH ,//BC EF ,//GH EF ,所以//BC MN ,同理://AB DN ,//AM CD .所以,,,,A B C M N 5点共面,所以//MN 平面ABC 不成立.故B 错误;对C :如图:因为,B C 是正方体棱的中点,所以//BC EF ,//MN EF ,所以//BC MN .⊂BC 平面ABC ,MN ⊄平面ABC ,所以//MN 平面ABC .故C 正确;对D :如图:因为,.B C M 为正方体棱的中点,连接ME 交AC 于F ,连接BF ,则BF 为MNE 的中位线,所以//BF MN ,BF ⊂平面ABC ,MN ⊄平面ABC ,所以//MN 平面ABC .故D 正确.故选:ACD11.如图,在平行四边形ABCD 中,1AB =,2AD =,60A ∠=︒,沿对角线BD 将△ABD 折起到△PBD 的位置,使得平面PBD ⊥平面BCD ,连接PC ,下列说法正确的是()A.平面PCD ⊥平面PBDB.三棱锥P BCD -外接球的表面积为10πC.PD 与平面PBC 所成角的正弦值为34D.若点M 在线段PD 上(包含端点),则△BCM 面积的最小值为217【答案】ACD 【解析】【分析】结合线线垂直,线面垂直与面面垂直的相互转化关系检验A,根据外接球的球心位置即可结合三角形的边角关系求解半径,可判断B,结合空间直角坐标系及空间角及空间点到直线的距离公式检验CD .【详解】BCD △中,1CD =,2BC =,60A ∠=︒,所以3BD =,故222BD CD BC +=,所以BD CD ⊥,因为平面PBD ⊥平面BCD ,且平面PBD 平面BCD BD =,又BD CD ⊥,CD ⊂平面BCD 所以CD ⊥平面PBD ,CD ⊂平面PCD ,所以平面PCD ⊥平面BPD ,故A 正确;取BC 的中点为N ,PB 中点为Q ,过N 作12ON //PB,ON PB =,由平面PBD ⊥平面BCD ,且平面PBD 平面BCD BD =,又BD PB ⊥,PB ⊂平面PBD ,故PB ⊥平面BCD ,因此ON ⊥平面BCD ,由于BCD △为直角三角形,且N 为斜边中点,所以OB OC OD ==,又12ON //PB,ON PB =,所以QB ON ,BQ //ON =,因此OP OB =,因此O 为三棱锥P BCD -外接球的球心,且半径为2OB ==,故球的表面积为54π=5π4´,故B错误,以D为原点,联立如图所示的空间直角坐标系,则B 0,0),(0C ,1,0),P ,0,1),因为(0BP = ,0,1),(BC =,1,0),)01DP ,= ,设平面PBC 的法向量为(),,m x y z =,所以0000z m BP y m BC ⎧=⎧⋅=⎪⎪⇒⎨⎨+=⎪⋅=⎪⎩⎩,取x =)30m ,=所以cos ,4||||m DP m DP m DP⋅<>==,故PD 与平面PBC所成角的正弦值为4,故C 正确,因为M 在线段PD上,设M ,0,)a,则MB=,0,)a -,所以点M 到BC的距离d ==,当37a =时,d 取得最小值217,此时MBC ∆面积取得最小值12121277BC ⨯=,D 正确.故选:ACD.第Ⅱ卷(选择题)三、填空题12.如果从甲口袋中摸出一个红球的概率是14,从乙口袋中摸出一个红球的概率是13,现分别从甲乙口袋中各摸出1个球,则2个球都是红球的概率是________.【答案】112【解析】【分析】根据相互独立事件概率乘法公式求解.【详解】从甲口袋中摸出一个红球的概率是14,从乙口袋中摸出一个红球的概率是13,现分别从甲乙口袋中各摸出1个球,则2个球都是红球的概率1114312P =⨯=.故答案为:112.13.已知正方体1111ABCD A B C D -的棱长为2,点E 是11A B 的中点,则点A 到直线BE 的距离是__________.【答案】5【解析】【分析】以D 为原点,以1,,DA DC DD的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系,利用点到直线的向量公式可得.【详解】以D 为原点,以1,,DA DC DD的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系.则()()()2,0,0,2,2,0,2,1,2A B E ,所以()()0,2,0,0,1,2BA BE =-=-,记与BE同向的单位向量为u ,则5250,,55u ⎛=-⎝⎭,所以,点A 到直线BE 的距离455d ===.故答案为:514.如图,在四棱锥P ABCD -中,PA ⊥平面ABCD ,底面ABCD 为正方形,2PA AB ==,点,E F 分别为,CD CP 的中点,点T 为PAB 内的一个动点(包括边界),若CT ∥平面AEF ,则点T 的轨迹的长度为__________.【答案】53153【解析】【分析】记AB 的中点为G ,点T 的轨迹与PB 交于点H ,则平面//CHG 平面AEF ,建立空间直角坐标系,利用CH垂直于平面AEF ,的法向量确定点H 的位置,利用向量即可得解.【详解】由题知,,,AB AD AP 两两垂直,以A 为原点,,,AB AD AP 所在直线分别为,,x y z 轴建立空间直角坐标系,记AB 的中点为G ,连接CG ,因为ABCD 为正方形,E 为CD 中点,所以//AG CE ,且AG CE =,所以AGCE 为平行四边形,所以//CG AE ,又CG ⊄平面AEF ,AE ⊂平面AEF ,所以//CG 平面AEF ,记点T 的轨迹与PB 交于点H ,由题知//CH 平面AEF ,因为,CH CG 是平面CHG 内的相交直线,所以平面//CHG 平面AEF ,所以GH 即为点T 的轨迹,因为()()()()()()0,0,0,1,2,0,1,1,1,2,2,0,0,0,2,2,0,0A E F C P B ,所以()()()()2,0,2,2,2,2,1,2,0,1,1,1PB CP AE AF =-=--== ,设PH PB λ=,则()()()2,2,22,0,222,2,22CH CP PH CP PB λλλλ=+=+=--+-=--- ,设(),,n x y z =为平面AEF 的法向量,则200AE n x y AF n x y z ⎧⋅=+=⎪⎨⋅=++=⎪⎩ ,令1y =得()2,1,1n =- ,因为CH n ⊥ ,所以()2222220λλ---+-=,解得23λ=,则22,2,33CH ⎛⎫=-- ⎪⎝⎭ ,又()1,2,0GC AE == 所以()22121,2,0,2,,0,3333GH GC CH ⎛⎫⎛⎫=+=+--= ⎪ ⎪⎝⎭⎝⎭ ,所以12145,0,33993GH ⎛⎫==+= ⎪⎝⎭.故答案为:53【点睛】关键点睛:本题关键在于利用向量垂直确定点T 的轨迹与PB 的交点位置,然后利用向量运算求解即可.四、解答题15.《中华人民共和国民法典》于2021年1月1日正式施行.某社区为了解居民对民法典的认识程度,随机抽取了一定数量的居民进行问卷测试(满分:100分),并根据测试成绩绘制了如图所示的频率分布直方图.(1)估计该组测试成绩的平均数和第57百分位数;(2)该社区在参加问卷且测试成绩位于区间[)80,90和[]90,100的居民中,采用分层随机抽样,确定了5人.若从这5人中随机抽取2人作为该社区民法典宣讲员,设事件A =“两人的测试成绩分别位于[)80,90和[]90,100”,求()P A .【答案】(1)平均数76.2;第57百分位数79;(2)()35P A =.【解析】【分析】(1)利用频率分布直方图计算平均数及百分位数;(2)根据分层抽样确定测试成绩分别位于[)80,90和[]90,100的人数,按照古典概型计算即可.【小问1详解】由频率分布直方图可知测试成绩的平均数450.04550.06650.2750.3850.24950.1676.2x =⨯+⨯+⨯+⨯+⨯+⨯=.测试成绩落在区间[)40,70的频率为()0.0040.0060.02100.3++⨯=,落在区间[)40,80的频率为()0.0040.0060.020.03100.6+++⨯=,所以设第57百分位数为a ,有()0.3700.030.57a +-⨯=,解得79a =;【小问2详解】由题知,测试分数位于区间[)80,90、[)90,100的人数之比为0.2430.162=,所以采用分层随机抽样确定的5人,在区间[)80,90中3人,用1A ,2A ,3A 表示,在区间[)90,100中2人,用1B ,2B 表示,从这5人中抽取2人的所有可能情况有:()12,A A ,()13,A A ,()11,A B ,()12,A B ,()23,A A ,()21,A B ,()22,A B ,()31A B ,()32,A B ,()12,B B ,共10种,其中“分别落在区间[)80,90和[)90,100”有6种,所以()35P A =.16.在直三棱柱ABC A 1B 1C 1中,∠ABC =90°,BC =2,CC 1=4,点E 在线段BB 1上,且EB 1=1,D ,F ,G 分别为CC 1,C 1B 1,C 1A 1的中点.(1)证明:B 1D ⊥平面ABD ;(2)证明:平面EGF ∥平面ABD .【答案】(1)证明见解析(2)证明见解析【解析】【分析】(1)建立空间直角坐标系,利用向量法来证得1B D ⊥平面ABD .(2)利用向量法证得平面//EGF 平面ABD .【小问1详解】以B 为坐标原点,BA 、BC 、BB 1所在的直线分别为x 轴、y 轴、z 轴建立空间直角坐标系,如图所示,则B (0,0,0),D (0,2,2),B 1(0,0,4),设BA =a ,则A (a,0,0),所以BA =(a,0,0),BD =(0,2,2),1B D =(0,2,-2),1B D ·BA =0,1B D ·BD =0+4-4=0,即B 1D ⊥BA ,B 1D ⊥BD .又BA ∩BD =B ,因此B 1D ⊥平面ABD .【小问2详解】由(1)知,E (0,0,3),G ,1,42a ⎛⎫ ⎪⎝⎭,F (0,1,4),则EG uuu r =,1,12a ⎛⎫ ⎪⎝⎭,EF =(0,1,1),1B D ·EG uuu r =0+2-2=0,1B D ·EF =0+2-2=0,即B 1D ⊥EG ,B 1D ⊥EF .又EG ∩EF =E ,因此B 1D ⊥平面EGF .结合(1)可知平面EGF ∥平面ABD .17.已知甲射击的命中率为0.8,乙射击的命中率为0.9,甲乙两人的射击相互独立.(1)甲乙两人同时命中目标的概率;(2)甲乙两人中至少有1人命中目标的概率.【答案】(1)0.72(2)0.98【解析】【分析】(1)利用相互独立事件概率乘法公式即可求出答案.(2)利用对立事件概率计算公式和相互独立事件概率乘法公式即可求得答案.【小问1详解】因为甲射击的命中率为0.8,乙射击的命中率为0.9,甲乙两人的射击相互独立,设事件A 表示甲命中,事件B 表示乙命中,则()0.8P A =,()0.9P B =所以甲、乙两人同时命中目标的概率()()()0.80.90.72P AB P A P B ==⨯=,【小问2详解】甲乙两人中至少有1人命中目标的对立事件是甲、乙都没击中目标,甲、乙都没击中目标的概率()()()()()10.810.90.02P AB P A P B ==--=,所以甲乙两人中至少有1人命中目标的概率为:()()110.020.98P A B P AB =-=-= 18.如图,圆柱的轴截面ABCD 是正方形,点E 在底面圆周上,,AF DE F ⊥为垂足.(1)求证:AF DB ⊥.(2)当直线DE 与平面ABE 所成角的正切值为2时,①求平面EDC 与平面DCB 夹角的余弦值;②求点B 到平面CDE 的距离.【答案】(1)证明见解析(2)①41919;②25719【解析】【分析】(1)利用线面垂直得到AF ⊥平面BED ,进而证明AF DB ⊥即可.(2)①建立空间直角坐标系,利用二面角的向量求法处理即可.②利用点到平面的距离公式求解即可.【小问1详解】由题意可知DA ⊥底面,ABE BE ⊂平面ABE ,故BE DA ⊥,又,,,BE AE AE DE E AE DE ⊥⋂=⊂平面AED ,故BE ⊥平面AED ,由AF ⊂平面AED ,得AF BE ⊥,又,,,AF DE BE DE E BE DE ⊥⋂=⊂平面BED ,故AF ⊥平面BED ,由DB ⊂平面BED ,可得AF DB ⊥.【小问2详解】①由题意,以A 为原点,分别以AB ,AD 所在直线为y 轴、z 轴建立如图所示空间直角坐标系,并设AD 的长度为2,则(0,0,0),(0,2,0),(0,2,2),(0,0,2)A B C D ,因为DA ⊥平面ABE ,所以DEA ∠就是直线DE 与平面ABE 所成的角,所以tan 2DA DEA AE∠==,所以1AE =,所以31,,022E ⎛⎫ ⎪ ⎪⎝⎭由以上可得1(0,2,0),,,222DC DE ⎛⎫==- ⎪ ⎪⎝⎭ ,设平面EDC 的法向量为(,,)n x y z = ,则0,0,n DC n DE ⎧⋅=⎪⎨⋅=⎪⎩ 即20,3120,22y x y z =⎧+-=⎪⎩取4x =,得n = .又(1,0,0)m = 是平面BCD 的一个法向量,设平面EDC 与平面DCB 夹角的大小为θ,所以cos cos ,19m n m n m n θ⋅==== ,所以平面EDC 与平面DCB 夹角的余弦值为41919.②因为33,,022BE ⎛⎫=- ⎪ ⎪⎝⎭,所以点B 到平面CDE的距离19BE n d n ⋅== .19.图1是直角梯形ABCD ,AB CD ∥,90D Ð=°,四边形ABCE 是边长为4的菱形,并且60BCE ∠=︒,以BE 为折痕将BCE 折起,使点C 到达1C的位置,且1AC =,如图2.(1)求证:平面1BC E ⊥平面ABED ;(2)在棱1DC 上是否存在点P ,使得P 到平面1ABC 的距离为2155,若存在,则1DP PC 的值;(3)在(2)的前提下,求出直线EP 与平面1ABC 所成角的正弦值.【答案】(1)证明见详解(2)存在,11DP PC =(3)155【解析】【分析】(1)作出辅助线,得到AF ⊥BE ,1C F ⊥BE ,且123AF C F ==,由勾股定理逆定理求出AF ⊥1C F ,从而证明出线面垂直,面面垂直;(2)建立空间直角坐标系,求平面1ABC 的法向量,利用空间向量求解出点P 的坐标,(3)根据(2)可得31,322EP ⎛= ⎝uu r ,利用空间向量求线面夹角.【小问1详解】取BE 的中点F ,连接AF ,1C F,因为四边形ABCE 是边长为4的菱形,并且60BCE ∠=︒,所以1,ABE BEC 均为等边三角形,故AF ⊥BE ,1C F ⊥BE,且1AF C F ==,因为1AC =,所以22211AF C F AC +=,由勾股定理逆定理得:AF ⊥1C F ,又因为AF BE F ⋂=,,AF BE ⊂平面ABE ,所以1C F ⊥平面ABED ,因为1C F ⊂平面1BEC ,所以平面1BC E ⊥平面ABED ;【小问2详解】以F 为坐标原点,FA 所在直线为x 轴,FB 所在直线为y 轴,1FC 所在直线为z轴,建立空间直角坐标系,则()()()()()10,0,0,,0,2,0,0,0,,3,0,0,2,0F A B C D E --,设(),,P m n t ,1DP DC λ= ,[]0,1λ∈,即()(3,m n t λ+=,解得:,33,m n t λ==-=,故),33,P λ--,设平面1ABC 的法向量为(),,v x y z = ,则()(12,0,AB AC =-=-,则1200v AB y v AC ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,令1x =,则1y z ==,故()v = ,其中1,33,C P λ=--则15C P v d v⋅=== ,解得:12λ=或32(舍去),所以否存在点P ,使得P 到平面1ABC 的距离为2155,此时11DP PC =.【小问3详解】由(2)可得:()3331,0,2,0,2222EP ⎛⎛=---= ⎝⎝ ,设直线EP 与平面1ABC 所成角为θ,则15sin cos ,5EP v EP v EP v θ⋅===⋅,所以直线EP 与平面1ABC 所成角的正弦值为5.。
