高中物理竞赛教程(超详细)第十四讲固体和液体
- 格式:doc
- 大小:371.00 KB
- 文档页数:12
第2讲固体、液体与气体板块一主干梳理·夯实基础【知识点1】固体的微观结构、晶体和非晶体液晶的微观结构Ⅰ1.晶体和非晶体2.液晶(1)概念:许多有机化合物像液体一样具有流动性,而其光学性质与某些晶体相似,具有各向异性,这些化合物叫做液晶。
(2)有些物质在特定的温度范围之内具有液晶态;另一些物质,在适当的溶剂中溶解时,在一定的浓度范围具有液晶态。
(3)天然存在的液晶并不多,多数液晶是人工合成的。
(4)应用:显示器、人造生物膜。
【知识点2】液体的表面张力Ⅰ1.概念:液体表面各部分间互相吸引的力。
2.作用:液体的表面张力使液面具有收缩到表面积最小的趋势。
3.方向:表面张力跟液面相切,且跟液面的分界线垂直。
4.大小:液体的温度越高,表面张力越小;液体中溶有杂质时,表面张力变小;液体的密度越大,表面张力越大。
5.液体的毛细现象:浸润液体在细管中上升的现象,以及不浸润液体在细管中下降的现象,称为毛细现象。
【知识点3】饱和汽、未饱和汽和饱和汽压相对湿度Ⅰ1.饱和汽与未饱和汽(1)饱和汽:与液体处于动态平衡的蒸汽。
(2)未饱和汽:没有达到饱和状态的蒸汽。
2.饱和汽压(1)定义:饱和汽所具有的压强。
(2)特点:饱和汽压随温度而变。
温度越高,饱和汽压越大,且饱和汽压与饱和汽的体积无关。
3.湿度(1)定义:空气的潮湿程度。
(2)绝对湿度:空气中所含水蒸气的压强。
(3)相对湿度:在某一温度下,空气中水蒸气的压强与同一温度时水的饱和汽压之比,相对湿度(B)=水蒸气的实际压强(p1)同温度水的饱和汽压(p s)×100%。
【知识点4】气体分子运动速率的统计分布气体实验定律理想气体Ⅰ一、气体分子运动的特点1.分子很小,间距很大,除碰撞外不受力。
2.气体分子向各个方向运动的分子数目都相等。
3.分子做无规则运动,大量分子的速率按“中间多,两头少”的规律分布。
4.温度一定时,某种气体分子的速率分布是确定的,温度升高时,速率小的分子数减少,速率大的分子数增多,分子的平均速率增大,但不是每个分子的速率都增大。
最新高中物理竞赛讲义(完整版)目录最新高中物理竞赛讲义(完整版) (1)第0部分绪言 (5)一、高中物理奥赛概况 (5)二、知识体系 (5)第一部分力&物体的平衡 (6)第一讲力的处理 (6)第二讲物体的平衡 (8)第三讲习题课 (9)第四讲摩擦角及其它 (13)第二部分牛顿运动定律 (15)第一讲牛顿三定律 (16)第二讲牛顿定律的应用 (16)第二讲配套例题选讲 (24)第三部分运动学 (24)第一讲基本知识介绍 (24)第二讲运动的合成与分解、相对运动 (26)第四部分曲线运动万有引力 (28)第一讲基本知识介绍 (28)第二讲重要模型与专题 (30)第三讲典型例题解析 (38)第五部分动量和能量 (38)第一讲基本知识介绍 (38)第二讲重要模型与专题 (40)第三讲典型例题解析 (53)第六部分振动和波 (53)第一讲基本知识介绍 (53)第二讲重要模型与专题 (57)第三讲典型例题解析 (66)第七部分热学 (66)一、分子动理论 (66)二、热现象和基本热力学定律 (68)三、理想气体 (70)四、相变 (77)五、固体和液体 (80)第八部分静电场 (81)第一讲基本知识介绍 (81)第二讲重要模型与专题 (84)第九部分稳恒电流 (95)第一讲基本知识介绍 (95)第二讲重要模型和专题 (98)第十部分磁场 (107)第一讲基本知识介绍 (107)第二讲典型例题解析 (111)第十一部分电磁感应 (117)第一讲、基本定律 (117)第二讲感生电动势 (120)第三讲自感、互感及其它 (124)第十二部分量子论 (127)第一节黑体辐射 (127)第二节光电效应 (130)第三节波粒二象性 (136)第四节测不准关系 (139)第0部分绪言一、高中物理奥赛概况1、国际(International Physics Olympiad 简称Ipoh)① 1967年第一届,(波兰)华沙,只有五国参加。
2019-2020年高考物理固体、液体讲义新人教版温故自查1.晶体和非晶体(1)外形方面,晶体具有规则的;而非晶体没有.食盐晶体、明矾晶体、石英晶体的形状虽然各不相同,但都有规则的几何形状,所以食盐、明矾、石英都是晶体;有些晶体像雪花可以有各种不同的几何形状,非晶体没有规则的几何形状.几何形状(2)物理性质方面,晶体在不同方向上的物理性质不同,所以沿不同方向去测试晶体的物理性能时测量结果不同,即晶体表现;而非晶体则是各向同性的.这里说的物理性质包括弹性、硬度、导热性能、导电性能、光的折射性能等.(3)晶体具有一定的,而非晶体则没有一定的熔点.各向异性熔点(4)晶体和非晶体并不是绝对的,在适当的条件下可以相互转化,例如把晶体硫加热熔化(温度不超过300℃)后再倒进冷水中,会变成柔软的非晶体硫,再过一段时间又会转化成晶体硫.2.多晶体和非晶体(1)多晶体是由很多小单晶体(称为晶粒)杂乱无章的排列而成的,多晶体与非晶体都没有规则的几何形状,在物理性质上都表现为各向同性.(2)它们的区别是:多晶体有一定的熔点,而非晶体则没有一定的熔点.3.晶体的微观结构(1)假说的依据:假说的提出是根据晶体外形的规则性和物理性质的各向异性.(2)假说的验证:人们用X射线和电子显微镜对晶体的内部结构进行研究,证实了假说的正确性.(3)理论的内容:组成晶体的物质微粒(分子、原子或离子)是依照一定的规律在空间中整齐的排列的;微粒的运动特点表现为在一定的附近不停地做微小的振动.平衡位置考点精析多晶体的微观结构及性质多晶体是由很多杂乱无章的小晶粒排列而成的.平常看到的各种金属材料都是多晶体.把纯铁做成的样品放在显微镜下观察,可以看到它是由许许多多晶粒组成的,晶粒有大有小,最小的只有10-5cm,最大的也不超过10-3cm,每个晶粒都是一个小单晶体,具有各向异性的物理性质和规则的几何外形.