概率论重点题
- 格式:doc
- 大小:276.50 KB
- 文档页数:11
概率论考试题和答案一、选择题(每题5分,共20分)1. 随机变量X服从标准正态分布,下列哪个选项是正确的?A. P(X > 0) = 0.5B. P(X < 0) = 0.5C. P(X = 0) = 0.5D. P(|X| > 1) = 0.5答案:A2. 如果随机变量X服从参数为λ的泊松分布,那么E(X)等于:A. λB. 2λC. λ^2D. 1/λ答案:A3. 假设随机变量X和Y是独立的,且X服从正态分布N(0,1),Y服从正态分布N(1,4),那么Z = X + Y的期望值E(Z)是:A. 1B. 0C. 2D. 4答案:A4. 对于二项分布B(n, p),其方差Var(X)是:A. npB. np(1-p)C. nD. p答案:B二、填空题(每题5分,共20分)5. 如果随机变量X服从均匀分布U(a, b),那么X的期望值E(X)是_________。
答案:(a+b)/26. 假设随机变量X服从正态分布N(μ, σ^2),那么X的标准差是_________。
答案:σ7. 对于参数为p的伯努利分布,其方差Var(X)是_________。
答案:p(1-p)8. 如果随机变量X服从指数分布Exp(λ),那么X的期望值E(X)是_________。
答案:1/λ三、计算题(每题15分,共30分)9. 已知随机变量X服从正态分布N(2, 4),求P(X < 0)。
答案:因为X服从正态分布N(2, 4),所以X的均值μ=2,方差σ^2=4,标准差σ=2。
我们需要求P(X < 0),即求标准正态分布下,Z < (0-2)/2 = -1的概率。
根据标准正态分布表,P(Z < -1) ≈ 0.1587。
所以,P(X < 0) ≈ 0.1587。
10. 假设随机变量X服从参数为λ=2的泊松分布,求E(X)和Var(X)。
答案:因为X服从泊松分布,所以E(X) = λ = 2,Var(X) = λ = 2。
《概率论与数理统计》复习试题带答案一、单项选择题(本大题共10小题,每小题2分,共20分)在每小题列出的四个备选项中只有一个是符合题目要求的,请将其代码填写在题后的括号内。
错选、多选或未选均无分。
第1题若随机变量X的方差存在,由切比雪夫不等式可得P{|X-E(X)|>1}≤()【正确答案】 A【你的答案】本题分数2分第2题若D(X),D(Y)都存在,则下面命题中错误的是()A. X与Y独立时,D(X+Y)=D(X)+D(Y)B. X与Y独立时,D(X-Y)=D(X)+D(Y)C. X与Y独立时,D(XY)=D(X)D(Y)D. D(6X)=36D(X)【正确答案】 C【你的答案】本题分数2分第3题设F(x)=P{X≤x}是连续型随机变量X的分布函数,则下列结论中不正确的是()A. F(x)不是不减函数B. F(x)是不减函数C. F(x)是右连续的D. F(-∞)=0,F(+∞)=1【正确答案】 A【你的答案】本题分数2分【正确答案】 D【你的答案】本题分数2分第5题从一批零件中随机抽出100个测量其直径,测得的平均直径为5.2cm,标准方差为1.6cm,若想知这批零件的直径是否符合标准直径5cm,因此采用了t-检验法,那么,在显著性水平α下,接受域为()【正确答案】 A【你的答案】本题分数2分第6题设μ0是n次重复试验中事件A出现的次数,p是事件A在每次试验中出现的概率,则对任意ε>0,均有limn→∞Pμ0n-p≥ε()A. =0B. =1C. >0D. 不存在【正确答案】 A【你的答案】本题分数2分第7题设X的分布列为X0123P0.10.30.40.2F(x)为其分布函数,则F(2)=()A. 0.2B. 0.4D. 1【正确答案】 C【你的答案】本题分数2分第8题做假设检验时,在()情况下,采用t-检验法.A. 对单个正态总体,已知总体方差,检验假设H0∶μ=μ0B. 