杭高2023学年第一学期期末考试高二数学试题卷(答案在最后)命题:1.本试卷分试题卷和答题卡两部分.本卷满分150分,考试时间120分钟.2.答题前务必将自己的学校、班级、姓名用黑色字迹的签字笔或钢笔填写在答题卡规定的地方.3.答题时,请按照答题卡上“注意事项”的要求,在答题卡相应的位置上规范答题,在本试题卷上答题一律无效.4.考试结束后,只需上交答题卡.一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.直线:10l x ++=的倾斜角的大小为()A.30 B.60C.120D.150【答案】D 【解析】【分析】根据斜率等于倾斜角的正切值,结合倾斜角的范围即可求解.【详解】由:10l x ++=可得3333y x =--,所以直线l 的斜率为33k =-,设直线l 的倾斜角为α,则tan 3α=-,因为0180α≤<o ,所以150α= ,故选:D.2.若数列{}n a 的通项公式为2n a n n =+,则12100111a a a +++= ()A.100101B.1101C.101100D.99100【答案】A 【解析】【分析】利用裂项相消求和可得答案.【详解】()111111n a n n n n ==-++,则1210011111111110011223100101101101+++=-+-++-=-= a a a .故选:A.3.若数列{}n a 满足12a =,11n n n a a a +=-,则2024a =()A.3B.2C.12D.1-【答案】C 【解析】【分析】由递推公式计算数列的前几项得出周期,即可的答案.【详解】因为数列{}n a 满足12a =,11n n n a a a +=-,所以212a =,31a =-,42a =,512a =,...,故数列的周期为3,故202421.2a a ==故选:C.4.在空间四边形ABCD 中,,,DA a DB b DC c === ,且,2DM MA BN NC == ,则MN =()A.112233a b c --B.121233a b c-++C.112233a b c-++ D.111222a b c-++ 【答案】C 【解析】【分析】由MN MA AB BN =++可表示出.【详解】()1223MN MA AB BN DA DB DA BC=++=+-+()()1223DA DB DA DC DB =+-+-121112332323DA DB DC a b +=+-+-=+.故选:C.5.以下四个命题中,正确的是()A.若1123OP OA OB =+,则,,P A B 三点共线B.若{},,a b c 为空间的一个基底,则{},,a b b c c a +++构成空间的另一个基底C.()()a b c a b c⋅⋅=⋅⋅r r r r r r D.若a b a c ⋅=⋅r r r r,且0a ≠,则b c =【答案】B 【解析】【分析】根据向量三点共线可判断A ;假设,,a b b c c a +++ 共面,设()()a b m b c n c a +=+++得出矛盾可判断B ;举反例可判断C ;利用数量积公式计算可判断D.【详解】对于A ,若,,P A B 三点共线,则OP OA OB λμ=+,且1λμ+=,而1151236+=≠,故A 错误;对于B ,假设,,a b b c c a +++共面,设()()()a b m b c n c a ma mb m n c +=+++=+++,因为{},,a b b c c a +++ 为空间的一个基底,所以110m n m n =⎧⎪=⎨⎪+=⎩,该方程组无解,假设不成立,故B 正确;对于C ,设()()()1,3,1,2,2,1,3,4,1a b c ==-=,则()()515,20,5a b c c ⋅⋅== ,()()()33,9,315,20,5a b c a ⋅⋅=⨯=≠,故C 错误;对于D ,由a b a c ⋅=⋅r r r r 得()0a b c ⋅-=,设a 与b c - 的夹角为θ,所以cos 0a b c θ⋅-=,因为0a ≠ ,所以cos 0b c θ-= ,不一定有b c = ,故D 错误.6.已知圆()()221:2416C x y -++=,圆222:230C x y x ++-=,则两圆的公切线的条数为()A.1B.2C.3D.4【答案】B 【解析】【分析】根据圆的方程,求得圆心距和两圆的半径之和,之差,判断两圆的位置关系求解.【详解】因为圆()()221:2416C x y -++=,圆()222:14C x y ++=,所以125C C =,12126,2R R R R +=-=,所以121212R R C C R R -<<+,所以两圆相交,所以两圆的公切线的条数为2,故选:B7.已知等比数列{a n }的前n 项和为S n ,S 10=1,S 30=13,S 40=()A.﹣51B.﹣20C.27D.40【答案】D 【解析】【分析】由{a n }是等比数列可得S 10,S 20﹣S 10,S 30﹣S 20,S 40﹣S 30成等比数列,列方程组,从而即可求出S 40的值.【详解】由{a n }是等比数列,且S 10=1>0,S 30=13>0,得S 20>0,S 40>0,且1<S 20<13,S 40>13所以S 10,S 20﹣S 10,S 30﹣S 20,S 40﹣S 30成等比数列,即1,S 20﹣1,13﹣S 20,S 40﹣13构成等比数列,∴(S 20﹣1)2=1×(13﹣S 20),解得S 20=4或S 20=﹣3(舍去),∴(13﹣S 20)2=(S 20﹣1)(S 40﹣13),即92=3×(S 40﹣13),解得S 40=40.故选:D .8.双曲线22221(0,0)x y a b a b-=>>的左、右焦点分别为12,F F ,点M 是双曲线左支上一点,1290F MF ∠= ,直线2MF 交双曲线的另一支于点N ,22MN NF =,则双曲线的离心率()A.3B.9C.D.2【解析】【分析】根据双曲线定义和22MN NF =得到边长之间的关系,结合勾股定理得到方程,求出离心率.【详解】设2NF n =,则2MN n =,23MF n =,由双曲线定义得212MF MF a -=,故132MF n a =-,由勾股定理得2221212MF MF F F +=,即()2229324n n a c +-=①,连接1NF ,则122NF NF a -=,故12NF a n =+,由勾股定理得22211MF MN NF +=,即()()2224322n n a a n +-=+②,由②得43n a =,代入①得22204a c =,故ca=故选:C二、多选题(本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.)9.下列求导运算正确的是()A.若()cos(23)f x x =+,则()2sin(23)f x x '=+B.若21()e x f x -+=,则21()e x f x -+'=C.若()e xx f x =,则()1e x xf x ='-D.若()ln f x x x =,则()ln 1f x x '=+【答案】CD 【解析】【分析】利用导数公式及运算法则,求解即可.【详解】对于选项A:()cos(23)f x x =+ ,()sin(23)(23)2sin(23)f x x x x ''∴=-+⋅+=-+,故选项A 错误;对于选项B:21()e x f x -+= ,()2121()e 212e x x f x x '-+-+∴=⋅-+=-',故选项B 错误;对于选项C:()ex xf x = ,()()2e e 1e e x xx xx xf x --∴==',故选项C 正确;对于选项D:()ln f x x x = ,1()1ln ln 1f x x x x x'∴=⨯+⋅=+,故选项D 正确;故选:CD.10.某次辩论赛有7位评委进行评分,首先7位评委各给出某选手一个原始分数,评定该选手成绩时从7个原始分数中去掉一个最高分、去掉一个最低分,得到5个有效评分.则这5个有效评分与7个原始评分相比,数字特征可能不同的是()A.极差B.中位数C.平均数D.方差【答案】ACD 【解析】【分析】利用平均数、中位数、平均数、方差的定义进行判断.【详解】因为5个有效评分是7个原始评分中去掉一个最高分、去掉一个最低分,所以中位数不变,平均数、方差、极差可能发生变化.故B 错误.故选:ACD.11.在直三棱柱111ABC A B C -中,90BAC ∠= ,12AB AC AA ===,,E F 分别是11,BC A C 的中点,D 在线段11B C 上,则下面说法中正确的有()A.//EF 平面11AA B BB.若D 是11B C 上的中点,则BD EF ⊥C.直线EF 与平面ABC所成角的正弦值为5D.存在点D 使直线BD 与直线EF 平行【答案】AC 【解析】【分析】以点A 为坐标原点,AB 、AC 、1AA 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量法判断各选项的正误.【详解】以点A 为坐标原点,AB 、AC 、1AA 所在直线分别为x 、y 、z 轴建立如下图所示的空间直角坐标系,则()0,0,0A 、()2,0,0B 、()0,2,0C 、()10,0,2A 、()12,0,2B 、()10,2,2C 、()1,1,0E 、()0,1,2F .对于A 选项,()1,0,2EF =- ,易知平面11AA B B 的一个法向量为()0,1,0m =,0EF m ⋅= ,则EF m ⊥,又因为EF ⊄平面11AA B B ,所以,//EF 平面11AA B B ,故A 正确;对于B 选项,当D 是线段11B C 的中点时,()1,1,2D ,()1,1,2BD =-,则50BD EF ⋅=≠,故B 错误;对于C 选项,由A 知()1,0,2EF =- ,易知平面ABC 的一个法向量为()0,0,1u =,则·sin ,cos ,5EF uEF u EF u EF u===,故C 正确;对于D 选项,设()()1112,2,02,2,0B D B C λλλλ==-=-,其中01λ≤≤,()112,2,2BD BB B D λλ=+=-,假设存在点D 使直线BD 与直线EF 平行,则存在0μ≠使EF BD μ=,即2·20·21·2μμλμλ=⎧⎪=⎨⎪-=-⎩,无解,所以假设不成立,故D 错误.故选:AC.12.在平面直角坐标系xOy 中,已知12(2,0),(2,0),(1,1)F F A --,若动点P 满足126,PF PF +=则()A.存在点P ,使得21PF =B.12PF F 面积的最大值为C.对任意的点P ,都有292PA PF +>D.椭圆上存在2个点P ,使得1PAF 的面积为32【答案】ACD 【解析】【分析】根据题意求得P 的轨迹是椭圆22195x y +=,从而判断椭圆上是否存在点P ,使得21PF =,即可判断A ;当点P 为椭圆上、下顶点时,12PF F 面积的取最大值,即可判断B ;由椭圆定义知,21122PA PF PA a PF a AF +=+-≥-即可判断C ;求得使得1PAF V 的面积为32的P 点坐标满足的关系,与椭圆联立,根据判别式判断交点个数,即可判断D.【详解】由题知,点P 的轨迹是3a =,2c =,焦点在x 轴上的椭圆,则b =22195x y +=,A :当点P 为椭圆右顶点时,2321PF a c =-=-=,故A 正确;B :当点P 为椭圆上、下顶点时,12PF F △面积的取最大值,且最大值为1212F F b =B 错误;C :2112266PA PF PA a PF a AF +=+-≥-==,因为96 4.59 4.52≈>=,故C 正确;D :设使得1PAF V 的面积为32的P 点坐标为()00,P x y ,由A ,1F 坐标知,1AF =,直线1AF 的方程为20x y -+=,则1322=,解得0010x y --=或0050x y -+=,联立00220010195x y x y --=⎧⎪⎨+=⎪⎩,化简得20075200y y +-=,则2528200∆=+⨯>,因此存在两个交点;同理可得直线与椭圆联立00220050195x y x y -+=⎧⎪⎨+=⎪⎩,化简得200725400y y -+=,则22528404950∆=-⨯=-<,所以不存在交点;综上,有且仅有2个点P ,使得1PAF V 的面积为32,故D 正确;故选:ACD.【点睛】方法点睛:①椭圆上任意一点的焦半径范围为a c PF a c -≤≤+;②椭圆中当点P 位于椭圆上下顶点时焦三角形()12PF F 的面积有最大值bc ;③求直线与椭圆交点个数时,将直线与椭圆方程进行联立,利用判别式判断交点个数.三、填空题:(本题共4小题,每小题5分,共20分)13.在等差数列{}n a 中,12565,7a a a a +=+=,则910a a +=________.【答案】9【解析】【分析】根据等差数列的性质可得910a a +的值.【详解】因为()9101256214a a a a a a +++=+=,125a a +=,所以9109a a +=.故答案为:914.从3名男同学和2名女同学中任选2名同学参加志愿者服务,则选出的2名同学中至少有1名女同学的概率是_____.【答案】710.【解析】【分析】先求事件的总数,再求选出的2名同学中至少有1名女同学的事件数,最后根据古典概型的概率计算公式得出答案.【详解】从3名男同学和2名女同学中任选2名同学参加志愿服务,共有2510C =种情况.若选出的2名学生恰有1名女生,有11326C C =种情况,若选出的2名学生都是女生,有221C =种情况,所以所求的概率为6171010+=.【点睛】计数原理是高考考查的重点内容,考查的形式有两种,一是独立考查,二是与古典概型结合考查,由于古典概型概率的计算比较明确,所以,计算正确基本事件总数是解题的重要一环.在处理问题的过程中,应注意审清题意,明确“分类”“分步”,根据顺序有无,明确“排列”“组合”.15.若函数()21ln f x x x a x =-++在()0,∞+上单调递增,则实数a 的取值范围是________.【答案】18a ≥【解析】【分析】依题意可得()210af x x x'=-+≥在()0,x ∈+∞上恒成立,参变分离得到22a x x ≥-在()0,x ∈+∞上恒成立,令()22g x x x =-,求出()g x 的最大值即可求出参数的取值范围;【详解】解:因为()21ln f x x x a x =-++的定义域为()0,x ∈+∞,且函数()21ln f x x x a x =-++在()0,∞+上单调递增,()210af x x x'∴=-+≥在()0,x ∈+∞上恒成立,即22a x x ≥-在()0,x ∈+∞上恒成立,令()22112248g x x x x ⎛⎫=-=--+ ⎪⎝⎭当14x =时()max 18g x =所以18a ≥即1,8a ⎡⎫∈+∞⎪⎢⎣⎭故答案为:1,8⎡⎫+∞⎪⎢⎣⎭【点睛】本题考查利用导数研究函数的单调性,不等式恒成立问题,属于中档题.16.高斯函数[]y x =是以德国数学家卡尔-高斯命名的初等函数,其中R,[]x x ∈表示不超过x 的最大整数,如[π]3,[3.5]4=-=-.已知{}n a 满足()*111,21n n a a a n +==+∈N ,设1n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n S ,[]{}n S 的前n 项和为n T .则(1)3T =_____;(2)满足2024n T ≥的最小正整数n 为____.【答案】①.1②.91【解析】【分析】利用构造法可得数列{}n a 的通项公式为21nn a =-,则由题意可得,111112221n n n a a ++=-⋅-,231111122212121n n n S +⎛⎫=-⋅+++ ⎪---⎝⎭ ,利用放缩法可得所以122n n n S -<<,所以[]1,2121,22n n n k S nn k -⎧=+⎪⎪=⎨⎪-=⎪⎩,可解问题.【详解】由题可知:()*111,21n n a a a n +==+∈N ,则()()*1121n n a a n ++=+∈N,且112a +=,即{}1n a +为首项为2,公比为2的等比数列,所以12nn a +=,则21nn a =-,所以11121111222121n n n n n a a +++-==-⋅--.所以231111122212121n n n S +⎛⎫=-⋅+++ ⎪---⎝⎭.设231111212121n n R ++++--=- ,则231211111101221212122n n nR +<+++<+++<---= .所以231111112222121212n n n n nS +-⎛⎫<=-⋅+++< ⎪---⎝⎭ .所以[]1,2121,22n n n k S n n k -⎧=-⎪⎪=⎨⎪-=⎪⎩且k 为正整数,所以30011T =++=.所以222001122k T k k k k +=++++++++=+ ,221001122k T k k +=+++++++= .所以9190202520241980T T =>>=,所以满足2024n T ≥的最小正整数n 为91.故答案为:1;91.【点睛】思路点睛:利用放缩法求出122n n n S -<<,从而由题意得[]1,2121,22n n n k S n n k -⎧=+⎪⎪=⎨⎪-=⎪⎩,即可解决问题.四、解答题(本题共6小题,共70分,其中第17题10分,其它每题12分,解答应写出文字说明、证明过程或演算步骤.)17.ABC 的内角,,A B C 的对边分别为,,a b c ,已知2cos (cos cos ).C a B +b A c =(1)求C ;(2)若5c =,ABC的面积为ABC 的周长.【答案】(1)π3C =(2)12【解析】【分析】(1)利用正弦定理将边化角,结合三角恒等变换公式化简计算即可;(2)表示出面积,结合余弦定理计算即可.【小问1详解】由已知及正弦定理得:()2cos sin cos sin cos sin C A B B A C ⋅+⋅=,即()2cos sin sin C A B C ⋅+=,故2cos sin sin C C C ⋅=,由()sin sin 0A B C +=>,可得1cos 2C =,因为()0,πC ∈,π3C ∴=.