因为晶粒在多晶体里杂乱无章的排列着,所以多晶体没有规则的几何外形,也不显示各向异性.多晶体在不同方向的物理性质是相同的,即各向同性,但多晶体与非晶体的明显区别在于是否有确定的熔点.注意正确理解晶体的各向异性晶体具有各向异性,并不是说每一种晶体都能够在各种物理性质上表现出各向异性,某种晶体可能只有某种或几种物理性质各向异性,例如云母、石膏晶体在导热性上表现出显著的各向异性——沿不同方向传热的快慢不同;方铅矿晶体在导电性上表现出显著的各向异性——沿不同方向的电阻率不同;立方形的铜晶体在弹性上表现出显著的各向异性——沿不同方向的弹性不同;方解石晶体在光的折射上表现出各向异性——沿不同方向的折射率不同.只有单晶体才会有各向异性的物理性质,多晶体与非晶体一样,物理性质表现为各向同性温故自查1.液体的表面张力实验表明,液体表面具有收缩的趋势.这是因为在液体内部分子引力和斥力可认为相等,而在表面层里分子间距较大(分子间距离大于r0)、分子比较稀疏,分子间的相互作用力表现为引力的缘故.液体各部分间相互吸引的力叫做.表面张力表面张力使液体自动收缩,液体表面有收缩到最小的趋势,表面张力的方向和液面相切;表面张力的大小除了跟边界线的长度有关外,还跟液体的、有关.种类温度2.液体的毛细现象液体和气体相接触的一个薄层叫表面层,液体和固体相接触的一个薄层叫附着层,浸润现象和不浸润现象产生的原因,主要是由附着层的性质决定的.附着层有缩小的趋势。
导读1、 判定简谐振动的定义是说,一个量随着时间变化规律满足0()cos()A t A t ωϕ=+ 如果是由动力学因素引起的,则可以归结为方程:2A A ω=-两边同时乘以A ,然后消去dt ,得到22211()022d A A ω+=也就说,本质上是需要寻找正比于A 平方的势能项和正比于A 平方的动能项。
这也就形成了判定简协振动的两种常见思路:受力分析和能量分析。
要注意的是,受力分析要精确到一阶小量,而能量分析要到第二阶(复习在平衡点的势能展开)。
比较好的运算习惯是在平衡点,设无量纲数作为展开变量。
简谐振动是广泛存在于物理世界中的,乃们好好学习…遇到两个自由度运动的时候,如果猜想其中一个是简谐振动,可以考虑用守恒量消去一个。
如果两个自由度看起来都在振动而且相互有关系,就要考虑是否要换元到独立变量了。
2、 相位计算这个是竞赛为了增加计算量而独有的一坨题目。
特点是包含不止一个运动过程,每次切换过程,需要用速度和位移,以及平衡点的位置,确定下一个过程的振幅的相位。
常见的办法是直接对比运动方程:0()cos()A t A t ωϕ=+;0()sin()A t A tωωϕ=-+或者比较能量方程。
这个计算过程相对来说较长,每个状态结束的时候,振幅、相位、位移、速度之类的一般会作为采分点出现。
例题精讲【例1】 如图,在半径为r 的光滑碗底,有两个质点,质量为均为m ,之间用一根长为r 的轻杆连接。
在平衡点上给一个小扰动,求简谐振动周期。
比较能量和受力两种做法。
第14讲简谐振动的判定和相位计算【例2】如图四根杆铰接,长度比为3:3:1:1。
短杆长度为l,两边吊着质量为m的重物,中间放着原长为22l的弹簧,弹簧下端和短杆一起铰接在地面上,平衡的时候杆和水平角度为45︒。
始终保持左右对称,求微小振动的时候系统的周期。
重力加速度为g。
比较受力分析和能量两种办法。
【例3】在光滑平面上放有一个质量为m的匀质圆环,内径为r。
固体、液体【学习目标】1.知道固体分为晶体和非晶体两类,知道晶体分为单晶体和多晶体;2.知道晶体的三个宏观特性,并借此培养学生的观察推理能力:3.了解晶体的微观结构,并能用微观结构理论解释晶体的特性.4.从分子的动理论观点来剖析液体的微观结构;5.研究气体和液体接触时形成的表面层以及液体和固体接触时形成的附着层发生的现象,然后再讨论表面层和附着层共同作用下产生的毛细现象;6.知道什么是液体的表面张力;7.知道什么是浸润和不浸润现象、条件以及毛细现象:8.知道什么是液晶,知道液晶的特点和用途.【要点梳理】要点一、固体1.晶体和非晶体(1)常见的晶体和非晶体○1常见的晶体:石英、云母、明矾、食盐、硫酸铜、蔗糖、味精、雪花.要点诠释:雪花是水蒸气凝华时形成的晶体,它们的形状虽然不同。
但都是六角形的图案.食盐晶体总是立方体形,明矾晶体总是八面体形,石英晶体(俗称水晶)的中间是一个六棱柱。
两端是六棱锥.○2常见的非晶体:玻璃、蜂蜡、松香、沥青、橡胶.(2)晶体和非晶体的主要区别有两点:○1在外形上,晶体具有规则的几何形状,而非晶体则没有.食盐晶体、明矾晶体、石英晶体的形状虽然各不相同,但都有规则的几何形状,所以食盐、明矾、石英都是晶体,有些晶体可以具有多种不同的几何形状,例如雪花可以有多种不同的几何形状,非晶体则没有规则的几何形状.○2在物理性质上,晶体具有各向异性,而非晶体则是各向同性的.物理性质包括弹性、硬度、导热性能、导电性能、光的折射性能等.晶体的各向异性是指晶体在不同方向上的物理性质不同.例如晶体在不同的方向上可以有不同的硬度、弹性、导热性能、导电性能等.另外,晶体有一定的熔点,而非晶体则是各向同性.2.单晶体和多晶体(1)单晶体和多晶体的定义○1单晶体具有规则的几何形状,外形都是由若干个平面围成的多面体,这样的固体叫单晶体.如果一块具有规则形状的晶体,把它碾成小颗粒后,这些小颗粒仍然保持与原来整块晶体形状相似的规则外形,这样的晶体叫单晶体.具有规则的几何形状,各向异性,有确定的熔点三个宏观特性的固体物质叫做单晶体.单个的晶体颗粒是单晶体.○2多晶体由于小晶粒杂乱无章地排列,使得这些金属和岩石不再具有规则的几何形状,我们把这样的晶体称为多晶体.如果一块晶体,它是由许多取向不同的单晶体颗粒(晶粒)组成的,这样的晶体叫做多晶体.由许多无规则排列晶粒构成的晶体称为多晶体.粘在一起的糖块是多晶体.(2)单晶体和多晶体的区别单晶体是一个完整的晶体,而多晶体是由很多小晶体(称为晶粒)杂乱无章地排列而组成的.单晶体在物理性质上表现为各向异性,而多晶体在物理性质上表现为各向同性.