对单个正态总体,未知总体方差,检验假设H0∶μ=μ0C. 对单个正态总体,未知总体均值,检验假设H0∶σ2=σ20D. 对两个正态总体,检验假设H0∶σ21=σ22【正确答案】 B【你的答案】本题分数2分第9题已知E(X)=-1,D(X)=3,则E[3(X2-2)]=()A. 9B. 6C. 30D. 36【正确答案】 B【你的答案】本题分数2分第10题X~N(μ,σ2),则P{μ-kσ≤X≤μ+kσ}=()A. Φ(k)+Φ(-k)B. 2Φ(k)C. 2Φ(k-1)D. 2Φ(k)-1【正确答案】 D二、填空题(本大题共15小题,每小题2分,共30分)请在每小题的空格上填上正确答案。
1.设有30个电子器件1230,,,D D D ,
它们的使用情况如下:1D 损坏,2D 立即使用;2D 损坏,3D 立即使用等等,设器件i D 的寿命服从参数为0.1λ=(小时1)-的指数分布的随机变量,令T 为30个器件使用的总时间,求T 超过350小时的概率。
解 设i D 为器件i D 的寿命,则301i i T D
==∑,所求概率为
30301300(350)(350)i i i D P T P D P =⎧⎫-⎪⎪≥=≥=≥⎪⎪⎩⎭
∑∑
11(0.91)10.81860.1814≈-Φ=-Φ=-=.
2.某计算机系统有100个终端,每个终端有20%的时间在使用,若各个终端使用与否相互独立,试求有10个或更多个终端在使用的概率。
解 设1,,1,2,0,.
i i X i i ⎧==⎨
⎩第个终端在使用第个终端不在用 则同时使用的终端数
1001~(100,0.2)i i X X B ==
∑
所求概率为
(10)11( 2.5)(2.5)0.9938P X ≥≈-Φ=-Φ-=Φ=.
3.某保险公司多年的资料表明,在索赔户中,被盗索赔户占20%,以X 表示在随机抽查100个索赔户中因被盗而向保险公司索赔的户数,求(1430)P X ≤≤.
解
20(14
30)))P X ≤≤≈Φ-Φ (2.5)( 1.5)=Φ-Φ- 0.9938(1.5)10.99380.93321=+Φ-=+-
0.927=.。
概率论试题及答案一、选择题1. 一个袋子里有5个红球和3个蓝球,随机抽取一个球,抽到红球的概率是:- A. 1/2- B. 3/8- C. 5/8- D. 1/82. 如果事件A和事件B是互斥的,且P(A) = 0.4,P(B) = 0.3,那么P(A∪B)等于:- A. 0.7- B. 0.6- C. 0.4- D. 0.33. 抛掷一枚硬币两次,出现正面向上的概率是:- A. 1/4- B. 1/2- C. 3/4- D. 1二、填空题1. 概率论中,事件的全概率公式是 P(A) = ________,其中∑表示对所有互斥事件B_i的和。
2. 如果事件A和事件B是独立事件,那么P(A∩B) = ________。
三、计算题1. 一个工厂有3台机器,每台机器在一小时内发生故障的概率是0.01。
求在一小时内至少有一台机器发生故障的概率。
2. 一个班级有50名学生,其中30名男生和20名女生。
如果随机选择一名学生,这名学生是男生的概率是0.6。
求这个班级中男生和女生的人数。
四、解答题1. 解释什么是条件概率,并给出计算条件概率的公式。
2. 一个袋子里有10个球,其中7个是红球,3个是蓝球。
如果从袋子中随机取出一个球,观察其颜色后放回,再取出一个球。
求第二次取出的球是蓝球的概率。
答案一、选择题1. C. 5/82. B. 0.63. B. 1/2二、填空题1. P(A) = ∑P(A∩B_i)2. P(A)P(B)三、计算题1. 首先计算没有机器发生故障的概率,即每台机器都不发生故障的概率,为(1-0.01)^3。
至少有一台机器发生故障的概率为1减去没有机器发生故障的概率,即1 - (1-0.01)^3。