【小问2详解】由已知得,1sin 2ABC S ab C =⋅= 又π3C =,所以8ab =,由余弦定理得:222cos 25a b ab C +-⋅=,所以2233a b +=,从而()249a b +=,即7a b +=,∴ABC 周长为12a b c ++=.18.如图,在平行四边形ABCD 中,1,2,60AB BC ABC ∠=== ,四边形ACEF 为正方形,且平面ABCD ⊥平面ACEF .(1)证明:AB CF ⊥;(2)求平面BEF 与平面ADF 夹角的余弦值.【答案】(1)证明见解析(2)34.【解析】【分析】(1)由余弦定理和勾股定理逆定理得到AB AC ⊥,由面面垂直得到线面垂直,线线垂直;(2)建立空间直角坐标系,求出平面的法向量,从而得到面面角的余弦值.【小问1详解】因为1AB =,2BC =,60ABC ∠=︒,在ABC 中,由余弦定理可得2222cos603AC AB BC AB BC =+-⋅⋅︒=,于是222AC AB BC +=,所以AB AC ⊥.又平面ABCD ⊥平面ACEF ,平面ABCD ⋂平面ACEF AC =,AB ⊂平面ABCD ,所以AB ⊥平面ACEF ,又CF ⊂平面ACEF ,所以AB CF ⊥【小问2详解】因为四边形ACEF 为正方形,所以AF AC ⊥.又平面ABCD ⊥平面ACEF ,平面ABCD ⋂平面ACEF AC =,AF ⊂平面ACEF ,所以AF ⊥平面ABCD .以A 为原点,AB ,AC ,AF所在直线分别为x 轴,y 轴,z 轴,建立如图所示空间直角坐标系.()0,0,0A,()1,0,0B,()C,(F,(E,()D-,(BE=-,()0,EF=,()AD=-,(AF=.设平面BEF的一个法向量为(),,m x y z=,所以m BE xm EF⎧⋅=-++=⎪⎨⋅==⎪⎩,解得0y=,令1z=,则x=)m= ,设平面ADF的一个法向量为()111,,n x y z= ,所以111n AD xn AF⎧⋅=-+=⎪⎨⋅==⎪⎩,解得10z=,令11y=,则1x=)n= ,所以33cos,224m nm nm n⋅⋅〈〉===⋅⨯,记平面BEF与平面ADF的夹角为θ,则3cos cos,4m nθ=〈〉=,即平面BEF与平面ADF夹角的余弦值为34.19.已知函数32()2f x x ax=-.(1)讨论()f x的单调性;(2)已知1a=时,直线:l y kx=为曲线32()2f x x ax=-的切线,求实数k的值.【答案】(1)答案见解析(2)0k=或18k=-【解析】【分析】(1)求导后因式分解,再讨论当0a>,0a=,0a<时导函数的正负,即可判断原函数的单调性.(2)求导后根据导数的几何意义设切点00(,)P x y,求得切线方程,根据切线过原点计算即可求得结果.【小问1详解】()()26223f x x ax x x a -='=-.令()=0f x ',得0x =或3a x =.若0a >,则当(),0,3a x ∞∞⎛⎫∈-⋃+⎪⎝⎭时,()>0f x ';当0,3a x ⎛⎫∈ ⎪⎝⎭时,()<0f x '.故()f x 在(),0,,3a ∞∞⎛⎫-+⎪⎝⎭上单调递增,在(0,)3a 上单调递减;若0a =时,3()2f x x =,()f x 在(,)-∞+∞上单调递增;若0a <,则当(),0,3a x ∞∞⎛⎫∈-⋃+ ⎪⎝⎭时,()>0f x ';当,03a x ⎛⎫∈ ⎪⎝⎭时,()<0f x '.故()f x 在(),,0,3a ∞∞⎛⎫-+ ⎪⎝⎭上单调递增,在,03a ⎛⎫ ⎪⎝⎭上单调递减.综上所述:当0a >时,()f x 在(),0,,3a ∞∞⎛⎫-+⎪⎝⎭上单调递增,在(0,)3a 上单调递减;当0a =时,()f x 在(,)-∞+∞上单调递增;a<0时,()f x 在(),,0,3a ∞∞⎛⎫-+ ⎪⎝⎭单调递增,在,03a ⎛⎫ ⎪⎝⎭单调递减.【小问2详解】当1a =时,()()3222,62f x x x f x x x'=-=-设切点00(,)P x y ,则切线方程为()()()322000000262y y y x x x x x x -=--=--因为切线过原点,故32320000262x x x x -+=-+,即32004x x =,解得00x =或014x =所以0k =或18k =-.20.已知正项数列{}n a 的前n 项和为n S ,且满足2844n n n S a a =++.(1)求数列{}n a 的通项公式;(2)若11212n n n n b a n --⎧⎪=⎨⎪⎩为奇数为偶数,{}n b 的前n 项和为n T ,求2n T .【答案】(1)42n a n =-(2)224123n n T n n-=+-【解析】【分析】(1)根据n a 与n S 的关系化简求解即可;(2)采用分组求和的方式计算即可.【小问1详解】2844n n n S a a =++ ①2111844n n n S a a ---∴=++②①-②整理得11()(4)0,2n n n n a a a a n --+--=≥ 数列{}n a 是正项数列,14,2n n a a n -∴-=≥当1n =时,21111844, 2.S a a a =++=由可得∴数列{}n a 是以2为首项,4为公差的等差数列,42n a n ∴=-;【小问2详解】由题意知,1223n n n b n n -⎧=⎨-⎩为奇数为偶数,故()()24222122215943n n T n -=+++++++++- ()()114143142nn n ⨯-+-=+-24123n n n -=+-.21.已知抛物线2:4C y x =的焦点为F ,点()11,A x y 是曲线C 上一点.(1)若154AF y =,求点A 的坐标;(2)若直线:l y x m =+与抛物线C 交于,A B 两点,且以AB 为直径的圆过点(4,0)P ,求||AB .【答案】(1)1,14⎛⎫⎪⎝⎭或()4,4(2)或【解析】【分析】(1)利用点()11,A x y 是曲线C 上一点,结合抛物线的定义整理计算即可;(2)结合题意转化为0PA PB ⋅=,借助韦达定理得0m =或12=-m ,再借助弦长公式计算即可.【小问1详解】由抛物线2:4C y x =,可得焦点为()1,0F ,由抛物线的定义可得11AF x =+,而2114y x =,所以2115144y y +=,解得11y =或14y =.当11y =时,114x =;当14y =时,14x =.所以点A 的坐标为114⎛⎫⎪⎝⎭,或()4,4.【小问2详解】设()22,B x y ,联立方程24y x my x=+⎧⎨=⎩,得2440y y m -+=,所以16160m ∆=->,即1m <,且121244y y y y m+=⎧⎨=⎩,由题知,12121212(4)(4)(4)(4)0PA PB x x y y y m y m y y ⋅=--+=----+=,整理得()()()212122440y y m y y m -++++=,即()()284440m m m -+++=,解得0m =或12=-m ,当0m =时,12AB y=-===;当12=-m 时,12AB y y =-===.综上所述:弦长AB 的值为或.22.已知双曲线2222:1(0,0)y x C a b a b-=>>的渐近线方程为3y x =,焦点到渐近线的距离为1,过点(0,4)M 作直线AB (不与y 轴重合)与双曲线C 相交于,A B 两点,过点A 作直线:l y t =的垂线,AE E 为垂足.(1)求双曲线C 的标准方程;(2)是否存在实数t ,使得直线EB 过定点P ,若存在,求t 的值及定点P 的坐标;若不存在,说明理由.【答案】(1)2213y x -=(2)存在实数3t 4=,使得直线EB 过定点190,8P ⎛⎫⎪⎝⎭【解析】【分析】(1)焦点到渐近线的距离为b ,在根据渐近线方程求出a ;(2)计算出EB 的直线方程,再令0x =即可求出定点坐标.【小问1详解】焦点到渐近线的距离不妨求()0,c 直线ay x b=的距离221bc d b a b===+,渐近线方程3ay x b=±=,得3a =所以双曲线方程为2213y x -=;【小问2详解】假设存在实数t ,使得直线EB 过定点P ,设直线()()1122:4,,,,AB y kx A x y B x y =+,则()1,E x t .联立22413y kx y x =+⎧⎪⎨-=⎪⎩,消y 得()2238130k x kx -++=则1212228,3313x k x x k x k +=-=--.直线2121:()y tEB y t x x x x --=--,令0x =得:()211211121121212144p kx x tx y x tx kx x x tx y t t tx x x x x x -++-+--+=+=+=+---又()121212121313,88x x kx x x x x x k =--=++ 2121131988p x t x y t x x ⎛⎫+-+ ⎪⎝⎭∴=+-当1319088t ⎛⎫+-+= ⎪⎝⎭即3t 4=时,p y 为定值198所以存在实数3t 4=,使得直线EB 过定点190,8P ⎛⎫ ⎪⎝⎭.。
武汉市部分重点中学2022—2023学年度上学期期中联考高二数学试卷考试时间:2022年11月9日下午15:00—17:00试卷满分:150分★祝考试顺利★注意事项:1.答题前,考生务必将自己的学校、班级、姓名、准考证号填写在答题卷指定位置,认真核对与准考证号条形码上的信息是否一致,并将准考证号条形码粘贴在答题卷上的指定位置.2.选择题的作答:选出答案后,用2B 铅笔把答题卷上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号.答在试题卷上无效.3.非选择题的作答:用黑色墨水的签字笔直接答在答题卷上的每题所对应的答题区域内,答在试题卷上或答题卷指定区域外无效.4.考试结束,监考人员将答题卷收回,考生自己保管好试题卷,评讲时带来.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.直线x -2y +2=0在x 轴上的截距是()A .1B .-1C .-2D .22.双曲线22:14x C y -=的焦点坐标是( )A .(B .(0,C .(D .(0, 3.已知(1,0,1)a =,(2,1,1)b =,则向量a 与b 的夹角为( ) A .6π B .3π C .23π D .56π4.若曲线221:650C x y x +-+=与曲线2:()0C y y mx m --=有四个不同的交点,则实数m 的取值范围是( )A .⎛ ⎝⎭B .30,3⎛⎫⎛⎫⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭C .33⎡-⎢⎣⎦ D .3,,33⎛⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭5.对于直线m ,n 和平面α,β,αβ⊥的一个充分条件是( )A .m n ⊥,m α∥,n β∥B .m n ⊥,m αβ=,n α⊂C .m n ∥,m α⊥,n β⊥D .m n ∥,n β⊥,m α⊂6.已知双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点分别为1F ,2F ,过1F 的直线与C 的两条渐近线分别交于A ,B 两点,若A 为线段BF 的中点,且12BF BF ⊥,则C 的离心率为( )A B .2 C 1 D .37.已知点P 在直线2y x =-上运动,点E 是圆221x y +=上的动点,点F 是圆22(6)(5)9x y -++=上的动点,则||||PF PE -的最大值为( ) A .6 B .7 C .8 D .98.在正四面体D ABC -中,点E 在棱AB 上,满足2AE EB =,点F 为线段AC 上的动点,则( ) A .存在某个位置,使得DE BF ⊥ B .存在某个位置,使得4FDB π∠=C .存在某个位置,使得直线DE 与平面DBFD .存在某个位置,使得平面DEF 与平面DAC 夹角的余弦值为2二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.方程222210x y ax ay a +-+++=表示圆,则实数a 的可能取值为( ) A .4 B .2 C .0 D .2-10.若直线m 被两平行直线1:0l x =与2:0l x +=,则直线m 的倾斜角可以是( )A .30︒B .75︒C .135︒D .165︒11.已知椭圆2212516x y +=,1F ,2F 分别为它的左、右焦点,A ,B 分别为它的左、右顶点,点P 是椭圆上的一个动点,下面结论中正确的有( )A .12PF PF +的最小值为8B .12cos F PF ∠的最小值为725C .若123F PF π∠=,则12F PF D .直线P A 与直线PB 斜率乘积为定值162512.如图,已知正方体1111ABCD A B C D -的棱长为1,点M 为棱AB 的中点,点P 在侧面11BCC B 及其边界上运动,则下列选项中正确的是( )A .存在点P 满足1PM PD +=B .存在点P 满足12D PM π∠=C .满足1APD M ⊥的点P D .满足1MP D M ⊥的点P 的轨迹长度为4三、填空题:本题共4小题,每小题5分,共20分.13.若方程222x ky +=表示焦点在y 轴上的椭圆,则实数k 的取值范围是________. 14.过点()4,3P 做圆22:4O x y +=的两条切线,切点分别为M ,N ,则||MN =________.15.两条异面直线a ,b 所成角为60︒,在直线a ,b 上分别取点A ',E 和点A ,F ,使AA a '⊥,且A A b '⊥.已知2A E '=,3AF =,5EF =,则线段AA '的长为________.16.城市的许多街道是相互垂直或平行的,因此乘坐出租车时往往不能沿直线到达目的地,只能按直角拐弯的方式行进.在平面直角坐标系中,定义()11,P x y ,()22,Q x y 之间的“出租车距离”为1212(,)d P Q x x y y =-+-.已知(6,1),(3,3),(2,1)A B C ---,则到点A ,B “距离”相等的点的轨迹方程为________,到A ,B ,C 三点“距离”相等的点的坐标为________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知双曲线C 的焦点在x 轴上,焦距为4,且它的一条渐近线方程为y x =. (1)求C 的标准方程; (2)若直线1:12l y x =-与双曲线C 交于A ,B 两点,求||AB . 18.(12分)已知ABC 的顶点()5,1A ,重心()3,3G .(1)求线段BC 的中点坐标;(2)记ABC 的垂心为H ,若B 、H 都在直线y x =-上,求H 的坐标. 19.(12分)如图,四棱锥P ABCD -中,底面ABCD 是直角梯形,AB CD ∥,90BAD ∠=︒,222PD DC BC PA AB =====,PD CD ⊥.(1)求证:PA ⊥平面ABCD ;(2)求直线BD 与平面BPC 所成角的正弦值. 20.(12分)如图,已知圆22:1O x y +=,点P 为直线20x y +-=上一动点,过点P 作圆O 的切线,切点分别为M ,N ,且两条切线PM ,PN 与x 轴分别交于A ,B 两点.(1)当P 在直线y x =上时,求||||PA PB -的值;(2)当P 运动时,直线MN 是否过定点?若是,求出该定点坐标;若不是,请说明理由. 21.(12分)已知正四棱柱1111ABCD A B C D -中,1AB =,1AA =E 点为棱AB 中点.(1)求二面角1A EC C --的余弦值;(2)连接EC ,若P 点为直线EC 上一动点,求当P 点到直线1BB 距离最短时,线段EP 的长度. 22.(12分)已知椭圆2222:1(0)x y C a b a b +=>>过点2⎛ ⎝⎭,过其右焦点F 且垂直于x 轴的直线交椭圆于A ,B 两点,且||3AB =.(1)求椭圆C 的方程;(2)若矩形MNPQ 满足各边均与椭圆C 相切,求该矩形面积的最大值,并说明理由.武汉市部分重点中学2022—2023学年度上学期期中联考高二数学试卷参考答案及评分标准一、二选择题:本题共12小题,每小题5分,共60分.三、填空题:本题共4小题,每小题5分,共20分.13.(0,1) 14. 55,627,6321,32x y x x x ⎧<-⎪⎪⎪=---≤≤-⎨⎪⎪->-⎪⎩(2分);31(,)22-- (3分)四、解答题:共70分.解答题: 17.(10分)解:(1)因为焦点在x 轴上,设双曲线C 的标准方程为22221(0,0)x y a b a b-=>>,由题意得24c =,2c ∴=又双曲线C的一条渐近线为y x =,b a ∴=联立上述式子解得a =1b =,故所求方程为2213x y -=; ···········4分 (2)设11(,)A x y ,22(,)B x y ,联立2211213y x x y ⎧=-⎪⎪⎨⎪-=⎪⎩,整理得213604x x +-=,由2134()(6)1504∆=-⨯⨯-=>,所以1212x x +=-,1224x x =-,即AB ==.