(3)单晶体和多晶体的联系多晶体和单晶体都有一定的熔点.(4)多晶体与非晶体的区别多晶体与非晶体的相同点:①都没有规则的几何形状;②在物理性质上都是各向同性的.多晶体与非晶体的区剐:多晶体有一定的熔点,而非晶体则没有一定的熔点.3.晶体的微观结构及特点(1)晶体的微观结构晶体内部的微粒是有规则地排列着的.1982年,扫描隧道显微镜的问世,使人们第一次观察到原子在物质表面的排列状况.(2)晶体的微观结构的特点○1组成晶体的物质微粒(分子、原子或离子),依照一定的规律在空间中整齐地排列.○2晶体中物质微粒的相互作用很强,微粒的热运动不足以克服它们的相互作用而远离.○3微粒的热运动表现为在一定的平衡位置附近不停地做微小的振动.(3)晶体微观结构的空间点阵组成晶体的物质微粒(原子、分子或离子),依照一定的规律在空间中排成整齐的行列.这种在空间中规则的排列称为空间点阵.空间点阵中的微粒相互作用很强,微粒的热运动主要表现为在一定平衡的位置附近做微小的振动.晶体形状的规则正是由于物质微粒排列的有规则造成的.如图所示是食盐的空间点阵示意图.食盐晶体是由钠离子和氯离子组成的,这两种离子在空间中三个互相垂直的方向上,都是等距离地交错排列的,因而食盐具有立方体的外形.4.晶体与非晶体的辨别晶体与非晶体的区别主要表现在有无确定的熔点,而不能靠是否有规则的几何形状辨别,因为虽然单晶体有规则的几何外形,但多晶体与非晶体一样都没有规则的几何外形.因此解题时应认真审-题,抓住有无熔点这一特性作出正确的判断.5.关于晶体物理性质的各向异性(1)有些晶体沿不同方向导热或导电性能不同,有些晶体沿不同方向的光学性质不同,这类现象称为各向异性.(2)只有单晶体才会有各向异性的物理性质,多晶体与非晶体一样,物理性质是各向同性的.(3)某种晶体可能只有某种或几种物理性质各向异性,其他物理性质各向同性,并不是所有的物理性质都表现各向异性.6.如何用微观结构理论解释晶体的特性(1)对各向异性的微观解释如图所示,这是在一个平面上晶体物质微粒的排列情况.从图中可以看出,在沿不同方向所画的、、上,物质微粒的数目不同.直线AB上物质微粒较多,直线AD上较少,直等长线段AB AC AD线AC上更少.正因为在不同方向上物质微粒的排列情况不同,才引起晶体在不同方向上物理性质的不同.(2)对熔点的解释给晶体加热到一定温度时,一部分微粒有足够的动能,克服微粒间的作用力,离开平衡位置,使规则的排列被破坏,晶体开始熔化,熔化时晶体吸收的热量全部用来破坏规则的排列,温度不发生变化.(3)有的物质有几种晶体,如何解释这是由于它们的物质微粒能够形成不同的晶体结构.例如碳原子按不同的结构排列可形成石墨和金刚石,二者在物理性质上有很大不同.白磷和红磷的化学成分相同,但白磷具有立方体结构,而红磷具有与石墨一样的层状结构.7.对晶体的各向异性的正确理解在物理性质上,晶体具有各向异性,而非晶体则是各向同性的.通常所说的物理性质包括弹性、硬度、导热性、导电性、光的折射等.晶体的各向异性是指晶体在不同方向上的物理性质不同。
⾼中物理第⼆章《固体、液体和⽓体》知识梳理⾼中物理第⼆章《固体、液体和⽓体》知识梳理⼀、液体的微观结构1.特点液体中的分⼦跟固体⼀样是密集在⼀起的,液体分⼦的热运动主要表现为在平衡位置附近做微⼩的振动,但液体分⼦只在很⼩的区域内做有规则的排列,这种区域是暂时形成的,边界和⼤⼩随时改变,有时⽡解,有时⼜重新形成,液体由⼤量这种暂时形成的⼩区域构成,这种⼩区域杂乱⽆章地分布着.联想:⾮晶体的微观结构跟液体⾮常相似,可以看作是粘滞性极⼤的流体,所以严格说来,只有晶体才能叫做真正的固体.2.应⽤液体的微观结构可解释的现象(1液体表现出各向同性:液体由⼤量暂时形成的杂乱⽆章地分布着的⼩区域构成,所以液体表现出各向同性.(2液体具有⼀定的体积:液体分⼦的排列更接近于固体,液体中的分⼦密集在⼀起,相互作⽤⼒⼤,主要表现为在平衡位置附近做微⼩振动,所以液体具有⼀定的体积.(3液体具有流动性:液体分⼦能在平衡位置附近做微⼩的振动,但没有长期固定的平衡位置,液体分⼦可以在液体中移动,这是液体具有流动性的原因.(4液体的扩散⽐固体的扩散要快:流体中的扩散现象是由液体分⼦运动产⽣的,分⼦在液体⾥的移动⽐在固体中容易得多,所以液体的扩散要⽐固体的扩散快.⼆、液体的表⾯张⼒1.液体的表⾯具有收缩趋势缝⾐针硬币浮在⽔⾯上,⽤热针刺破铁环上棉线⼀侧的肥皂膜,另⼀侧的肥皂膜收缩将棉线拉成弧形.联想:液体表⾯就像张紧的橡⽪膜.2.表⾯层(1液体跟⽓体接触的表⾯存在⼀个薄层,叫做表⾯层.(2表⾯层⾥的分⼦要⽐液体内部稀疏些,分⼦间距要⽐液体内部⼤.在表⾯层内,分⼦间的距离⼤,分⼦间的相互作⽤⼒表现为引⼒.联想:在液体内部,分⼦间既存在引⼒,⼜存在斥⼒,引⼒和斥⼒的数量级相等,在通常情况下可认为它们是相等的.3.表⾯张⼒(1含义:液⾯各部分间相互吸引的⼒叫做表⾯张⼒.(2产⽣原因:表⾯张⼒是表⾯层内分⼦⼒作⽤的结果.表⾯层⾥分⼦间的平均距离⽐液体内部分⼦间的距离⼤,于是分⼦间的引⼒和斥⼒⽐液体内部的分⼦⼒和斥⼒都有所减少,但斥⼒⽐引⼒减⼩得快,所以在表⾯层上划⼀条分界线MN时(图1,两侧的分⼦在分界线上相互吸引的⼒将⼤于相互排斥的⼒.宏观上表现为分界线两侧的表⾯层相互拉引,即产⽣了表⾯张⼒.图1(3作⽤效果:液体的表⾯张⼒使液⾯具有收缩的趋势.如吹出的肥皂泡呈球形,滴在洁净玻璃板上的⽔银滴呈球形.草叶上的露球、⼩⽔银滴要收缩成球形.深化:表⾯张⼒使液体表⾯具有收缩趋势,使液体表⾯积趋于最⼩.在体积相等的各种形状的物体中球形体积最⼩.三、浸润和不浸润1.定义浸润:⼀种液体会润湿某种固体并附在固体的表⾯上,这种现象叫做浸润.不浸润:⼀种液体不会润湿某种固体,也就不会附在这种固体的表⾯,这种现象叫做不浸润.2.决定液体浸润的因素液体能否浸润固体,取决于两者的性质,⽽不单纯由液体或固体单⽅⾯性质决定,同⼀种液体,对⼀些固体是浸润的,对另⼀些固体是不浸润的,⽔能浸润玻璃,但不能浸润⽯蜡,⽔银不能浸润玻璃,但能浸润锌.