2. 设男生人数为x,女生人数为y。
根据题意,x/(x+y) = 0.6,且x+y=50。
解得x=30,y=20。
四、解答题1. 条件概率是指在已知某个事件已经发生的情况下,另一个事件发生的概率。
计算条件概率的公式是P(A|B) = P(A∩B)/P(B),其中P(A|B)表示在事件B发生的条件下事件A发生的概率。
河北农业大学继续教育学院试题卷概率论与数理统计:一、单选题(本题共20小题,满分40分)1.(2分)A.0B.1C.0.5D.条件不足无法计算2.某病的患病率为0.005,现对10000人进行检查,试求查出患病人数在[45,55]内的概率为()。
(2分)A.0.5646B.0.623C.0.745D.0.2583.设X与Y相互独立,且E(X)=2,E(Y)=3,D(X)=D(Y)=1,求E((X-Y)^2)=()。
(2分)A.7B.8C.6D.54.(2分)A.B.C.D.5.(2分)A.单调增大B.单调减少C.保持不变D.增减不定6.已知随机变量x,y的方差分别为dx=2,dy=1 且协方差cov(x,y)=0.6 ,则d(x-y)=().(2分)A.4B.3C.2D.1.87.其中(2分)A.B.C.D.8.设总体X服从正态分布N(u,σ^2) ,X1,X2,X3,...,Xn 是它的一个样本,则样本均值A 的方差是()(2分)A.σ^2/nB.σ^4/nC.σ^3/nD.σ^1/n9.(2分)A.B.C.D.10.(2分)A.B.C.D.11.(2分)A.B.C.D.12.设随机变量X~b(n,p),已知EX=2.4,DX=1.44,则p为()(2分)A.0.4B.0.1C.0.2D.0.313.(2分)A.1/2B.1/32C.5/32D.31/3214.(2分)A.0.2417B.0.3753C.0.3830D.0.866415.设(X ,Y)的联合密度为 f(x,y)=4xy,0≤x,y≤1 0 ,其他若F(x,y)为分布函数,则F(0.3,3)=()。
(2分)A.0.09B.0.05C.0.9D.0.516.矩法估计是样本矩来代替(),从而得到参数的估计量。
(2分)A.个体矩B.合体矩C.总体矩D.以上结论都不对17.设二维随机变量(X,Y)的联合概率密度为f(X,Y)=8XY,0<=X<=Y<=1,f(X,Y)=0,其他。
概率论与数理统计复习题一、选择题(1)设0)(,0)(>>B P A P ,且A 与B 为对立事件,则不成立的是 。
(a)A 与B 互不相容;(b)A 与B 相互独立; (c)A 与B 互不独立;(d)A 与B 互不相容(2)10个球中有3个红球,7个白球,随机地分给10个人,每人一球,则最后三个分到球的人中恰有一个得到红球的概率为 。
(a))103(13C ;(b)2)107)(103(;(c)213)107)(103(C ;(d)3102713C C C (3)设X ~)1,1(N ,概率密度为)(x f ,则有 。
(a)5.0)0()0(=≥=≤X P X p ;(b)),(),()(∞-∞∈-=x x f x f ; (c)5.0)1()1(=≥=≤X P X P ;(d)),(),(1)(∞-∞∈--=x x F x F (4)若随机变量X ,Y 的)(),(Y D X D 均存在,且0)(,0)(≠≠Y D X D ,)()()(Y E X E XY E =,则有 。
(a)X ,Y 一定独立;(b)X ,Y 一定不相关;(c))()()(Y D X D XY D =;(d))()()(Y D X D Y X D -=-(5)样本4321,,,X X X X 取自正态分布总体X ,已知μ=)(X E ,但)(X D 未知,则下列随机变量中不能作为统计量的是 。