···········10分18.(12分)解:(1)设(,)B m n ,且,m n R ∈,由重心定义得3333A B C G A B C Gx x x x y y y y ++⎧==⎪⎪⎨++⎪==⎪⎩,解得48C C x m y n =-⎧⎨=-⎩,记线段BC 的中点为M ,则2242B C M B C Mx x x y y y +⎧==⎪⎪⎨+⎪==⎪⎩,即(2,4)M ; ···········4分(2)设(,)B a a -,由(1)得(4,8)C a a -+,BH AC ⊥,1711C A AC BHC A y y ak k x x a-+∴=-===---, 解得4a =-,即(4,4)B -,(8,4)C ,:4BC l y =,BC AH ⊥,5H A x x ∴==,即(5,5)H -. ···········12分19.(12分)解:(1)由于AB CD ,90BAD ∠=,所以CD AD ⊥,由于PD CD ⊥,PD AD D ⋂=,,PD AD PAD ⊂平面,所以CD PAD ⊥平面, 所以AB PAD ⊥平面,由PA PAD ⊂平面,得AB PA ⊥. 取CD 的中点为E ,连接BE ,因为底面ABCD 是直角梯形,DE AB ,且222DC DE AB ===,所以四边形ABED 为正方形,所以BE AD ,BE AD =,在Rt BEC中,BE ==AD BE ==所以在PAD 中,222AD PA PD +=,即PA AD ⊥,由于AD AB A ⋂=,,AB AD ABCD ⊂平面,所以PA ABCD ⊥平面;· ·······4分 (2)由(1)可知,,AB AD PA 两两垂直,所以建立如图所示的空间直角坐标系,则(0,0,0),(1,0,0),(0,0,1)A B C D P ,(1,3,0)(1,0,1)(2,3,1)BD PB PC =-=-=-,,,设平面BPC 的法向量为(,,)n x y z =,则00n PB n PC ⎧⋅=⎪⎨⋅=⎪⎩,即020x z xz -=⎧⎪⎨-=⎪⎩,令x =(3,n =-,设直线BD 与平面BPC 的夹角为θ,23sin cos ,=27BD nBD n BD nθ⋅===⋅⋅所以直线BD 与平面BPC 所成角的正弦值为7. ···········12分 20.(12分)解:(1)联立两条直线方程,解得P ,设切线方程为:(l y k x =,则圆心到切线的距离1d ==解得1212,2k k ==,所以:2(1:(2PN PM l y x l y x ⎧=+⎪⎨=-+⎪⎩ 令0y =,解得A B x x =-=,则55522PA PB -==-=; ···········4分(2)分析知,M N 在以P 为圆心,PM为半径的圆上,设2,)P t t ,2222)OP t t =+,21OM =,222222)1PM PO OM t t =-=+-,即在圆2222:(2)()2)1P x t y t t t -+-=+-上,联立222222(2)()2)11x t y t t t x y ⎧-+-=+-⎪⎨+=⎪⎩,得(210t x ty --+=,所以:(210MN l t x ty --+=过定点()1515. ···········12分 21.(12分)解:(1)以1D 为原点,建立如图所示的空间直角坐标系O xyz -,则11(1,,0),(1,1,0)2A E C C BB1111(0,,3)(1,,0),22AE EC CC =-=-=,设平面1AEC 的法向量为111(,,)m x y z =,则100mAE m EC ⎧⋅=⎪⎨⋅=⎪⎩,即1111102102y x y ⎧=⎪⎪⎨⎪-+=⎪⎩,令11z =,得(3,2m =,设平面1EC C 的法向量为222(,,)n x y z =,则1100nCC n EC ⎧⋅=⎪⎨⋅=⎪⎩,即2220102x y =⎨-+=⎪⎩, 令21x =,得(1,2,0)n =,设二面角1A EC C --的平面角为θ,则115cos cos 4m n A EC C m n θ⋅=--==⋅.···········5分(2)设=(-,)2EP EC λλλ=,则1(1,)2P λλ+-+,1(,)2BP λλ-=-,令11(0,0,1)B B u B B==,设点P 到直线1B B 的距离为d ,则2222222111()()()))2d B P B P u λλ-=-⋅=-++-,整理得222511511()424455d λλ=-+=-+, 15410d EP EC λλ∴===当时,取得最小值···········12分 22.(12分)解:(1)由题意:椭圆过点3(,)2c ,又过点(, 有2222294 1 334 1 c a b a b ⎧⎪+=⎪⎪⎨⎪⎪+=⎪⎩①②,变形22294b b a =①:,得223ba =代入①,得23112a a+=,即2260a a --=,0a >,解得2a =,则b = 所以椭圆方程22:143x y C +=; ···········4分(2)①当MN 的斜率为0或不存在时,此时22MNPQ S MN PQ a b =⋅=⋅=②当MN 的斜率存在且不为0时,设直线MN :y kx t =+,联立223412y kx t x y =+⎧⎨+=⎩消去y 得()2223484120k x ktx t +++-=, ()()222264163430k t t k ∆=--+=,化简得2243k t +=,所以两平行线MN 和PQ的距离1d NP ==以1k -代替k ,两平行线MQ 和NP的距离2d MN ===, 所以矩形MNPQ的对角线MP NQ =根据基本不等式2221422MNPQMN NP MPSMN NP +=⋅≤==,1483,>所以当=MN NP 1k =±,矩形MNPQ 面积的最大值为14.···········12分。
2022-2023学年度上学期高二第一次月考试题数学考试时间:120分钟 试卷总分:150分命题范围:必修第一册+第二册+第三册+第四册的第九章+必修四的第十章结束占20%;必修四的第十一章+选择性必修一第一章+第二章2.1~2.4(曲线方程)结束占80%说明:本试卷由第1卷和第11卷组成.第1卷为选择题,第11卷为主观题,按要求答在答题纸相应位置上.第I 卷(选择题60分)一、单项选择题(本大题共8小题,每小题5分,计40分)1.已知复数3i213iz +=+-,则复数z 在复平面内对应的点位于( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限2.在ABC 中,若45,60,A B BC ===AC =( )B. C. D. 3.如图所示的Rt O A B '''中,O A A B ='''',斜边1O B ''=,该图是一个平面图形的直观图,则这个平面图形的面积是( )B.1 D. 4.已知()()6,0,2,1,21,2a b λμλ==+-,若a b ∥,则实数,λμ的值分别为( ) A.11,52B.11,52--C.5,2D.5,2--5.甲,乙两人独立地破解同一个谜题,破解出谜题的概率分别为12,23,则谜题没被破解的概率为( ) A.1 B.56 C.13 D.166.我国古代《九章算术》里,记载了一个“商功”的例子:今有刍童,下广二丈,袤三丈,上广三丈,袤四丈,高三丈.问积几何?其意思是:今有上下底面皆为长方形的草垛(如图所示),下底宽2丈,长3丈,上底宽3丈,长4丈,高3丈.问它的体积是多少?该书提供的算法是:上底长的2倍与下底长的和与上底宽相乘,同样下底长的2倍与上底长的和与下底宽相乘,将两次运算结果相加,再乘以高,最后除以6.则这个问题中的刍童的体积为( )A.13.25立方丈B.26.5立方C.53立方丈D.106立方丈7.点P 为圆22(1)2x y -+=上一动点,点P 到直线3y x =+的最短距离为( )B.1C.2D. 8.如图(1)所示,已知球的体积为36π,底座由边长为12的正三角形铜片ABC 沿各边中点的连线垂直向上折叠成直二面角所得,如图(2)所示.则在图(1)所示的几何体中,下列结论中正确的是( )A.CD 与BE 是异面直线B.异面直线AB 与CD 所成角的大小为45C.由A B C 、、三点确定的平面截球所得的截面面积为3πD.球面上的点到底座底面DEF 的最大距离为3二、多项选择题(本大题共8小题,每小题5分,计40分)9.下列说法中,正确的有( )A.过点()1,2P 且在,x y 轴截距相等的直线方程为30x y +-=B.圆224x y +=与圆2286160x y x y +--+=的位置关系是外切C.直线10x -+=的倾斜角为60D.过点()5,4且倾斜角为90的直线方程为50x -=10.已知函数()()()122log 2log 4f x x x =--+,则下列结论中正确的是( )A.()f x 的定义域是[]4,2- B.()1y f x =-是偶函数C.()f x 在区间[)1,2-上是增函数 D.()f x 的图象关于直线1x =-对称11.半正多面体是由两种或两种以上的正多边形围成的多面体,半正多面体体现了数学的对称美,如图是一个棱数为24的半正多面体,它的所有顶点都在同一个正方体的棱上,且此正方体的棱长为1,则下列关于该多面体的说法中正确的是( )A.多面体有12个顶点,14个面B.多面体的表面积为3C.多面体的体积为56D.多面体有外接球(即经过多面体所有顶点的球)12.已知曲线4C =,以下判断正确的是( ) A.曲线C 与x 轴交点为()2,0± B.曲线C 关于原点对称C.曲线C.的点的纵坐标的取值范围是⎡⎣D.曲线C第I 卷(主观题90分)三、填空题(本大题共4小题,每小题5分,共计20分)13.平面α的法向量为m ,若向量AB m ⊥,则直线AB 与平面α的位置关系为__________.14.函数()sin 3f x x π⎛⎫=-⎪⎝⎭的单调递增区间为__________. 15.已知向量,a b 满足||1,||2,||3a b a b ==-=,则a b -在b 上投影的数量为__________. 16.已知圆22:240C x y x y m ++-+=与y 轴相切,过()2,4P -作圆C 的切线则切线1的方程为__________.四、解答题(本大题共6小题,共计70分)17.(本小题满分10分)已知直线12:330,:20l ax y l x y ++=++=. (1)若12l l ⊥,求实数a 的值;(2)当12l l ∥时,求直线1l 与2l 之间的距离.18.(本小题满分12分)已知()()1,4,2,2,2,4a b =-=-. (1)若12c b =,求cos ,a c 的值; (2)若()()3ka b a b +⊥-,求实数k 的值.19.(本小题满分12分)如图,在三棱柱111ABC A B C -中,ABC 为等边三角形,四边形11BCC B 是矩形,1326BC CC ==,D 为AB 的中点,且1A D =(1)求证:CD ⊥平面11ABB A ;(2)求直线1CB 与平面1A CD 所成角的正弦值.20.(本小题满分12分)已知圆221:(1)5C x y +-=,圆222:420C x y x y +-+=.(1)求圆1C 与圆2C 的公共弦长;(2)求过两圆的交点且圆心在直线241x y +=上的圆的方程.21.(本小题满分12分)如图,在三棱柱111ABC A B C -中,底面ABC 是边长为2的正三角形,侧面11ACC A 是菱形,平面11ACC A ⊥平面ABC ,E ,F 分别是棱11A C ,BC 的中点,G 是棱1CC 上一点,且12C G GC =.(1)证明:EF ∥平面11ABB A ;(2)从①三棱锥1C ABC -的体积为1;①1C C 与底面ABC 所成的角为60°;①异面直线1BB 与AE 所成的角为30°这三个条件中选择-一个作为已知,求二面角A EG F --的余弦值. 22.已知点(1,0),(4,0)A B ,曲线C 上任意一点P 满足2PB PA =. (1)求曲线C 的方程;(2)设点(3,0)D ,问是否存在过定点Q 的直线l 与曲线C 相交于不同两点E ,F ,无论直线l 如何运动,x 轴都平分①EDF ,若存在,求出Q 点坐标,若不存在,请说明理由.2022-2023学年度上学期高二9月月考试题数学试卷标准答案一、【单项选择题】1.A2.C3.A4.A5.D6.B7.A8.C二、【多项选择题】9.BD 10.BCD 11.ACD 12.BCD【详细解答】1.3i22i 13iz +=+=+-由复数的几何意义可知选A. 2.在ABC 中,由正弦定理得,sin sin BC AC A B =,即2sin45sin60AC=,解得:AC =故选C ;3.画出原图形AOB ,如图所示,在Rt O A B '''中,,1O A A B O B ''''''==,则2O A ''=,故在原图形AOB中,,1OA OB OA OB ⊥==,所以这个平面图形的面积是112⨯=故选:A.4.()()()()6,0,2,1,21,2,1,21,26,0,2a b x λμλλμλ==+-∴+-=,1165210,1222x x λλμμλ⎧⎧+==⎪⎪⎪⎪∴-=∴⎨⎨⎪⎪==⎪⎪⎩⎩故选A5.设“甲独立地破解出谜题”为事件A ,“乙独立地破解出谜题”为事件B ,()()12,23P A P B ==,故()()12,23P A P B ==,所以()111236P AB =⨯=,即谜题没被破解的概率为16.选D ; 6.由题意,下底宽2丈,长3丈;上底宽3丈,长4丈;高3丈. 则刍童的体积为()()124332342326.56V ⎡⎤=⨯⨯+⨯+⨯+⨯⨯=⎣⎦丈.故选B . 7.由直线与圆的位置关系可知选A8.取,DF EF 中点,N M ,连接,,,,,AB BC AC BM MN CN ,如图,因BEF 为正三角形,则BM EF ⊥,而平面BEF ⊥平面DFE ,平面BEF ⋂平面DFE EF =,BM ⊂平面BEF ,于是得BM ⊥平面DFE ,同理CN ⊥平面DFE ,即,BM CN BM CN ==∥因此,四边形BCNM 是平行四边形,有BC NM DE ∥∥,则直线CD 与BE 在同一平面内,A 不正确; 由选项A ,同理可得AB DF ∥,则异面直线AB 与CD 所成角等于直线DF 与CD 所成角60,B 不正确;由选项A 知,132BC MN DE ===,同理可得3AB AC ==,正ABC 外接圆半径r = 由A B C 、、三点确定的平面截球所得的截面圆是ABC 的外接圆,此截面面积为3,C π正确;体积为36π的球半径R ,由34363R ππ=得3R =,由选项C 知,球心到平面ABC 的距离d ==由选项A ,同理可得点A 到平面DFE 的距离为,即平面ABC 与平面DFE 的距离为,所以球面上的点到底座底面DEF 的最大距离为3R d BM ++=+,D 不正确. 故选:C9.过点()1,2P 且在,x y 轴截距相等的直线有两条,一条经过原点,另一条不经过原点,故A 错误; 一个圆的圆心为()0,0,半径为2,另一圆的圆心为()4,3,半径为3,根据圆与圆的位置关系可知B 正确;由于直线10x -+=30,故C 错误; 过点()5,4且倾斜角为90的直线方程为50x -=,故D 正确,故答案为:BD .10.对于A ,由题意可得函数()()()()()1222log 2log 4log 24f x x x x x ⎡⎤=--+=--+⎣⎦,由20,40x x ->+>可得42x -<<,故函数定义域为()4,2-,故A 错误;对于()()()2,1log 33B y f x x x ⎡⎤=-=--+⎣⎦的定义域为()3,3-,设()()()2log 33g x x x ⎡⎤=--+⎣⎦,所以()()()()2log 33g x x x g x ⎡⎤-=-+-+=⎣⎦, 即()1y f x =-是偶函数,故B 正确: 对于C ,()()()()22222212log 24log 28log (1)9log (1)9f x x x x x x x ⎡⎤⎡⎤⎡⎤=--+=--+=--++=-++⎣⎦⎣⎦⎣⎦令2(1)9t x =-++,可得12log y t =,当[)1,2x ∈-时,2(1)9t x =-++是减函数,外层函数12log y t =也是减函数, 所以函数()f x 在区间[)1,2-上是增函数,故C 正确;对于()()()()2,2log 42D f x x x f x ⎡⎤--=-+-=⎣⎦,得()f x 的图象关于 直线1x =-对称,故D 正确.故选BCD .11.解:可将半正多面体补成棱长为1的正方体,其顶点是正方体各棱的中点,总共有12个顶点,6814+=个面,故A 正确;半正多面体的棱长为2,表面积为22863S =+⨯=⎝⎭⎝⎭,故B 错误; 体积可看作正方体割去八个三棱锥,31115182326V ⎛⎫∴=-⨯⨯⨯= ⎪⎝⎭,故C 正确;又因为正方体的中心到多面体各顶点的距离相等,所以该多面体有外接球,故D 正确.