误区:不能以偏概全地说“⽔是浸润液体”,“⽔银是不浸润液体”.3.浸润和不浸润的微观解释(1附着层:跟固体接触的液体薄层,其特点是:附着层中的分⼦同时受到固体分⼦和液体内部分⼦的吸引.(2解释:当⽔银与玻璃接触时,附着层中的⽔银分⼦受玻璃分⼦的吸引⽐内部⽔银分⼦弱,结果附着层中的⽔银分⼦⽐⽔银内部稀硫,这时在附着层中就出现跟表⾯张⼒相似的收缩⼒,使跟玻璃接触的⽔银表⾯有缩⼩的趋势,因⽽形成不浸润现象.相反,如果受到固体分⼦的吸引相对较强,附着层⾥的分⼦就⽐液体内部更密,在附着层⾥就出现液体分⼦互相排斥的⼒,这时跟固体接触的表⾯有扩展的趋势,从⽽形成浸润现象.总之,浸润和不浸润现象是分⼦⼒作⽤的表现.深化:浸润不浸润取决于固体分⼦对附着层分⼦的⼒和液体分⼦间⼒的关系.4.弯⽉⾯液体浸润器壁时,附着层⾥分⼦的推斥⼒使附着层有沿器壁延展的趋势,在器壁附近形成凹形⾯.液体不浸润器壁时,附着层⾥分⼦的引⼒使附着层有收缩的趋势,在器壁附近形成凸形⾯.如图2所⽰.图2深化:“浸润凹,不浸凸”.四、⽑细现象1.含义浸润液体在细管中上升的现象,以及不浸润液体在细管中下降的现象,称为⽑细现象.2.特点(1浸润液体在⽑细管⾥上升后,形成凹⽉⾯,不浸润液体在⽑细管⾥下降后形成凸⽉⾯.(2⽑细管内外液⾯的⾼度差与⽑细管的内径有关,⽑细管内径越⼩,⾼度差越⼤.误区:在这⾥很多同学误认为只有浸润液体才会发⽣浸润现象.3.⽑细现象的解释当⽑细管插⼊浸润液体中时,附着层⾥的推斥⼒使附着层沿管壁上升,这部分液体上升引起液⾯弯曲,呈凹形弯⽉⾯使液体表⾯变⼤,与此同时由于表⾯层的表⾯张⼒的收缩作⽤,管内液体也随之上升,直到表⾯张⼒向上的拉伸作⽤与管内升⾼的液体的重⼒相等时,达到平衡,液体停⽌上升,稳定在⼀定的⾼度.联想:利⽤类似的分析,也可以解释不浸润液体的⽑细管⾥下降的现象.五、液晶1.定义有些化合物像液体⼀样具有流动性,⽽其光学性质与某些晶体相似,具有各向异性,⼈们把处于这种状态的物质叫液晶.深化:液晶是⼀种特殊的物质状态,所处的状态介于固态和液态之间.2.液晶的特点(1分⼦排列:液晶分⼦的位置⽆序使它像液体,排列有序使它像晶体.从某个⽅向上看液晶的分⼦排列⽐较整齐;但是从另⼀个⽅向看,液晶分⼦的排列是杂乱⽆章的.辨析:组成晶体的物质微粒(分⼦、原⼦或离⼦依照⼀定的规律在空间有序排列,构成空间点阵,所以表现为各向异性;液体却表现为分⼦排列⽆序性和流动性;液晶呢?分⼦既保持排列有序性,保持各向异性,⼜可以⾃由移动,位置⽆序,因此也保持了流动性.(2液晶物质都具有较⼤的分⼦,分⼦形状通常是棒状分⼦、碟状分⼦、平板状分⼦.3.液晶的物理性质(1液晶具有液体的流动性;(2液晶具有晶体的光学各向异性.液晶的光学性质对外界条件的变化反应敏捷.液晶分⼦的排列是不稳定的,外界条件和微⼩变动都会引起液晶分⼦排列的变化,因⽽改变液晶的某些性质,例如温度、压⼒、摩擦、电磁作⽤、容器表⾯的差异等,都可以改变液晶的光学性质.如计算器的显⽰屏,外加电压使液晶由透明状态变为浑浊状态.4.液晶的⽤途液晶可以⽤作显⽰元件,液晶在⽣物医学、电⼦⼯业,航空⼯业中都有重要应⽤.联想:液晶可⽤显⽰元件:有⼀种液晶,受外加电压的影响,会由透明状态变成浑浊状态⽽不再透明,去掉电压,⼜恢复透明,当输⼊电信号,加上适当电压,透明的液晶变得浑浊,从⽽显⽰出设定的⽂字或数码.。
第2讲 固体、液体和气体的性质必备知识新学法基础落实一、固体1.分类:固体分为__________和__________两类.晶体又分为__________和__________.[主干知识·填一填]晶体非晶体单晶体多晶体2.晶体与非晶体的比较 分类 比较晶体非晶体单晶体多晶体外形有确定的几何外形无确定的几何外形无确定的几何外形熔点确定__________不确定物理物质各向异性__________各向同性典型物质石英、云母、明矾、食盐玻璃、橡胶转化晶体和非晶体在一定条件下可以__________确定各向同性转化二、液体1.液体的表面张力(1)作用:液体的表面张力使液面具有__________的趋势.(2)方向:表面张力跟液面相切,跟这部分液面的分界线__________.(3)大小:液体的温度越高,表面张力越小;液体中溶有杂质时,表面张力变小;液体的密度越大,表面张力越大.2.液晶的物理性质(1)具有__________的流动性.(2)具有__________的光学各向异性.(3)在某个方向上看,其分子排列比较整齐,但从另一方向看,分子的排列是杂乱无章的.收缩垂直液体晶体三、气体分子运动速率的统计分布1.气体分子运动的特点(1)气体分子间距较__________,分子力可以__________,因此分子间除碰撞外不受其他力的作用,故气体能充满__________.(2)分子做无规则的运动,速率有大有小,且时时变化,大量分子的速率按“中间多,两头少”的规律分布.(3)温度升高时,速率小的分子数__________,速率大的分子数__________,分子的平均速率将__________,但速率分布规律不变.大忽略整个空间减少增多增大单位面积单位面积(3)决定因素:①宏观上:决定于气体的__________和__________.②微观上:决定于分子的__________和_____________.(4)常用单位及换算关系:①国际单位制单位:__________,符号:Pa ,1Pa =1 N/m 2.②常用单位:_______________(atm);厘米汞柱(cmHg).③换算关系:1 atm =__________ cmHg =1.013×105 Pa≈1.0×105 Pa.温度体积平均动能分子数密度帕斯卡标准大气压761.区别晶体和非晶体看有无固定熔点,而区分单晶体和多晶体看是否能表现出各向异性.2.表面张力使液体的表面趋于最小,体积相同的情况下,球形的表面积最小.3.气体的压强可通过分析与气体接触的液柱或活塞的受力,利用平衡条件或牛顿第二定律列式求解.4.理想气体是理想化的物理模型,其内能只与气体温度有关,与气体体积无关.