故选ACD .12.对于A ,令0y =,有214,x x +==x 轴的交点为()),,故A 错误;对于B ,若(),x y 4=,将(),x y --代入得:4,==即曲线C 是关于原点对称的,故B 正确;对于C ,欲求y 的范围,只需令0x =即可,有2214,5y y -==或3-(舍),y ∴=y 的取值范围是⎡⎣,故C 正确;对于D ,设曲线C 上的点的坐标为(),x y ,到原点的距离的平方为222r x y =+,4=4=,()2221164r y ∴+=+,如欲r 尽可能地小,则20y =,解得2min min 3,r r ==D 正确;故选BC D.三、【填空题】13.AB ⊂平面α或AB ∥平面α. 14.()5112,266k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【注:不写k Z ∈不给分】 15.32-16.2x =-或34100x y +-= 【详细解答】13.由题意,平面α的法向量为m ,向量AB m ⊥,若AB ⊂平面α,则AB m ⊥成立,若AB ⊄平面α,则AB ∥平面α,∴直线AB 与平面α的位置关系为AB ⊂平面α或AB ∥平面α, 故答案为:AB ⊂平面α或AB ∥平面α.14.()sin sin 33f x x x ππ⎛⎫⎛⎫=-=--⎪ ⎪⎝⎭⎝⎭,令322,232k x k k Z πππππ+≤-≤+∈,得51122,66k x k k Z ππππ+≤≤+∈, 所以函数()sin 3f x x π⎛⎫=-⎪⎝⎭的单调递增区间为5112,2,66k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦. 15.因为1,2,3a b a b ==-=,所以222()23a b a b a b -=+-⋅=,所以1a b ⋅=,所以a b -在b上投影的数量为()2143222a b b a b b b-⋅⋅--===-. 16.由圆22:240C x y x y m ++-+=,得22(1)(2)5x y m ++-=-,因为圆22:240C x y x y m ++-+=与y 1=,解得4m =当过()2,4P -的直线的斜率不存在时,直线l 的方程为2x =-, 圆心到直线2x =-的距离为1,符合题意;当过()2,4P -的直线的斜率存在时,设直线方程为()24y k x =++,1=,解得34k =-,则切线l 的方程为3542y x =-+,即34100x y +-=.所以满足条件的切线l 的方程为2x =-或34100x y +-=.四、【解答题】【详细答案】17.【解析】(本小题满分10分)(1)直线1212:330,:20,l ax y l x y l l ++=++=⊥, 所以30a +=,解得3a =-. (2)当12l l ∥时,3a =,直线1:330l ax y ++=为:10x y ++=, 所以直线1l 与2l之间的距离为:d ==18.【解析】(本小题满分12分) 因为已知()()1,4,2,2,2,4a b =-=-, (1)若()11,1,22c b ==-, 则144cos ,116a c a c a c -++-⋅===⋅+. (2)()()()223133ka b a b ka k a b b +⋅-=+-⋅-()()21132883240,k k=+-⨯-+--⨯=求得实数7427k =. 19.(1)由已知得113AA CC ==,1AD =,1A D =, 22211AD AA A D ∴+=,1AA AD ∴⊥,11//CC AA ,1CC BC ⊥,1AA BC ∴⊥,又AD BC B =,且AD ,BC ⊂平面ABC ,1AA ∴⊥平面ABC ,又CD ⊂平面ABC ,1CD AA ∴⊥,在正三角形ABC 中,D 为AB 的中点,则CD AB ⊥, 又1AB AA A ⋂=,CD平面11ABB A ;(2)如图所示,取BC 的中点为O ,11B C 的中点为Q ,由(1)得三棱柱的侧面与底面垂直,从而OA ,OB ,OQ 两两垂直,以O 为坐标原点,OB ,OQ ,OA 所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,则()1,0,0C -,12D ⎛ ⎝⎭,(1A ,()11,3,0B ,3,0,22CD ⎛⎫= ⎪ ⎪⎝⎭,(1CA =,()12,3,0CB =, 设平面1A CD 的法向量为(),,n x y z =,则100n CD n CA ⎧⋅=⎪⎨⋅=⎪⎩,即30230x z x y ⎧+=⎪⎨⎪++=⎩, 令1x =,则z =23y =,所以21,,3n ⎛= ⎝,设直线1CB 与平面1A CD 所成角为θ,则1113130sin cos ,65n CB n CB n CB θ⋅===⋅20.【解析】(本小题满分12分)(1)将两圆的方程作差即可得出两圆的公共弦所在的直线方程, 即()()222242240x y x y x y y +-+-+--=,化简得10x y --=, 所以圆1C 的圆心()0,1到直线10x y --=的距离为d ==则22215232AB r d ⎛⎫=-=-= ⎪⎝⎭,解得AB = 所以公共弦长为【解法一】设过两圆的交点的圆为()()222242240,1x y x y x y y λλ+-+++--=≠-,则2242240,1111x y x y λλλλλλ-+-+-=≠-+++;由圆心21,11λλλ-⎛⎫-⎪++⎝⎭在直线241x y +=上,则()414111λλλ--=++,解得13λ=, 所求圆的方程为22310x y x y +-+-=.【解法二】由(1)得1y x =-,代入圆222:420C x y x y +-+=,化简可得22410x x --=,解得x =;当x =时,y =;当x =y =;设所求圆的圆心坐标为(),a b ,则2222241a b a b a b ⎧⎛⎛⎛⎛⎪+=+ ⎨⎝⎭⎝⎭⎝⎭⎝⎭⎪+=⎩,解得3212a b ⎧=⎪⎪⎨⎪=-⎪⎩;所以222321722222r ⎛⎫⎛=-+--= ⎪ ⎪ ⎝⎭⎝⎭; 所以过两圆的交点且圆心在直线241x y +=上的圆的方程为22317222x y ⎛⎫⎛⎫-++= ⎪ ⎪⎝⎭⎝⎭21.(1)证明:取11A B 的中点M ,连接ME ,MB ,因为E ,F 分别是棱11A C ,BC 的中点,则11////ME B C BF ,111122ME B C BC BF ===, ∴四边形MEFB 为平行四边形,//EF MB ∴,EF ⊂/平面11ABB A ,MB ⊂平面11ABB A ,//EF ∴平面11ABB A .(2)解:在平面ACC 1中过点1C 作1C O AC ⊥于O ,连接OB , 平面11ACC A ⊥平面ABC ,平面11ACC A 平面ABC AC =,1C O ∴⊥平面ABC ,选择条件①:三棱锥1C ABC -的体积1111121332ABCV C O SC O =⋅⋅=⋅⋅⨯,1C O ∴= 在1Rt C OC中,1OC =,∴点O 为AC 的中点,OB AC ∴⊥,故以O 为原点,OB 、OC 、1OC 分别为x 、y 、z 轴建立如图所示的空间直角坐标系,则)B,(0,E -,1,02F ⎫⎪⎪⎝⎭,20,3G ⎛⎝⎭,∴33,22EF ⎛=⎝,50,,3EG ⎛= ⎝⎭, OB AC ⊥,平面ABC 平面11ACC A AC =,OB ⊂平面ABC , OB ∴⊥平面11ACC A ,∴平面11ACC A 即平面AEG 的一个法向量为()3,0,0=OB ,设平面EFG 的法向量为(),,n x y z =,则00nEF n EG ⎧⋅=⎨⋅=⎩,即3022503x y y z +=⎪⎨⎪=⎪⎩,令1y =,则3x =,z =,∴23,1,3n ⎛= ⎝⎭,cos ,||||3OB nOB n OB n ⋅∴===⋅⨯,显然二面角A EG F --为锐二面角,故二面角A EG F --. 选择条件①:1C C 与底面所成的角为60︒,160C CO ∴∠=︒,1OC ∴=,∴点O 为AC 的中点,OB AC ∴⊥,故以O 为原点,OB 、OC 、1OC 分别为x 、y 、z 轴建立如图所示的空间直角坐标系, 则)B,(0,E -,1,02F ⎫⎪⎪⎝⎭,20,3G ⎛⎝⎭,∴33,22EF ⎛=⎝,50,,3EG ⎛= ⎝⎭, OB AC ⊥,平面ABC 平面11ACC A AC =,OB ⊂平面ABC , OB ∴⊥平面11ACC A ,∴平面11ACC A 即平面AEG 的一个法向量为()3,0,0=OB ,设平面EFG 的法向量为(),,n x yz =,则00n EFn EG ⎧⋅=⎨⋅=⎩,即30253x y y z +=⎨⎪=⎪⎩,令1y =,则x =z =,∴23,1,3n ⎛=⎝⎭, cos ,||||3OB nOB n OB n ⋅∴===⋅⨯,显然二面角A EG F --为锐二面角,故二面角A EG F --. 选择条件①:11BB AA ∥,1A AE ∴∠即为异面直线1BB 与AE 所成的角,即130A AE ∠=︒, 12AA =,11A E =,160AA E ∴∠=︒,即160C CO ∠=︒,1OC ∴=,故以O 为原点,OB 、OC 、1OC 分别为x 、y 、z 轴建立如图所示的空间直角坐标系,则)B,(0,E -,1,022F ⎛⎫ ⎪ ⎪⎝⎭,20,,33G ⎛⎝⎭,∴33,22EF ⎛=⎝,50,,3EG ⎛= ⎝⎭, OB AC ⊥,平面ABC 平面11ACC A AC =,OB ⊂平面ABC , OB ∴⊥平面11ACC A ,∴平面11ACC A 即平面AEG 的一个法向量为()3,0,0=OB ,设平面EFG 的法向量为(),,n x y z =,则00n EF nEG ⎧⋅=⎨⋅=⎩,即3025033x y y z +=⎨⎪-=⎪⎩, 令1y=,则3x =,z =,∴23,1,3n ⎛= ⎝⎭,cos ,||||3OB nOB n OB n ⋅∴===⋅⨯,显然二面角A EG F --为锐二面角,故二面角A EG F --.22.【解析】(1)设(),P x y ,由于2PB PA =.=224x y +=. (2)①设存在定点Q 满足条件,设直线l 的方程为y kx b =+.设()()1122,,,E x y F x y .联立224y kx bx y =+⎧⎨+=⎩, 化为:22()4x kx b ++=,所以()2221240,Δ0kxkbx b +++-=>.212122224,,11kb b x x x x k k-∴+=-=++无论直线l 如何运动,x 轴都平分EDF ∠,则0kDE kDF +=所以1212033y y x x +=--.所以()()()()1221330kx b x kx b x +-++-=, 所以()()12122360kx x b k x x b +-+-=,所以()22242236011b kbk b k b k k -⋅---=++, 化为:33430..144k b k b y b x ⎛⎫+=∴=-∴=-+ ⎪⎝⎭,可得直线经过定点4,03⎛⎫⎪⎝⎭. ②如果斜率不存在时,直线过定点Q 时,满足题意.∴存在过定点4,03Q ⎛⎫⎪⎝⎭的直线l 与曲线C 相交于不同两点,E F ,无论直线l 如何运动,x 轴都平分EDF ∠.。
2023学年第一学期温州市高二期末教学质量统一检测数学试题(A 卷)(答案在最后)本试卷分选择题和非选择题两部分,共4页,满分150分,考试时间120分钟.考生注意:1.考生答题前,务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔填写在答题卷上.2.选择题的答案须用2B 铅笔将答题卷上对应题目的答案涂黑,如要改动,须将原填涂处用橡皮擦净.3.非选择题的答案须用黑色字迹的签字笔或钢笔写在答题卷上相应区域内,答案写在本试题卷选择题部分上无效.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知直线方程10x y ++=,则倾斜角为()A.45° B.60°C.120°D.135°【答案】D 【解析】【分析】求出直线的斜率,进而得到直线的倾斜角.【详解】直线10x y ++=的斜率为-1,设直线的倾斜角为θ,则tan 1θ=-,因为[)0,πθ∈,所以3π1354θ== .故选:D.2.在空间四边形ABCD 中,点M ,G 分别是BC 和CD 的中点,则()12AB BD BC ++=()A.ADB.GAC.AGD.MG【答案】C 【解析】【分析】根据已知可得2BD BC BG +=,代入即可得出答案.【详解】因为,点G 是CD 的中点,所以,2BD BC BG +=,所以,()12AB BD BC AB BG AG ++=+=.故选:C.3.已知函数()f x 满足()πsin cos 3f x f x x ⎛⎫=-⎪⎝⎭',则π3f ⎛⎫' ⎪⎝⎭的值为()A.B.2C.D.2【答案】A 【解析】【分析】求出导函数,代入π3x =,即可得出答案.【详解】由已知可得,()πcos sin 3f x f x x ⎛⎫'+⎪⎝⎭'=,则ππππ1πcos sin 3333232f f f ⎛⎫⎛⎫⎛⎫'''=+=+⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以,π3f ⎛⎫'= ⎪⎝⎭.故选:A.4.已知n S 为等比数列{}n a 的前n 项和,21nn S m =⋅-,则4a =()A.2B.4C.8D.16【答案】C 【解析】【分析】根据n a 与n S 的关系,求出当2n ≥时,12n n a m -=⋅,以及12n na a +=,22a m =.由等比数列的可得212221a m a m ==-,求出m 的值,代入得出12n n a -=,48a =.【详解】由已知可得,1121a S m ==-,当2n ≥时,()11121212nn n n n n a S S m m m ---=-=⋅--⋅-=⋅,所以,11222nn n n a m a m +-⋅==⋅,且22a m =.由{}n a 为等比数列,可知212221a ma m ==-,解得1m =.所以,11122n n n a --=⋅=,48a =.故选:C.5.已知圆锥有一个内接圆柱,当圆柱的侧面积最大时,圆柱与圆锥的高之比为()A.13B.12C.23D.2【答案】B 【解析】【分析】画出圆锥及其内接圆柱的轴截面,利用条件结合圆柱的侧面积公式求圆柱的侧面积,利用二次函数的图象和性质求解即可.【详解】设圆锥的底面半径为R ,高为h ;圆柱的底面半径为r ,高为x ,画出圆锥及其内接圆柱的轴截面,如图则r h x R h-=,∴h x xr R R R h h-==-.∴圆柱侧面积22π2π·2π·2π(0)x R S r x R R x x Rx x h h h ⎛⎫==-=-+<< ⎪⎝⎭.22ππ(0)22R h Rh x x h h ⎛⎫=--+<< ⎪⎝⎭∴当2hx =时,圆柱侧面积最大,此时圆柱与圆锥的高之比为21x h =.故选:B.6.传说古希腊毕达哥拉斯学派的数学家用沙粒或小石子来研究数.他们根据沙粒或小石头所排列的形状把数分成许多类,如图的1,5,12,22称为五边形数....,若五边形数所构成的数列记作{}n a ,下列不是数列{}n a 的项的是()A.35B.70C.145D.170【答案】D 【解析】【分析】根据已知得出的前几项,进而得出递推公式11,132,2n n n a a n n -=⎧=⎨+-≥⎩.根据累加法求得通项公式为232n n na -=.分别令n a 取35,70,145,170,求出n 的正整数解的情况,即可得出答案.【详解】由已知可得,11a =,21154322a a a ==+=+⨯-,322127332a a a ==+=+⨯-,4332210331a a a ==+=+⨯+,所以,132,2n n a a n n -=+-≥.当2n ≥时,累加法求和如下11a =,214a a =+,327a a =+,L132n n a a n -=+-,两边同时相加可得,12312114732n n a a a a a a a n -++++=+++++++- ,整理可得,()232131473222n n n n na n -+-=++++-==.对于A 项,令23352n n-=可得,23700n n --=,解得5n =或143n =-(舍去).所以,535a =,故A 项错误;对于B 项,令23702n n -=可得,231400n n --=,解得7n =或203n =-(舍去).所以,770a =,故B 项错误;对于C 项,令231452n n-=可得,232900n n --=,解得10n =或293n =-(舍去).所以,10145a =,故C 项错误;对于D 项,令231702n n -=可得,233400n n --=,解得*16n +=∉N (舍去)或*16n =∉N (舍去).所以,170不是数列{}n a 的项,故D 项正确.故选:D.7.