[规律结论·记一记]一、易混易错判断1.晶体一定有规则的外形.( )2.晶体不一定各向异性,单晶体一定各向异性.( )3.液体的表面张力其实质是液体表面分子间的引力.( )4.温度升高,物体内每一个分子运动的速率都增大.( )5.理想气体的内能是所有气体分子的动能之和.( )6.蒸汽处于饱和状态时没有了液体分子与蒸汽分子间的交换.( )7.饱和汽压是指饱和汽的压强.( )[必刷小题·测一测]×√√×√×√二、经典小题速练1.(粤教版选择性必修第三册P 48T 5)关于液体的表面张力,下列说法正确的是( )A .液体表面张力使其体积有收缩到最小的趋势B .液体表面层的分子分布比内部密C .液体表面张力使其表面积有收缩到最小的趋势D .液体表面层分子之间只有引力而无斥力解析:C 液体表面层分子分布比液体内部的稀疏,分子之间表现为引力,液体表面张力有使液体表面积收缩到最小的趋势,选项C 正确,A 、B 、D 错误.C2.(粤教版选择性必修第三册P 44T 2)关于晶体与非晶体,下列说法正确的是( )A .晶体能溶于水,而非晶体不能溶于水B .晶体内部的物质微粒是有规则地排列,而非晶体内部的物质微粒是不规则地排列C .晶体内部的物质微粒是静止的,而非晶体内部的物质微粒在不停地运动着D .在物质内部的各个平面上,微粒数相等的是晶体,不相等的是非晶体解析:B 并非所有晶体都溶于水,例如各种金属晶体,故A 错误;晶体内部的物质微粒是有规则地排列的,呈“空间布阵”结构,而非晶体内部微粒排列是不规则的,B 正确;晶体和非晶体内部微粒都在不停地运动着,C 错误;在物质内部的各个平面上,微粒数相等的可能是多晶体,也可能是非晶体,D 错误.B3.(鲁科版选择性必修第三册P 29T 3)如图所示,由导热材料制成的汽缸和活塞将一定质量的理想气体封闭在汽缸内,活塞与汽缸壁之间无摩擦,活塞上方存有少量液体.将一细管插入液体,因虹吸现象,活塞上方的液体逐渐流出.在此过程中,大气压强与外界的温度保持不变.关于封闭在汽缸内的理想气体,下列说法正确的是( )A .分子间的引力和斥力都增大B .在单位时间内,气体分子对活塞撞击的次数增多C .在单位时间内,气体分子对活塞的冲量保持不变D.气体分子的平均动能不变D解析:D 汽缸导热,环境温度不变,因此被封闭的气体温度不变,分子平均动能不变,D正确;缸内为理想气体,不考虑分子间的作用力,A错误;液体被逐渐吸出的过程中,缸内气体的压强减小,体积增大,单位时间内气体分子对活塞撞击的次数减少,对活塞的冲量减少,B、C均错误.关键能力新探究思维拓展命题点一 气体的性质及气体压强的计算(师生互动)[核心整合]1.气体的分子动理论(1)气体分子间的作用力:气体分子之间的距离远大于分子直径,气体分子之间的作用力十分微弱,可以忽略不计,气体分子间除碰撞外无相互作用力.(2)气体分子的速率分布:表现出“中间多,两头少”的统计分布规律.(3)气体分子的运动方向:气体分子运动时是杂乱无章的,但向各个方向运动的机会均等.(4)气体分子的运动与温度的关系:温度一定时,某种气体分子的速率分布是确定的,速率的平均值也是确定的,温度升高,气体分子的平均速率增大,但不是每个分子的速率都增大.2.求解压强问题常见的四种方法(1)液片法:选取假想的液体薄片(自身重力不计)为研究对象,分析液片两侧受力情况,建立平衡方程,消去面积,得到液片两侧压强相等方程,求得气体的压强.(2)力平衡法:选取与气体接触的液柱(或活塞)为研究对象进行受力分析,得到液柱(或活塞)的受力平衡方程,求得气体的压强.(3)等压面法:在连通器中,同一种液体(中间不间断)同一深度处压强相等.(4)牛顿第二定律法:选取与气体接触的液体(或活塞)为研究对象,进行受力分析,利用牛顿第二定律列方程求解.(1)若已知大气压强为p 0,图中各装置均处于静止状态,图中液体密度均为ρ,求被封闭气体的压强.例(2)如图中两个汽缸质量均为M,内部横截面积均为S,两个活塞的质量均为m,左边的汽缸静止在水平面上,右边的活塞和汽缸竖直悬挂在天花板下.两个汽缸内分别封闭有一定质量的空气A、B,大气压为p0,求封闭气体A、B的压强.(3)如图所示,光滑水平面上放有一质量为M的汽缸,汽缸内放有一质量为m的可在汽缸内无摩擦滑动的活塞,活塞面积为S.现用水平恒力F向右推汽缸,最后汽缸和活塞达到相对静止状态,求此时缸内封闭气体的压强p.(已知外界大气压为p0)[题组突破]1.(气体分子运动的统计规律)(多选)氧气分子在不同温度下的速率分布规律如图所示,横坐标表示速率,纵坐标表示某一速率内的分子数占总分子数的百分比,由图可知( )A .同一温度下,氧气分子呈现“中间多,两头少”的分布规律B .随着温度的升高,每一个氧气分子的速率都增大C .随着温度的升高,氧气分子中速率小的分子所占的比例增大D.①状态的温度比②状态的温度低AD解析:AD 由图可知,同一温度下,氧气分子呈现“中间多,两头少”的分布规律,A正确;随着温度的升高,绝大部分氧气分子的速率都增大,但有少量分子的速率可能减小,B错误;随着温度的升高,氧气分子中速率小的分子所占的比例减小,C错误;①状态的温度比②状态的温度低,D正确.2.(液柱封闭压强的计算)(多选)竖直平面内有一粗细均匀的玻璃管,管内有两段水银柱封闭两段空气柱a 、b ,各段水银柱高度如图所示,大气压强为p 0,重力加速度为g ,水银密度为ρ.下列说法正确的是( )A .空气柱a 的压强为p 0+ρg (h 2-h 1-h 3)B .空气柱a 的压强为p 0-ρg (h 2-h 1-h 3)C .空气柱b 的压强为p 0+ρg (h 2-h 1)D .空气柱b 的压强为p 0-ρg (h 2-h 1)AC解析:AC 从开口端开始计算,右端大气压强为p0,同种液体同一水平面上的压强相同,所以b气柱的压强为p b=p0+ρg(h2-h1),而a气柱的压强为p a=p b-ρgh3=p0+ρg(h2-h1-h3),故AC正确,BD错误.3.