已知F 为椭圆22143x y +=的左焦点,过点F 的直线l 交椭圆于A ,B 两点,125AF BF ⋅=,则直线AB 的斜率为()A.2± B. C. D.1±【答案】B 【解析】【分析】求出F 坐标,设()()1122,,,A x y B x y ,直线斜率为k ,倾斜角为θ,结合图象得出12,sin sin y y AF BF θθ==,表示出直线的方程为()1y k x =+,与椭圆联立,根据韦达定理得出2122943k y y k -=+,进而推得222129sin 543k k θ=+,根据三角函数基本关系式化简,得出方程,求解即可得出答案.【详解】易知2a =,b =,1c =,点()1,0F -.不妨设()()1122,,,A x y B x y ,120,0y y ><,直线斜率为k ,倾斜角为θ,易知12,sin sin y y AF BF θθ==,且直线的方程为()1y k x =+,联立直线与椭圆的方程()221143y k x x y ⎧=+⎪⎨+=⎪⎩,消去x 可得,()22243690k y ky k +--=.根据韦达定理可得,2122943k y y k -=+.又1212122212sin sin sin sin 5y y y y y y AF BF θθθθ-⋅=⋅===,所以有12212sin 5y y θ=-,所以,222129sin 543k k θ=+.又22tan k θ=,代入可得,()()22222222129tan 12sin 12tan sin 54tan 35sin cos 5tan 1θθθθθθθθ===+++所以,()22229tan 12tan 4tan 35tan 1θθθθ=++,解得2tan 3θ=,所以23k =,k =.故选:B.8.若函数()xxf x a b =+在()0,∞+上单调递增,则a 和b 的可能取值为()A.ln1.1a =,10b =B.ln11a =,0.1b =C.0.2e a =,0.8b =D.0.2e a -=, 1.8b =【答案】D 【解析】【分析】二次求导得到()ln ln xxf x a a b b '=+在()0,∞+上单调递增,要想()xxf x a b =+在()0,∞+上单调递增,只需()0ln ln 0f a b '=+≥,A 选项,构造()1ln h x x x =--,1x >,求导得到单调性,求出0.1ln1.10>>,得到10ln1.1100.11ab =<⨯=;B 选项,ln110.1ln11110ab ==<;C 选项,令()()1e x q x x =-,()0,1x ∈,求导得到其单调性,求出0.210.8e ab =<;D 选项,构造()e 1x w x x =--,()1,0x ∈-,求导得到单调性,得到0.2e 0.8->,从而求出0.21.8e 1.80.81ab -=>⨯>.【详解】()xxf x a b =+,0a >且1a ≠,0b >且1b ≠,()ln ln x x f x a a b b '=+,令()()g x f x '=,则()()()22ln ln 0x x g x a a b b '=+>恒成立,故()ln ln xxf x a a b b '=+在()0,∞+上单调递增,要想()xxf x a b =+在()0,∞+上单调递增,只需()0ln ln 0f a b '=+≥,即只需1≥ab ,A 选项,10ln1.1ab =令()1ln h x x x =--,1x >,则()1110x h x x x='-=->在()1,+∞上恒成立,故()1ln h x x x =--在()1,+∞上单调递增,故()()1.110h h >=,即0.1ln1.10>>,故10ln1.1100.11ab =<⨯=,A 错误;B 选项,由于ln1110<,故ln110.1ln11110ab ==<,B 错误;C 选项,0.20.8e ab =,令()()1e xq x x =-,()0,1x ∈,则()()e 1e e 0xxxq x x x '=-+-=-<恒成立,故()()1e xq x x =-在()0,1x ∈上单调递减,故()()0.201q q <=,即0.210.8e ab =<,C 错误;D 选项,0.21.8e ab -=,令()e 1xw x x =--,()1,0x ∈-,则()e 10xw x '=-<恒成立,故()e 1xw x x =--在()1,0x ∈-上单调递减,故()()0.200w w ->=,即0.2e 10.20.8->-=,故0.21.8e 1.80.8 1.441ab -=>⨯=>,D 正确.故选:D【点睛】比较大小或证明不等式常用的不等式放缩如下:e e x x ≥,e 1x x ≥+,()ln 10x x x ≤->,11ln1x x ≤-,111ln 11x x x⎛⎫<+< ⎪+⎝⎭等,根据不等式特征,选择合适的函数进行求解.二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得2分.9.以下选项中的两个圆锥曲线的离心率相等的是()A.22142x y -=与22142x y += B.22142x y -=与22124y x -=C.22142x y +=与22124x y += D.240y x +=与220x y +=【答案】CD 【解析】【分析】根据椭圆、双曲线以及抛物线的离心率公式,分别求出各个圆锥曲线的离心率,即可得出答案.【详解】对于A 项,双曲线22142x y -=的离心率为2e ===;椭圆22142x y +=的离心率为22e ===≠,故A 错误;对于B 项,双曲线22142x y -=的离心率为2e ===;双曲线22124y x -=的离心率为2e ===≠,故B 错误;对于C 项,椭圆22142x y +=的离心率为22e ===;椭圆22124x y +=的离心率为2e ===,故C 项正确;对于D 项,方程240y x +=可化为抛物线24y x =-,方程220x y +=可化为抛物线22x y =-,而且抛物线的离心率均为1,故D 项正确.故选:CD.10.已知函数()323f x x x =+,则()A.()13f ¢-=-B.()f x 有两个极值点C.()f x 在区间()3,3-上既有最大值又有最小值D.()()()511622f f f -+-+=【答案】ABD 【解析】【分析】求导得出导函数,代入=1x -,即可判断A 项;根据导函数得出函数的单调性,即可得出函数的极值,进而判断B 项;根据B 项的单调性与极值,结合函数的极值以及()3f -、()3f ,即可判断C 项;求出()51,1,22f f f ⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭的值,即可判断D 项.【详解】对于A 项,由已知可得,()236f x x x '=+,所以()1363f -=-=-'.故A 正确;对于B 项,解()0f x '=可得,0x =或2x =-.解()0f x '>可得,<2x -或0x >,所以()f x 在(),2∞--上单调递增,在()0,∞+上单调递增;解()0f x '<可得,20x -<<,所以()f x 在()2,0-上单调递减.所以,()f x 在2x =-处取得极大值,在0x =处取得极小值.故B 正确;对于C 项,由B 知,()f x 在2x =-处取得极大值,在0x =处取得极小值.因为()327270f -=-+=,()28124f -=-+=,()00f =,()3272754f =+=.显然()()32f f >-,所以,()f x 在区间()3,3-上没有最大值.故C 错误;对于D 项,因为325552532228f ⎛⎫⎛⎫⎛⎫-=-+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()1132f -=-+=,32111732228f ⎛⎫⎛⎫⎛⎫=+⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.所以,()511622f f f ⎛⎫⎛⎫-+-+= ⎪ ⎪⎝⎭⎝⎭.故D 项正确.故选:ABD.11.已知数列{}n a 的前n 项和为n S ,且10a <,120a a +>,则下列命题正确的是()A.若{}n a 为等差数列,则数列{}n S 为递增数列B.若{}n a 为等比数列,则数列{}n S 为递增数列C.若{}n a 为等差数列,则数列{}n a 为递增数列D.若{}n a 为等比数列,则数列{}n a 为递增数列【答案】ACD 【解析】【分析】AC 选项,得到公差0d >,110a d a +>->,结合等差数列求和公式得到110n n S S a nd +-=+>对1n ≥恒成立,A 正确,推出()11n n a a n +>≥得到C 正确;BD 选项,得到公比211a q a =<-,举出反例得到C 错误,由10a >,且11n na q a +=>,得到D 正确.【详解】因为10a <,120a a +>,所以20a >,且211a a a >=-,AC 选项,若{}n a 为等差数列,则公差210d a a =->,110a d a +>->,则()112n n n S na d -=+,110n n S S a nd +-=+>对1n ≥恒成立,则数列{}n S 为递增数列,A 正确;由于21a a >,故21a a >,又0d >,故()102n n a a n +>>≥,则()11n n a a n +>≥,数列{}n a 为递增数列,C 正确;BD 选项,若{}n a 为等比数列,则公比211a q a =<-,不妨设2q =-,11a =-,则232,4a a ==-,故1313S S =->=-,则数列{}n S 不为递增数列,B 错误;由于1q >,故11n na q a +=>,又10a >,故数列{}n a 为递增数列,D 正确.故选:ACD12.已知在直三棱柱111ABC A B C -中,14AA =,2AC BC ==,ACBC ⊥,点,,E F T 分别为棱1A A ,1C C ,AB 上的动点(不含端点),点M 为棱BC的中点,且1A E FC ==,则()A.1//A B 平面EFTB.M ∈平面EFTC.点A 到平面EFT距离的最大值为2D.平面1B EF 与平面ABC所成角正弦值的最小值为2【答案】ABC 【解析】【分析】以点C 为原点建立空间直角坐标系,设()04CF t t =<<,利用向量法逐一分析判断即可.【详解】如图,以点C 为原点建立空间直角坐标系,设()04CF t t =<<,则4,2AE t BT t =-=,AB =,故4BT t BA =,所以4tBT BA =,则()()()()2,0,4,0,0,,2,0,0,0,2,0E t F t A B -,故()112,2,0,,04422t t BT BA t t ⎛⎫==-=- ⎪⎝⎭ ,所以11,2,022T t t ⎛⎫-⎪⎝⎭,对于A ,()12,0,4A ,则()12,2,4A B =-- ,()111112,2,412,2,412244ET t t t t t A B ⎛⎫⎛⎫⎛⎫=---=-⋅-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以1//ET A B,则1//ET A B ,又ET ⊂平面EFT ,1A B ⊄平面EFT ,所以1//A B 平面EFT ,故A 正确;对于B ,()0,1,0M ,则()()110,1,,,2,,2,0,4222FM t FT t t t FE t ⎛⎫=-=--=- ⎪⎝⎭,假设M ∈平面EFT ,则,,,M E F T 四点共面,所以存在唯一实数对(),λμ,使得FT FE FM λμ=+,即()()11,2,2,0,420,1,22t t t t t λμ⎛⎫--=-+-⎪⎝⎭,所以()12212242t t t t t λμλμ⎧=⎪⎪⎪-=⎨⎪-=--⎪⎪⎩,解得14122t t λμ⎧=⎪⎪⎨⎪=-⎪⎩,所以,,,M E F T 四点共面,即M ∈平面EFT ,故B 正确;对于C ,()0,0,4AE t =-,设平面EFT 的法向量为(),,m x y z =,则有()2420m FE x t z m FM y tz ⎧⋅=+-=⎪⎨⋅=-=⎪⎩,令1z =,则,2y t x t ==-,所以()2,,1m t t =-,所以点A 到平面EFT 距离为m AEm⋅= 令()4,0,4p t p =-∈,则4t p =-,故m AEm⋅====,当127p =,即72p =时,max142m AEm ⎛⎫⋅ ⎪== ⎪⎝⎭ ,所以点A 到平面EFT 距离的最大值为2,故C 正确;对于D ,因为1AA ⊥平面ABC ,所以()10,0,4AA =即为平面ABC 的一条法向量,()10,2,4B ,则()10,2,4FB t =-,设平面1B EF 的法向量为(),,n a b c =,则有()()12420240n FE a t c n FB b t c ⎧⋅=+-=⎪⎨⋅=+-=⎪⎩ ,令1c =,则12,22a t b t =-=-,故12,2,12n t t ⎛⎫=-- ⎪⎝⎭,设平面1B EF 与平面ABC 所成的角为θ,则111cos cos ,AA n AA n AA nθ⋅===,则sin θ==,当125t =时,()min 2sin 3θ=,所以平面1B EF 与平面ABC 所成角正弦值的最小值为23,故D 错误.故选:ABC.【点睛】方法点睛:求空间角的常用方法:(1)定义法:由异面直线所成角、线面角、二面角的定义,结合图形,作出所求空间角,再结合题中条件,解对应的三角形,即可求出结果;(2)向量法:建立适当的空间直角坐标系,通过计算向量的夹角(两直线的方向向量、直线的方向向量与平面的法向量、两平面的法向量)的余弦值,即可求得结果.非选择题部分三、填空题:本大题共4小题,每小题5分,共20分.13.等差数列{}n a 的前n 项和为n S ,已知32432S S S =+,且41a =,则公差d =______.【答案】1-【解析】【分析】根据已知可推得3422a a ==,进而得出答案.【详解】由32432S S S =+可得,()32432S S S S -=-,即342a a =,又41a =,所以32a =,431d a a =-=-.故答案为:1-.14.已知圆1C :22870x y x +-+=和圆2C :2260x y y m +++=外离,则整数m 的一个取值可以是______.【答案】6(答案不唯一,或7或8)【解析】【分析】写出两圆的圆心及半径,利用两点之间坐标公式求出圆心的距离,利用两圆相离的关系列出不等式,求出整数m 的值.【详解】由题意,将两圆的方程化为标准方程:得:圆1:C ()2249x y -+=,圆2:C 22(3)9x y m ++=-,圆1C 的圆心为()4,0,圆2C 的圆心为()0,3-,圆1C 的半径为3,圆2C ,5=.所以3590m <->⎪⎩,解得59m <<,所以整数m 的取值可能是6,7,8.故答案为:6(答案不唯一,或7或8).15.两个正方形ABCD ,ABEF 的边长都是1,且它们所在的平面互相垂直,M 和N 分别是对角线AC 和BF 上的动点,则MN 的最小值为______.【答案】3【解析】【分析】建立空间坐标系,设点坐标的得到线段长度表达式,配方利用二次函数最小值.【详解】因为平面ABCD ⊥平面ABEF ,平面ABCD ⋂平面ABEF AB =,BC AB ⊥,BC ⊂平面ABCD ,根据面面垂直的性质定理知CB ⊥平面ABEF ,BC BE ∴⊥,从而BC ,AB ,BE 两两垂直,如图建立空间直角坐标系,设()()()()1,0,0,0,0,1,1,1,0,0,1,0A C F E (),,,0,2CM a BN b a b ⎡⎤==∈⎣⎦ ,∴(,0,1)22a a M -,(,,0)22b b N .22222()(0)(1)212222b a ab a b MN a a b =-+-+-=+--+=223221()2433a b a ⎛⎫-+-+ ⎪⎝⎭,当222,33a b ==时,MN 最小,最小值为33;故答案为:3316.已知双曲线C :22221x y a b-=的左、右焦点分别为1F ,2F ,l :3y x =是C 的一条渐近线,P 是C 第一象限上的点,直线1PF 与l 交于点Q ,12QF QF ⊥,则12tan 2F PF ∠=______.【答案】31-##13-+【解析】【分析】作出图形,合理转化条件,硬解出P 点的纵坐标,利用焦点三角形面积相等求解即可.【详解】如图连接2PF 设(3)Q x ,易知3y x =是C 的一条渐近线,3ba=,则3b a =,而2()1312b ce a a=+=+==,故2c a =,则双曲线的方程为222213x y a a -=,1(2,0)F a -,2(2,0)F a ,则1(23)F Q x a += ,2(23)Q F x a x =-,由12QF QF ⊥得222x a x -4+3=0,解得x a =,则()Q a ,故133F Q k a ==,则1FQ的方程为(2)3y x a =+2a x -=,联立方程组2x a =-,222213x y a a-=,设22(,)P x y ,11(,)T x y ,可得22890y a -+=,故122y y +=,21298y y a =,由图易得21y y >,则2132y y a -==,解得234y a =,易知12122F PF S c =⨯=V ,由焦点三角形面积公式得12212123tan tan 22F PFb a S F PF F PF ==∠∠V ,22123tan2a F PF =∠,解得12tan 12F PF∠=.1四、解答题:本大题共6小题,共70分.