(活塞封闭压强的计算)汽缸的横截面积为S,质量为m的梯形活塞上面是水平的,下面与右侧竖直方向的夹角为α,如图所示,当活塞上放质量为M的重物时处于静止状态.设外部大气压强为p0,若活塞与缸壁之间无摩擦.重力加速度为g,求汽缸中气体的压强.4.(加速运动系统中封闭气体压强的计算)如图所示,一汽缸水平固定在静止的小车上,一质量为m,面积为S的活塞将一定量的气体封闭在汽缸内,平衡时活塞与汽缸底相距为L.现让小车以一较小的水平恒定加速度向右运动,稳定时发现活塞相对于汽缸移动了距离d.已知大气压强为p0,不计汽缸和活塞间的摩擦,且小车运动时,大气对活塞的压强仍可视为p0,整个过程温度保持不变.求小车加速度的大小.2.液体表面张力形成原因表面层中分子间的距离比液体内部分子间的距离大,分子间的相互作用力表现为引力表面特性表面层分子间的引力使液面产生了表面张力,使液体表面好像一层绷紧的弹性薄膜,分子势能大于液体内部的分子势能方向和液面相切,垂直于液面上的各条分界线效果表面张力使液体表面具有收缩趋势,使液体表面积趋于最小,而在体积相同的条件下,球形的表面积最小3.液晶的主要性质(1)液晶具有晶体的各向异性的特点.原因是在微观结构上,从某个方向看,液晶的分子排列比较整齐,有特殊的取向.(2)液晶分子排列是杂乱的,因而液晶又具有液体的性质,具有一定的流动性.[题组突破]1.(液体的微观结构特点)(多选)关于液体,下列说法正确的是( )A .液体表面层分子较稀疏,分子间斥力大于引力B .液体分子的移动比固体分子的移动容易,故相同温度下液体扩散速度比固体要快一些C .由于液体表面层分子间距离大于液体内部分子间距离,所以液体表面存在张力D .草叶上的露珠呈球形是表面张力作用的结果BCD解析:BCD 液体表面层分子分布比液体内部稀疏,液体表面层分子间的相互作用力为引力,即分子间的引力比斥力大,故A错误;液体分子的相互作用力比固体分子的相互作用力小,所以液体分子更易摆脱分子间的相互束缚,所以相同温度下液体扩散速度比固体要快一些,故B正确;液体表面存在张力是由于液体表面层分子间距离大于液体内部分子间距离,分子力表现为引力,故C正确;表面张力的存在使液体表面像被拉伸的弹簧一样,总有收缩的趋势,草叶上的露珠呈球形是表面张力作用的结果,故D正确.2.(表面张力)(多选)下列说法正确的是( )A .把一枚针轻放在水面上,它会浮在水面.这是由于水表面存在表面张力的缘故B .水在涂有油脂的玻璃板上能形成水珠,而在干净的玻璃板上却不能.这是因为油脂使水的表面张力增大的缘故C .在围绕地球飞行的宇宙飞船中,自由飘浮的水滴呈球形.这是表面张力作用的结果D .在毛细现象中,毛细管中的液面有的升高,有的降低,这与液体的种类和毛细管的材质有关ACD解析:ACD 由于液体表面张力的存在,针、硬币等能浮在水面上,A正确;水在涂有油脂的玻璃板上能形成水珠.这是不浸润的结果,而干净的玻璃板上不能形成水珠,这是浸润的结果,B错误;在太空中水滴呈球形,是液体表面张力作用的结果,C正确;液体的种类和毛细管的材质决定了液体与管壁的浸润或不浸润,浸润液体在细管中呈“凸”形液面,不浸润液体在细管中呈“凹”形液面,D正确.3.(液晶的特点)下列关于液晶的说法正确的是( )A .有些液晶的光学性质随外加电压的变化而变化B .液晶是液体和晶体的混合物C .液晶分子保持固定的位置和取向,同时具有位置有序和取向有序D .液晶具有流动性,光学性质各向同性解析: A 液晶具有光学各向异性的特点,有些液晶的光学性质随外加电压的变化而变化,故A 正确,D 错误;液晶不是混合物,故B 错误;液晶像液体一样具有流动性,分子的位置不是固定的,故C 错误.A分析液体现象注意四点(1)液体表面层分子间距较大,表现为引力,其效果使表面尽量收缩.(2)沸腾发生在液体内部和表面,蒸发发生在液体表面.(3)未饱和汽压及饱和汽压与大气压无关,与体积无关.(4)人们感觉到的湿度是相对湿度而非绝对湿度.题后反思命题点三 固体的性质(自主学习)[核心整合]1.晶体的微观结构(1)晶体的微观结构特点:组成晶体的物质微粒有规则地、周期性地在空间排列.(2)用晶体的微观结构特点解释晶体的特点现象原因晶体有确定的几何外形由于内部微粒有规则的排列晶体物理性质各向异性由于内部从任一结点出发在不同方向的微粒的分布情况不同晶体的多形性由于组成晶体的微粒可以形成不同的空间点阵2.晶体与非晶体熔化过程的区别(1)晶体熔化过程,当温度达到熔点时,吸收的热量全部用来破坏空间点阵,增加分子势能,而分子平均动能却保持不变,所以晶体有固定的熔点.非晶体没有空间点阵,熔化时不需要去破坏空间点阵,吸收的热量主要转化为分子的平均动能,不断吸热,温度就不断上升.(2)由于在不同温度下物质由固态变成液态时吸收的热量不同,而晶体有固定的熔点,因此有固定的熔化热,非晶体没有固定的熔点,也就没有固定的熔化热.[题组突破]1.(晶体的微观结构)晶体内部的分子有序排列为如图所示的空间点阵(图中的小黑点表示晶体分子),图中AB 、AC 、AD 为等长的三条线段.下列说法正确的是( )A .A 处的晶体分子可以沿三条线方向发生定向移动B .三条线段上晶体分子的数目相同,表明晶体的物理性质是各向同性的C .三条线段上晶体分子的数目不同,表明晶体的物理性质是各向异性的D.以上说法均不正确C解析:C 晶体中的分子只在平衡位置附近振动,不会沿三条线方向发生定向移动,故A错误;三条线段上晶体分子的数目不同,表明晶体的物理性质是各向异性的,故BD错误,2.(晶体、非晶体的特点)(多选)下列说法正确的是( )A .将一块晶体敲碎后,得到的小颗粒是非晶体B .固体可以分为晶体和非晶体两类,有些晶体在不同方向上有不同的光学性质C .由同种元素构成的固体,可能会由于原子的排列方式不同而成为不同的晶体D .在合适的条件下,某些晶体可以转变为非晶体,某些非晶体也可以转变为晶体解析:BCD 将一块晶体敲碎后,得到的小颗粒仍是晶体,A 错误;单晶体具有各向异性,有些单晶体沿不同方向上的光学性质不同,B 正确;金刚石与石墨都是由碳元素构成的,但是属于不同的晶体,C 正确;天然石英是晶体,熔化后加工做成玻璃就是非晶体,D 正确.BCD3.