解答应写出文字说明.证明过程或演算步骤.17.如图,四棱锥P ABCD -的底面是边长为1的菱形,2π3ABC ∠=,PD ⊥平面ABCD ,1PD =,M 为PB的中点.(1)求证:平面MAC ⊥平面PDB ;(2)求CP 与平面MAC 所成角的正弦值.【答案】(1)证明过程见讲解.(2)24【解析】【分析】(1)利用直线与平面的垂直的性质,平面与平面的判断定理进行证明.(2)利用空间向量求解.【小问1详解】因为四边形ABCD 为菱形,所以AC BD ⊥.因为PD⊥平面ABCD ,因为AC ⊂平面ABCD ,所以PD AC ⊥,因为PD BD D ⋂=,,PD BD ⊂平面PBD ,所以AC ⊥平面PBD ,因为AC ⊂平面MAC ,所以平面MAC ⊥平面PDB .【小问2详解】连接BD ,交AC 于O ,因为四边形ABCD 为菱形,所以O 为BD 的中点,因为M 为PB 的中点,所以MO 为PBD △的中位线,所以MO PD ∥,因为PD⊥平面ABCD ,所以MO ⊥平面PBD ,如图建立空间直角坐标系.根据题意有0,,02C ⎛⎫ ⎪ ⎪⎝⎭,1,0,12P ⎛⎫- ⎪⎝⎭,所以13,,122CP ⎛⎫=-- ⎪ ⎪⎝⎭,易知平面MAC 的一个法向量为()1,0,0n =,设CP 与平面MAC 所成角为θ,则·sin cos ,4CP n CP n CP n θ==== ,所以CP 与平面MAC所成角的正弦值4.18.已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:-=5,求该圆的方程.x y20【答案】或【解析】【详解】(法一)设圆P的圆心为P(a,b),半径为r,则点P到x轴,y轴的距离分别为|b|,|a|.由题意可知圆P截x轴所得劣弧对的圆心角为90°圆P截x轴所得的弦长为,2|b|=,得r2=2b2,圆P被y轴所截得的弦长为2,由勾股定理得r2=a2+1,得2b2-a2=1.又因P(a,b)到直线x-2y=0的距离为,得d=,即有综前述得,解得,,于是r2=2b2=2所求圆的方程是,或(法二)设圆的方程为,令x=0,得,所以,得再令y=0,可得,所以,得,即,从而有2b2-a2=1.又因为P (a ,b )到直线x -2y=0的距离为,得d=,即有综前述得,解得,,于是r 2=2b 2=2所求圆的方程是,或19.已知数列{}n a 满足11n n n a a a +=+,112a =.(1)求证:数列1n a ⎧⎫⎨⎬⎩⎭为等差数列;(2)设数列{}n a 前n 项和为n S ,且2n n S S k ->对任意的*N n ∈恒成立,求k 的取值范围.【答案】(1)证明见解析(2)13k <【解析】【分析】(1)证明111n na a +-为定值即可;(2)先求出数列{}n a 的通项,要使2n n S S k ->对任意的*N n ∈恒成立,只需要()2min n n k S S <-即可,令2n n nb S S =-,利用单调法求出数列{}n b 的最小项即可得解.【小问1详解】因为11n n n a a a +=+,所以11111n n n n a a a a ++==+,即1111n na a +-=,所以数列1n a ⎧⎫⎨⎬⎩⎭是首项为112a =,公差为1的等差数列;【小问2详解】由(1)得11n n a =+,所以11n a n =+,要使2n n S S k ->对任意的*N n ∈恒成立,只需要()2min n n k S S <-即可,令2n n n b S S =-,则()1221222211n n n n n n n n n b b S S S S a a a ++++++-=---=+-11111111023222232422324n n n n n n n n =+->+-=->++++++++,所以数列{}n b 是递增数列,所以()1212min 13n b b S S a ==-==,即()2min 13n n S S -=,所以13k <.20.已知函数()ln f x x ax =-.(1)讨论()f x 的单调性;(2)求证:当0a >时,()4f x+<【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)求导,再分0a ≤和0a >两种情况讨论即可得解;(2)由(1)可得当0a >时,()max 1f x f a ⎛⎫= ⎪⎝⎭,要证()4f x +<,只需要证明()max 4f x +<即可,即ln 30a+>,令()()ln 30g a a a =+>,利用导数求出()g a 的最小值即可得证.【小问1详解】函数()ln f x x ax =-的定义域为()0,∞+,()11ax f x a x x'-=-=,当0a ≤时,()0f x '>,所以函数()f x 在()0,∞+上单调递增,当0a >时,令()0f x '>,则10x a<<,令()0f x '<,则1x a >,所以函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ∞⎛⎫+ ⎪⎝⎭上单调递减,综上所述,当0a ≤时,函数()f x 在()0,∞+上单调递增;当0a >时,函数()f x 在10,a ⎛⎫ ⎪⎝⎭上单调递增,在1,a ∞⎛⎫+ ⎪⎝⎭上单调递减;【小问2详解】由(1)可得当0a >时,()max 1ln 1f x f a a ⎛⎫==-- ⎪⎝⎭,要证()4f x +<()max 4f x +<即可,即ln 30a -+-,即ln 30a +->,令()()ln 30g a a a =+>,则()1g a a '==,当04a <<时,()0g a '<,当4a >时,()0g a '>,所以函数()g a 在()0,4上单调递减,在()4,∞+上单调递增,所以()()min 4ln 423ln 410g a g ==+-=->,所以ln 30a +>,所以当0a >时,()4f x +<21.已知点()2A 在双曲线C :22221x y a a -=上,(1)求C 的方程;(2)如图,若直线l 垂直于直线OA ,且与C 的右支交于P 、Q 两点,直线AP 、AQ 与y 轴的交点分别为点M 、N ,记四边形MPQN 与三角形APQ 的面积分别为1S 与2S ,求12S S 的取值范围.【答案】(1)221x y -=(2)3(,1)4【解析】【分析】(1)由点()2A在双曲线C上,代入求得a的值,即可求解;(2)根据题意,设直线l为2y x m=+,联立方程组,由0∆>,求得12m<-,且21212,4(1)x x x x m+=-=+,利用弦长公式求得则PQ=,进而得到229S m=-,再由直线AP和AQ的方程,得到21MNm=-,求得AMN的面积3521Sm=-,进而得到122511,24209S mS m m=-<--+,结合函数的性质,即可求解.【小问1详解】解:由点()2A在双曲线2222:1x yCa a-=上,可得22541a a-=,解得21a=,所以双曲线C的方程为221x y-=.【小问2详解】解:由直线l垂直于OA,可得直线l的斜率为12OAkk=-=,设直线l的方程为2y x m=+,且1122(,),(,)P x y Q x y,联立方程组2221y x mx y⎧=+⎪⎨⎪-=⎩,整理得224(1)0x m+++=,因为直线l与双曲线C的右支交于,P Q两点,则()()2212212Δ16(1)0410mx xx x m⎧=-+>⎪⎪+=->⎨⎪=+>⎪⎩,解得12m<-,可得21212,4(1)x x x x m+=-=+,则12PQ x=-===又由点A到直线220l y m -+=的距离为1293d m ==-,所以21292S PQ d m =⋅=-,直线AP的方程为2y x -=+,令0x =,可得2M y =+,直线AQ的方程为2y x -=+,令0x =,可得2N y =+则M N MN y y =-===21m==-,所以AMN 的面积3521S m =-,又由23312221S S S S S S S -==-,则12255111,(21)(29)24209S m S m m m m =-=-<----+,令()22542094(162f m m m m =-+=--,可得函数()f m 在1(,2-∞-上单调递减,且1(202f -=,所以()20f m >,所以123(,1)4S S ∈,即12S S 的取值范围为3(,1)4.【点睛】方法点睛:解答圆锥曲线的最值与范围问题的方法与策略:(1)几何转化代数法:若题目的条件和结论能明显体现几何特征和意义,则考虑利用圆锥曲线的定义、图形、几何性质来解决;(2)函数取值法:若题目的条件和结论的几何特征不明显,则可以建立目标函数,再求这个函数的最值(或值域),常用方法:①配方法;②基本不等式法;③单调性法;④三角换元法;⑤导数法等,要特别注意自变量的取值范围;(3)涉及直线与圆锥曲线的综合问题:通常设出直线方程,与圆锥曲线联立方程组,结合根与系数的关系,合理进行转化运算求解,同时抓住直线与圆锥曲线的几何特征应用.22.设函数()()2e axf x x =-.(1)若曲线()y f x =在点()()0,0f 处的切线方程为30y x b -+=,求a ,b 的值;(2)若当0x >时,恒有()2f x x >--,求实数a 的取值范围;(3)设*n ∈N 时,求证:()()2222223521ln 112231n n n n +++⋅⋅⋅+<+++++.【答案】(1)1,2a b =-=(2)(],1-∞(3)证明见解析【解析】【分析】(1)求导,根据题意结合导数的几何意义列式求解;(2)构建()()2g x f x x =++,由题意可知:当0x >时,恒有()0g x >,且()00g =,结合端点效应分析求解;(3)由(2)可知:当1,0a x ≤>时,()2e 20ax x x -++>,令1a =,12e x t =,可得221ln 1t t t -<+,再令1n t n +=,可得()()2221ln 1ln 1n n n n n +<+-++,利用累加法分析证明.【小问1详解】因为()()2e ax f x x =-,则()()e 2e ax ax f x a x =+-',则()02f =-,()012f a '=-,即切点坐标为()0,2-,斜率12k a =-,由题意可得:2300123b a --⨯+=⎧⎨-=⎩,解得1,2a b =-=.【小问2详解】令()()()22e 2axg x f x x x x =++=-++,则()()()e 2e 121e 1ax ax axg x a x ax a =+-+=-++',由题意可知:当0x >时,恒有()0g x >,且()00g =,则()01210g a =+'-≥,解得1a ≤,若1a ≤,则有:①当a<0时,()()()()242e 22e e 2e 1e 22ax ax ax ax ax x g x x x x x x x ---⎛⎫⎛⎫=-++=++=+-+ ⎪ ⎪++⎝⎭⎝⎭,因为0x >,可知()2e0ax x +>,令()41e 2ax h x x -=-++,因为41,e 2ax y y x -=-=+在()0,∞+内单调递增,可得()h x 在()0,∞+内单调递增,则()()00h x h >=,即()()()2e 0axg x x h x =+>,符合题意;②当0a =时,则()2220g x x x x =-++=>在()0,∞+内恒成立,符合题意;③当01a <≤时,令()()x g x ϕ=',则()()()e 21e 22e ax ax ax x a a ax a a ax a ϕ=+-+=-+',因为0x >,则22220ax a a -+>-+≥,e 0ax >,可知()()22e 0ax x a ax a ϕ+'=->在()0,∞+内恒成立,则()x ϕ在()0,∞+内单调递增,可得()()0220x a ϕϕ>=-≥,则()g x 在()0,∞+内单调递增,可得()()00g x ϕ>=,符合题意;综上所述:实数a 的取值范围为(],1-∞.【小问3详解】由(2)可知:当1,0a x ≤>时,()2e 20axx x -++>,令1a =,可得()2e 20xx x -++>,令12e 1x t =>,则2e ,2ln x t x t ==,则()22ln 22ln 20t t t -++>,整理得221ln 1t t t -<+,令*11,n t n n +=>∈N ,则22111ln 11n n n n n n +⎛⎫- ⎪+⎝⎭<+⎛⎫+ ⎪⎝⎭,整理得()()2221ln 1ln 1n n n n n +<+-++,则()()2222223521ln 2ln1,ln 3ln 2,,ln 1ln 12231n n n n n +<-<-⋅⋅⋅<+-++++,所以()()()2222223521ln 1ln1ln 112231n n n n n +++⋅⋅⋅+<+-=+++++.【点睛】方法点睛:两招破解不等式的恒成立问题(1)分离参数法第一步:将原不等式分离参数,转化为不含参数的函数的最值问题;第二步:利用导数求该函数的最值;第三步:根据要求得所求范围.(2)函数思想法第一步:将不等式转化为含待求参数的函数的最值问题;第二步:利用导数求该函数的极值;第三步:构建不等式求解.。
杭州2023学年第一学期高二年级期末数学试卷(答案在最后)本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共150分,考试时间120分钟第Ⅰ卷(选择题)一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线24x y =的准线方程为()A. 1x =-B. 1x = C. 1y =- D. 1y =【答案】C 【解析】【分析】根据抛物线标准方程即可求解.【详解】由题知,抛物线方程为24x y =,则其准线方程为1y =-.故选:C2.圆2240x y x +-=上的点到直线3490x y -+=的距离的最小值为()A.1 B.2C.4D.5【答案】A 【解析】【分析】求出圆的圆心和半径,利用点到直线的距离以及半径关系,求解即可.【详解】由2240x y x +-=,得22(2)4x y -+=,圆心为(2,0),半径2r =,圆心到直线3490x y -+=的距离3d ==,故圆上的点到直线3490x y -+=的距离的最小值为1d r -=.故选:A3.设平面α内不共线的三点A ,B ,C 以及平面外一点P ,若平面α内存在一点D 满足()2PD xPA x =+- 3PB xPC +,则x 的值为()A.0B.19-C.13-D.23-【答案】C【解析】【分析】由空间向量共面定理构造方程求得结果.【详解】 空间A B C D 、、、四点共面,但任意三点不共线,231x x x ∴+-+=,解得:13x=-.故选:C4.已知ABC 的三个顶点分别为()1,0,0A ,()0,2,0B ,()2,0,2C ,则BC 边上的中线长为()A.1B.C.D.2【答案】B 【解析】【分析】利用中点坐标公式与空间两点的距离公式即可得解.【详解】因为()0,2,0B ,()2,0,2C ,所以BC 的中点为()1,1,1,又()1,0,0A ,则BC =.故选:B.5.设{}n a 是公差为d 的等差数列,n S 是其前n 项和,且10a <,48S S =,则()A.0d <B.70a = C.120S = D.7n S S ≥【答案】C 【解析】【分析】根据等差数列的通项公式和前n 项求和公式,结合选项计算依次判断即可.【详解】A :由48S S =,得1143874822a d a d ⨯⨯+=+,则1112a d =-,又10a <,所以11102a d =-<,得0d >,故A 错误;B :7111166022a a d d d d =+=-+=>,故B 错误;C :121121111121266022S a d d d ⨯=+=-⨯+=,故C 正确;D :7177711135()()22222S a a d d d -=+=-+=,21(1)1222n n n n nS na d d --=+=,由21235n n -≥-,得15n ≤≤或7n ≥,即当15n ≤≤或7n ≥时,有7n S S ≥,故D 错误.故选:C6.用数学归纳法证明:()111212322n n f n +=++++≥ (*n ∈N )的过程中,从n k =到1n k =+时,()1f k +比()f k 共增加了()A.1项B.21k -项C.12k +项D.2k 项【答案】D 【解析】【分析】分别计算出()1f k +和()f k 的项数,进而作差即得结论.【详解】因为()1111232n f n =++++ ,所以()1111232k f k =++++ ,共2k 项,则()11111112321221k k k f k +++++++++=+ 共12k +项,所以()1f k +比()f k 共增加了1222k k k +-=项,故选:D7.