(溶解曲线的理解及应用)(多选)固体甲和固体乙在一定压强下的熔解曲线如图所示,横轴表示时间t ,纵轴表示温度T .下列判断正确的有( )A .固体甲一定是晶体,固体乙一定是非晶体B .固体甲不一定有确定的几何外形,固体乙一定没有确定的几何外形C .在热传导方面固体甲一定表现出各向异性,固体乙一定表现出各向同性D.固体甲和固体乙的化学成分有可能相同ABD解析:ABD 晶体具有固定的熔点,非晶体则没有固定的熔点,所以固体甲一定是晶体,固体乙一定是非晶体,故A正确;固体甲若是多晶体,则不一定有确定的几何外形,固体乙是非晶体,一定没有确定的几何外形,故B正确;在热传导方面固体甲若是多晶体,则不一定表现出各向异性,固体乙一定表现出各向同性,故C错误;固体甲一定是晶体,固体乙一定是非晶体,但是固体甲和固体乙的化学成分有可能相同,故D正确.(1)单晶体物理性质具有各向异性,但不是在各种物理性质上都表现出各向异性.(2)只要是具有各向异性的物体必定是晶体,且是单晶体.(3)只要是具有确定熔点的物体必定是晶体,反之,必是非晶体.(4)晶体和非晶体在一定条件下可以相互转化.题后反思限时规范训练[基础巩固]1.(2021·山东济南期中)关于固体、液体的性质,下列说法正确的是( )A .单晶体有确定的熔点,多晶体没有确定的熔点B .外界对物体做功,同时物体向外界放出热量,物体的内能不一定改变C .玻璃管的裂口放在火焰上烧熔,其尖端变钝,这是由于液体重力的作用D .唐诗《观荷叶露珠》中有“霏微晓露成珠颗”句,诗中荷叶和露水表现为浸润1234567891011121314 B。
第三讲固体和液体§3.1 固体的有关性质固体可以分为晶体和非晶体两大类。
岩盐、水晶、明矾、云母、冰、金属等都是晶体;玻璃、沥清、橡胶、塑料等都是非晶体。
(1)晶体和非晶体晶体又要分为单晶体和多晶体两种。
单晶体具有天然规则的几何外形,如雪花的形状总是六角形的。
并且,单晶体在各个不同的方向上具有不同的物理性质,即各向导性。
如力学性质(硬度、弹性模量等)、热性性质(热胀系数、导热系数等)、电学性质(介电常数、电阻率等)、光学性质(吸收系数、折射率等)。
如云母结晶薄片,在外力作用下很容易沿平行于薄片的平面裂开,但在薄片上裂开则要困难得多;在云母片上涂一层薄薄的石蜡,然后用烧热的钢针去接触云母片的反面,则石蜡将以接触点为中心、逐渐向四周熔化,熔化了的石蜡成椭圆形,如果用玻璃片做同样的实验,熔化了的石蜡成圆形,这说明非晶体玻璃在各方向的导热系数相同,而晶体云母沿各方向的导热系数不同。
因多晶体是由大量粒(小晶体)无规则地排列组合而成,所以,多晶体不但没有规则的外形,而且各方向的物理性质也各向同性。
常见的各种金属材料就是多晶体。
但不论是单晶体还是多晶体,都具有确定的熔点,例如不同的金属存在着不同的熔点。
非晶体没有天然规则的几何外形,各个方向的物理性质也相同,即各向同性。
非晶体在加热时,先逐渐变软,接着由稠变稀,最后成为液体,因此,非晶体没有一定的熔点。
晶体在加热时,温度升高到熔点,晶体开始逐渐熔解直到全部融化,温度保持不变,其后温度才继续上升。
因此,晶体有一定的熔点。
(2)空间点阵晶体与非晶体性质的诸多不同,是由于晶体内部的物质微粒(分子、原子或离子)依照一定的规律在空间中排列成整齐的后列,构成所谓的空间点阵的结果。
图3-1-1是食盐的空间点阵示意图,在相互垂直的三个空间方向上,每一行都相间的排列着正离子(钠离子)和负离子(氯离子)。
晶体外观的天然规则形状和各向异性特点都可以用物质微粒的规则来排列来解释。
在图3-1-2中表示在一个平面上晶体物质微粒的排列情况。
从图上可以看出,沿不同方向所画的等长直线AB、AC、AD上,物质微粒的数目不同,直线AB上物质微粒较多,直线AD上较少,直线AC上更少。
正因为在不同方向上物质微粒排列情况不同,才引起晶体在不同方向上物理性质的不同。
组成晶体的粒子之所以能在空间构成稳定、周期性的空间点阵,是由于晶体微粒之间存在着很强的相互作用力,晶体中粒子的热运动不能破坏粒子之间的结合,粒子仅能在其平衡位置(结点处)附近做微小的热振动。
晶体熔解过程中达熔点时,它吸收的热量都用来克服有规则排列的空间点阵结构,所以,这段时间内温度就不会升高。
例题:NaCl的单位晶胞是棱长a=5.6⨯1010-m的立方体,如图7-1-3。
黑点表示Na+位置,圆圈表示Cl-位置,食盐的整体就是由这些单位晶胞重复而得到的。
Na原子量23,Cl原子量35.5,食盐密度31022.2⨯=ρg/m3。
我们来确定氢原子的质量。
在一个单位晶胞里,中心有一个Na+,还有12个Na+位于大立方图3-1-1A 图3-1-2图3-1-3体的棱上,棱上的每一个Na +同时为另外三个晶胞共有,于是属于一个晶胞的Na +数n 1=1+412=4,Cl -数n 2=4。
晶胞的质量m=4(m 1+m 2)原子质量单位。
ρa 3=4(23+35.5)⨯m H ,得m H =1.67⨯1027-kg 。
§3.2 固体的热膨胀几乎所有的固体受热温度升高时,都要膨胀。
在铺设铁路轨时,两节钢轨之间要留有少许空隙,给钢轨留出体胀的余地。
一个物体受热膨胀时,它会沿三个方向各自独立地膨胀,我们先讨论线膨胀。
固体的温度升高时,它的各个线度(如长、宽、高、半径、周长等)都要增大,这种现象叫固体的线膨胀。
我们把温度升高1℃所引起的线度增长跟它在0℃时线度之比,称为该物体的线胀系数。
设一物体在某个方向的线度的长度为l ,由于温度的变化△T 所引起的长度的变化△l 。
由实验得知,如果△T 足够小,则长度的变化△l 与温度的变化成正比,并且也与原来的长度l 成正比。
即△l =l α△T .式中的比例常数α称作线膨胀系数。
对于不同的物质,α具有不同的数值。
将上式改写为l l a ∆=.T l∆。
所以,线膨胀系数α的意义是温度每改变1K 时,其线度的相对变化。