若数列{}n a 满足递推关系式122nn n a a a +=+,且12a =,则2024a =()A.11012B.22023C.11011D.22021【答案】A 【解析】【分析】利用取倒数法可得11112n n a a +-=,结合等差数列的定义和通项公式即可求解.【详解】因为122n n n a a a +=+,所以1211122n n n n a a a a ++==+,所以11112n n a a +-=,又12a =,所以1112=a ,故数列1{}na 是以12为首项,以12为公差的等差数列,则1111(1)222n n n a =+-=,得2n a n=,所以20242120241012a ==.故选:A8.设双曲线Γ的中心为O ,右焦点为F ,点B 满足2FB OF =,若在双曲线Γ的右支上存在一点A ,使得OA OF =,且3OAB OBA ∠≥∠,则Γ的离心率的取值范围是()A.22,77⎡⎤-⎢⎥⎣⎦ B.21,7⎛⎤+ ⎥ ⎝⎦C.31,7⎛⎤+ ⎥ ⎝⎦D.33,77⎡⎤-+⎢⎥⎣⎦【答案】B 【解析】【分析】因为OA OF =,所以A 是以O 为圆心,为OF 半径的圆O 与Γ的交点,根据条件结合双曲线的定义得27480e e --≤求解即可.【详解】不妨设A 在第一象限.因为OA OF =,所以A 是以O 为圆心,为OF 半径的圆O 与Γ的交点.设Γ的左焦点为X ,则4XOA OAB OBA OBA ∠=∠+∠≥∠,122AFO XOA OBA ∠=∠≥∠,即A FAB FB ≥∠∠,FA BF ≤在圆O 上上取一点C ,使FC B F =,则FC FA ≥由双曲线的定义知2CX FC a -≤(a 是实半轴长),即()222224FC aC c C X F +≥=-(c 是半焦距),由2FB OF = ,得212c FB FO ==,得22222242c c c Xa C ⎛⎫+≥=⎭⎛⎫⎪⎝ ⎪⎭-⎝2274202a ac c +-≥,又离心率ce a =,所以27480e e --≤,又1e >,所以21,7e ⎛⎤⎝∈⎥⎦,故选:B二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知()f x ,()g x 在R 上连续且可导,且()00'≠f x ,下列关于导数与极限的说法中正确的是()A.()()()000Δ0ΔlimΔx f x x f x f x x→--'= B.()()()Δ0ΔΔlim2Δh f t h f t h f t h→+--'=C.()()()000Δ03Δlim3Δx f x x f x f x x→+-'= D.()()()()()()000Δ0000Δlim Δx g x x g x g x f x x f x f x →'+-='+-【答案】BCD 【解析】【分析】利用导数的定义逐个求解.【详解】()()()()()000000limlimx x f x x f x f x x f x f x xx∆→∆→+⎡⎤-∆--∆-'=-=-∆-∆⎣⎦,故A 错;()()()()()02limlim22h h f t h f t h f t h f t f t hh∆→∆→+∆--∆+∆-'==∆∆,故B 对;()()()00003lim3x f x x f x f x x∆→+∆-'=∆,由导数的定义知C 对;()()()()()()()()()()0000000000000limlimlim x x x g x x g x g x x g x g x x f x x f x f x x f x f x x ∆→∆→∆→+∆-'+∆-∆==+∆-'+∆-∆,故D 对;故选:BCD10.已知等差数列{}n a 的前n 项和为n S ,正项等比数列{}n b 的前n 项积为n T ,则()A.数列n S n ⎧⎫⎨⎬⎩⎭是等差数列 B.数列{}3na 是等比数列C.数列{}ln n T 是等差数列D.数列2n n T T +⎧⎫⎨⎬⎩⎭是等比数列【答案】ABD 【解析】【分析】根据等差数列与等比数列的定义及等差数列前n 项和公式为计算即可.【详解】设{}n a 的公差为d ,{}n b 的公比为q ,则2112222n n S d d d d S n a n n a n ⎛⎫⎛⎫=+-⇒=+- ⎪ ⎪⎝⎭⎝⎭,所以()1212n n S S d n n n --=≥-是常数,故A 正确;易知()1133323nn n n a a a d a n ---==≥是常数,故B 正确;由()1ln ln ln 2n n n T T b n --=≥不是常数,故C 错误;()221212n n n n n nT T b q n T T b +++-÷==≥是常数,故D 正确.故选:ABD11.已知O 为抛物线()2:20C y px p =>的顶点,直线l 交抛物线于,M N 两点,过点,M N 分别向准线2px =-作垂线,垂足分别为,P Q ,则下列说法正确的是()A.若直线l 过焦点F ,则以MN 为直径的圆与y 轴相切B.若直线l 过焦点F ,则PF QF⊥C.若,M N 两点的纵坐标之积为28p -,则直线l 过定点()4,0pD.若OM ON ⊥,则直线l 恒过点()2,0p 【答案】BCD 【解析】【分析】根据抛物线的焦半径公式结合条件判断AB ,设直线l 方程为x my b =+,与抛物线方程联立,利用韦达定理结合条件判断CD.【详解】设()()1122,,,M x y N x y ,选项A :MN 中点H 即以MN 为直径的圆的圆心横坐标为122x x +,则由抛物线的定义可知12MN MP NQ x x p =+=++,所以梯形PMNQ 的中位线122x x pGH ++=,所以点H 到y 轴的距离为1222x x p GH +-=不等于半径1222x x pMN ++=,A 说法错误;选项B :由抛物线的定义可知MP MF =,NF NQ =,又根据平行线的性质可得1MPF PFO MFP ∠=∠=∠=∠,2NQF QFO NFQ ∠=∠=∠=∠,因为()212π∠+∠=,所以π122∠+∠=,即PF QF ⊥,B 说法正确;选项C :由题意可知直线l 斜率不为0,设直线l 方程为x my b =+,联立22x my b y px=+⎧⎨=⎩得2220y pmy pb --=,22480p m pb ∆=+>,所以122y y pb =-,由21228y y pb p =-=-解得4b p =,满足0∆>,所以直线:4l x my p =+过定点()4,0p ,C 说法正确;选项D :因为OM ON ⊥,所以由0OM ON ⋅= 可得12110x x y y +=,所以221212022y y y y p p⋅+=①,将122y y pb =-,代入①得2b p =,满足0∆>,所以直线:2l x my p =+过定点()2,0p ,D 说法正确;故选:BCD12.布达佩斯的伊帕姆维泽蒂博物馆收藏的达·芬奇方砖是在正六边形上画了具有视觉效果的正方体图案(如图1),把三片这样的达·芬奇方砖拼成图2的组合,这个组合再转化成图3所示的几何体,若图3中每个正方体的棱长为1,则()A.122QC AD AB AA =+- B.若M 为线段CQ 上的一个动点,则BM BD ⋅的最小值为1C.点F 到直线CQ 的距离是3D.异面直线CQ 与1AD 【答案】ABD 【解析】【分析】根据空间向量线性运算法则判断A ,以1A 为坐标原点,1A F 所在直线为x 轴,11A B 所在直线为y 轴建立空间直角坐标系,利用空间向量法计算B 、C 、D .【详解】因为()1112222CQ CB BQ AD BA AD AA AB AB AD AA =+=-+=-+-=--+,所以()112222QC CQ AB AD AA AD AB AA =-=---+=+-,故A 正确;如图以1A为坐标原点,建立空间直角坐标系,则()0,1,1B -,()11,0,0D -,()1,0,1D --,()0,1,1Q -,()1,1,1C --,()0,0,1A -,()1,0,0F ,()1,1,0BD =-- ,()1,2,2CQ =- ,()11,0,1AD =- ,()2,1,1CF =-,对于B :因为M 为线段CQ 上的一个动点,设CM CQ λ=,[]0,1λ∈,则()()()1,0,01,2,21,2,2BM BC CM λλλλ=+=-+-=--,所以()121BM BD λλλ⋅=--+=+,所以当0λ=时()min1BM BD ⋅= ,故B 正确;对于C :CF ==63CF CQ CQ ⨯+-⨯-+⨯⋅==,所以点F到直线CQ的距离d ==,故C 错误;对于D:因为111cos ,6CQ AD CQ AD CQ AD ⋅===⋅ ,所以1sin ,6CQ AD ==,所以1tan ,CQ AD =,即异面直线CQ 与1AD ,故D 正确;故选:ABD .第Ⅱ卷(非选择题)三、填空题:本题共4小题,每小题5分,共20分.13.已知()sin exf x =,则()f x '=_____________.【答案】sin e cos x x ⋅【解析】【分析】利用复合函数求导函数方法求解即可.【详解】由()()()sin sin sin c e e e sin os x x x x x x f '=⋅=⋅''=,故答案为:sin e cos x x⋅14.若平面内两定点A ,B 间的距离为3,动点P 满足2PA PB=,则△PAB 面积的最大值为_____________.【答案】3【解析】【分析】首先求点P 的轨迹方程,再利用数形结合求PAB 面积的最大值.【详解】以AB 所在直线为x 轴,以线段AB 的中垂线为y 轴建立平面直角坐标系,设33(,),(,0),(,0)22P x y A B -,因为2PA PB=,即2PA PB =,=,整理为:22542x y ⎛⎫-+= ⎪⎝⎭,则点P 的轨迹是以点5,02⎛⎫⎪⎝⎭为圆心,半径为2的圆,所以点P 到AB 距离的最大值是2,所以PAB 面积的最大值是13232⨯⨯=.故答案为:315.已知点P 是抛物线24y x =上动点,F 是抛物线的焦点,点A 的坐标为()1,0-,则PFPA的最小值为________.【答案】2【解析】【分析】过P 做准线的垂线,根据定义可得PF PM =,将所求PFPA最小,转化为sin PM PAM PA =∠的最小,结合图像分析出,当PA 与抛物线相切时,PAM ∠最小,联立直线与抛物线方程,根据判别式求出PA 斜率k ,进而可得PAM ∠的值,代入所求即可。
高二数学试题
一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只
有一项是符合题目要求的)
1.若z(2-i)²=-i (i 是虚数单位),则复数z 的模为
A. B. C. D. 2.如图所示,△A'O B '表示水平放置的△AOB 的直观图,B '在x’轴上c あ 和x '轴垂直,且
AdO=1, 则△AOB 的边OB 上的高为 ( )
A. 4√2
B.2√2
C. 4
D. 2
3.设a=(- 1,3),b=(1. 1),x 容+kb,若b ⊥ā,则ā与こ夹角的余弦值为()
A. B. C. D.
4. 由于受到网络电商的冲击,某品牌的洗衣机在线下的销售受到影响,承受了一定的经济损失,现将A 地 区200家实体店该品牌洗衣机的月经济损失统计如图所示.估算月经济损失的平均数为m, 中位数为n, 则
A.50
B.75
C.90
D.100
5. 数学必修二101页介绍了海伦-秦九韶公式:我国南宋时期著名的数学家秦九韶在其著作《数书九章》
中,提出了已知三角形三边长求三角形的面积的公式,与著名的海伦公式完全等价,由此可以看出我国
古 代已具有很高的数学水平,其求法是:"以小斜幂并大斜幂减中斜幂,余半之,自乘于上.以小斜幂
乘大斜
幂减上,余四约之,为实.一为从隔,开平方得积. ”若把以上这段文字写成公式,即
, 其 中a 、b 、C 分别为△ABC 内 角A 、B 、C 的对边.若
,b=2, 则△ABC 面积S 的最大值为( )
A.√3
B.√5
C.2
D.√2
6. 在下列条件中,使M 与 A,B,C 一 定共面的是( )
A. OM=OA-OB-OC
B.
C. MA+MB+MC=0
D. OMA+OB+OC=0 7.已知直线L:xsinα+2y - 1=0, 直线l ₂:x-ycos αt3=0, 若L ⊥L ₂, 则tan 2α=( )
A. B. C. D.
8.若过直线3x-4y+2=0上一点A :(x-2)²+(y+3)²=4 作一条切线于切点T, 则|MT|的最 小值为( )
A.√ 10
B.4
C. 2√2
D. 2√3
二、 多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中, 有多个选项是符合题目要求的,全部选对的得5分,选对但不全的得2分,有选错的得
分 )
9.已知三条不同的直线l,m,n 和两个不同的平面α,β,下列四个命题中不正确的为( )
A 若m//α,n//α, 则 m//n
B. 若l//m,mcα, 则l//a
C. 若l//α,l/β, 则α//β
D. 若l//a,l ⊥β, 则α⊥β
10.如图,已知正方体ABCD-AB₁C₁D₁的棱长为2, E、F 分别为AD、AB 的中点,G 在线段A₁C 上运动(包含两个端点),以下说法正确的是( )
A. 三棱锥C-EFG 的体积与G 点位置无关
B. 若G 为AC 中点,三棱锥C-EFG 的体积》
C. 若G 为AC₁中点,则过点E 、F 、G 作正方体的截面,所得截面的面积是
D. 若G 与G 重合,则过点E 、F 、G 作正方体的截面,截面为三角形
11.在锐角△A B C中,若,且√3sinC+cosC=2,则a+b不能取到的值有( )
A. 2 C 2√3B D.√3
12.下列命题正确的是( )
A. 已知空间向量元=(3.13),i=(A)), 且而/后,则实数
B. 过点(3,2),斜率是的直线分程是2x-3y=0
C. 已知直线mx+2y+3=0 与直线3x+(m- 1)y+m=0 平行,则实数m 为2
D. 圆心为(2,1)且和x 轴相切的圆的方程是(x-2)²+(y- 1)²=1
三、 填空题(本大题共4小题,每小题5分,共20分 . 将答案填在题中横线上)
13.某单位有职工160人,其中业务人员96人,管理人员40人,后勤服务人员24人,为了了解职工基本 情况,要从中抽取一个容量为20的样本,如果采取比例分层抽样方式,那么抽到管理人员的人数为
14.已知正四棱锥的底面边长为4,侧棱长为2 √6,则该正四棱锥外接球的表面积为
15.已知△ABC 是边长为2的正三角形,点P 为平面内一点,且CP|=√3, 则FC.(PA+PB) 的取值范围
.
16.与圆x²+y²-4y=0 相交所得的弦长为2,且在y 轴上截距为-1的直线方程是
四 、解答题(本大题共4小题,共40分 . 解答时应写出必要的文字、证明过程或演算步
骤 )
17.如图, BC=2, 原点O 是 BC 的中点,点A 的坐标为
) , 点D 在平面yOz 上,且 ∠BDC=90°, ∠DCB=30° .
(1)求向量CD 的坐标.
(2)求AD 与BC 的夹角的余弦值.
18.某校后勤服务中心为了解学校食堂的服务质量情况,每学期会定期进行两次食堂服务质量抽样调查, 每次调查的具体做法是:随机调查50名就餐的教师和学生,请他们为食堂服务质量进行评分,师生根据
是
自己的感受从0到100分选取一个分数打分,根据这0名师生对食堂服务质量的评分绘制频率分布直方图.下图是根据本学期第二次抽样调查师生打众结果绘制的频率分布直方图,其中样本数据分组为[40, 50),(50,60),...,[90,100].
(1)学校规定:师生对食堂服务质量的评分平均分不得低于75分,否则将进行内部整顿.用每组数据的中点值代替该组数据,试估计该校师生对食堂服务质量评分的平均分,并据此回答食堂是否需要进行内部整顿;
(2)学校每周都会随机抽取3名学生和校长共进午餐,每次校长都会通过这3名学生了解食堂服务质量. 校长的做法是让学生在"差评、中评、好评”中选择一个作答,如果出现“差评”或者"没有出现好评",会立即让后勤分管处亲自检查食堂服务情况,若以本次抽取的50名学生样本频率分布直方图作为总体估计的
依据,并假定本周和校长共进午餐的学生中,评分在(40,60)之间的会给“差评”,评分在(60,80)之间的会给“中评”,评分在[80,100]之间的会给“好评”,已知学生都会根据自己的感受独立地给出评价不会受到其它因素的影响,试估计本周校长会让后勤分管处亲自检查食堂服务质量的概率.
19. 在四棱锥P-ABCD 中,侧面PAD ⊥底面ABCD, 底面ABCD 为直角梯形,BC//AD,
∠ADC=90°, 1,PA=PD,E,F 为AD,PC 的中点.
(I) 求证: PA//平面 BEF;
( Ⅱ) 若PC 与AB 所成角为45°,求PE 的长;
(Ⅲ)在(Ⅱ)的条件下,求二面角F-BE-A的余弦值
20.在△ABC中,角A、B、C的对边分别为a,·b,c.
(1)若(2a c)cosB=bcosC.b=Z;5, 求sinC的值.
(2)若△ABC为锐角三角形中,b²=4c²,求cosC的取值范围.。