即:t l l l a t 00-=式中a 的单位是1/℃,0l 为0℃时固体的长度,t l为t ℃时固体的长度,一般金属的线胀系数大约在510-/℃的数量级。
上述线胀系数公式,也可以写成下面形式)1(0at l l t +=如果不知道0℃时的固体长度,但已知1t ℃时固体的长度,则2t ℃时的固体长度2l 为)1(),1(202101al l l al l l +=+=于是[])(1)1()1(1212112t t a l al at l l -+≈++=,这是线膨胀有用的近似计算公式。
对于各向同性的固体,当温度升高时,其体积的膨胀可由其线膨胀很容易推导出。
为简单起见,我们研究一个边长为l 的正方体,在每一个线度上均有:T al l ∆=∆)331()1()1(33223333T a T a T a l t a l l ++∆+=∆+=∆+。
因固体的α值很小,则T a T a T a ∆∆∆3,33322与相比非常小,可忽略不计,则)31()(33T a l l l ∆+=∆+ T aV V ∆=∆3式中的3α称为固体的体膨胀系数。
随着每一个线度的膨胀,固体的表面积和体积也发生膨胀,其面膨胀和体膨胀规律分别是)1(0t S S t γ+=)1(0t V V t β+=考虑各向同性的固体,其面胀系数γ、体胀系数β跟线胀系数α的关系为 γ=2α,β=3α。
例1:某热电偶的测温计的一个触点始终保持为0℃,另一个触点与待测温度的物体接触。
当待测温度为t ℃时,测温计中的热电动势力为2t at βε+=其中⋅=mV a 20.0℃-1,4100.5-⨯-=βmv •℃-2。
如果以电热电偶的热电动势ε为测温属性,规定下述线性关系来定义温标t ',即b a t +='ε。
并规定冰点的00='t ,汽点的0100='t ,试画出t t ~'的曲线。
分析:温标t '以热电动势ε为测温属性,并规定t '与ε成线性关系。
又已知ε与摄氏温标温度t 之间的关系,故t '与t 的关系即可求得。
系数a 和b 由规定的冰点和汽点的t '值求得。
解:已知2,t at b a t βεε+=+=',得出t '与t 的关系为b t a t a t ++='2βα。
规定冰点的0=t ℃,00='t规定汽点的t=100℃,0100='t 代入,即可求得系a 与b 为b=0,13201001-=+=mV a a β于是,t '和t 的关系为22300134320320tt t at t -=+='βt t ~'曲线如图3-2-1所示,t '与t 之间并非一一对应,且t '有极值3400。
例2:有一摆钟在25℃时走时准确,它的周期是2s ,摆杆为钢质的,其质量与摆锤相比可以忽略不计,仍可认为是单摆。
当气温降到5℃时,摆钟每天走时如何变化?已知钢的线胀系数 5102.1-⨯=a ℃-1。
分析:钢质摆杆随着温度的降低而缩短,摆钟走时变快。
不管摆钟走时准确与否,在盘面上的相同指示时间,指针的振动次数是恒定不变的,这由摆钟的机械结构所决定,从而求出摆钟每天走快的时间。
解:设25℃摆钟的摆长m l 1,周期s T 21=,5℃时摆长为m l 2,周期s T 2,则g l T g l T 22112,2ππ==由于12l l <,因此12T T <,说明在5℃时摆钟走时加快在一昼夜内5℃的摆钟振动次数22360024T n ⨯=,这温度下摆钟指针指示的时间是1212360024T T T n ⋅⨯=。
这摆钟与标准时间的差值为△t ,图3-2-136002436002412⨯-⋅⨯=∆T T tsg lgl37.10104.212)104.211(23600244141=⨯-⨯--⨯⨯=--ππ§3.3 液体性质3.3.1、液体的宏观特性及微观结构液体的性质介于固体与气体之间,一方面,它像固体一样具有一定的体积,不易压缩;另一方面,它又像气体一样,没有一定的形状,具有流动性,在物理性质上各向同性。
液体分子排列的最大特点是远程无序而短程有序,即首先液体分子在短暂时间内,在很小的区域(与分子距离同数量级)作规则的排列,称为短程有序;其次,液体中这种能近似保持规则排列的微小区域是由诸分子暂时形成的,其边界和大小随时改变,而且这些微小区域彼此之间的方位取向完全无序,表现为远程无序。
因而液体的物理性质在宏观上表现为各向同性。
液体分子间的距离小,相互作用力较强,分子热运动主要表现为在平衡位置附近做微小振动,但其平衡位置又是在不断变化的,因而,宏观上表现为液体具有流动性。
3.3.2、液体的热膨胀液体没有一定的形状,只有一定的体积,因此对液体只有体膨胀才有意义。
实验证明,液体的体积跟温度的关系和固体的相同,也可以用下面的公式表示:)1(0t V V t β+=式中0V 是在0℃时的体积,t V 是液体在t ℃时的体积,β是液体的体胀系数,一般液体的体胀系数比固体大1~2个数量级,并且随温度升高有比较明显的增大。
液体除正常的热膨胀外,还有反常膨胀的现象,例如水的反常膨胀,水在4℃时体积最小,密度最大,而4℃以下体积反而变大,密度变小,直到0℃时结冰为止,正是由于水的这一奇特的性质,使得湖水总是从湖面开始结备,随着气温下降,冰层从湖面逐渐向下加厚,也亏得这一点,水中的生物才安然地度过严冬。
3.3.3、物质的密度和温度的关系固体和液体的体积随温度而变化,这将引起物体的密度变化,设某物体的质量为m ,它在0℃时的体积为0V ,则0℃时该物体的密度是00V m=ρ。
设物体在t ℃时密度t ρ,体积t V ,则t t V m =ρ。
又有)1(0t V V tβ+=,式中β是固体或液体的体膨胀系数,代入t ρ表达式得 t t V mt βρβρ+=+=1)1(00。
例1 一支水银温度计,它的石英泡的容积是0.300cm 3,指示管的内径是0.0100cm ,如果温度从30.0℃升高至40.0℃,温度计的水银指示线要移动多远?(水银的体胀系数图3-4-1 41082.1-⨯=β/℃)解:查表可得石英的线胀系数6104.0-⨯=a /℃,则其体胀系数为6102.13-⨯=a /℃。