(a)∑==4141i i X X ;(b)μ241-+X X ;(c)∑=-=4122)(1i i X X K σ;(d)∑=-=4122)(31i i X X S(6)假设随机变量X 的密度函数为)(x f 即X ~)(x f ,且)(X E ,)(X D 均存在。
另设n X X ,,1 取自X 的一个样本以及X 是样本均值,则有 。
(a)X ~)(x f ;(b)X ni ≤≤1min ~)(x f ;(c)X ni ≤≤1max ~)(x f ;(d)(n X X ,,1 )~∏=ni x f 1)((7)每次试验成功率为)10(<<p p ,进行重复独立试验,直到第10次试验才取得4次成功的概率为 。
2021年大二重点课程概率论与数理统计通用试题及答案(精品)一、单选题1、对正态总体的数学期望μ进行假设检验,如果在显著水平0.05下接受00:H μμ=,那么在显著水平0.01下,下列结论中正确的是(A )必须接受0H (B )可能接受,也可能拒绝0H (C )必拒绝0H (D )不接受,也不拒绝0H 【答案】A2、设总体X 服从正态分布()212,,,,,n N X X X μσ是来自X 的样本,则2σ的最大似然估计为(A )()211n i i X X n =-∑ (B )()2111n i i X X n =--∑ (C )211n i i X n =∑ (D )2X 【答案】A3、已知n X X X ,,,21 是来自总体的样本,则下列是统计量的是( )X X A +)( +A ∑=-n i iX n B 1211)( a X C +)( +10 131)(X a X D ++5 【答案】B4、下列二无函数中, 可以作为连续型随机变量的联合概率密度。
A )f(x,y)=cos x,0,⎧⎨⎩x ,0y 122ππ-≤≤≤≤其他B) g(x,y)=cos x,0,⎧⎨⎩1x ,0y 222ππ-≤≤≤≤其他C) ϕ(x,y)=cos x,0,⎧⎨⎩0x ,0y 1π≤≤≤≤其他 D) h(x,y)=cos x,0,⎧⎨⎩10x ,0y 2π≤≤≤≤其他【答案】B5、设X 的密度函数为)(x f ,分布函数为)(x F ,且)()(x f x f -=。
那么对任意给定的a 都有A )()1()a f a f x dx-=-⎰B ) 01()()2a F a f x dx -=-⎰C ))()(a F a F -=D ) 1)(2)(-=-a F a F 【答案】B6、设总体X 服从正态分布()212,,,,,n N X X X μσ是来自X 的样本,则2σ的最大似然估计为(A )()211n i i X X n =-∑ (B )()2111n i i X X n =--∑ (C )211n i i X n =∑ (D )2X 【答案】A 7、1X ,2X 独立,且分布率为 (1,2)i =,那么下列结论正确的是A )21X X = B)1}{21==X X P C )21}{21==X X P D)以上都不正确【答案】C8、若X ~()t n 那么2χ~(A )(1,)F n (B )(,1)F n (C )2()n χ (D )()t n【答案】A9、在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为的样本,则下列说法正确的是____ _(A)方差分析的目的是检验方差是否相等 (B)方差分析中的假设检验是双边检验(C) 方差分析中包含了随机误差外,还包含效应间的差异(D) 方差分析中包含了随机误差外,还包含效应间的差异【答案】D10、在一次假设检验中,下列说法正确的是___ ____ (A)第一类错误和第二类错误同时都要犯(B)如果备择假设是正确的,但作出的决策是拒绝备择假设,则犯了第一类错误 (C)增大样本容量,则犯两类错误的概率都要变小im 211.()im r e ij i i j S y y ===-∑∑2.1()rA i i i S m y y ==-∑(D)如果原假设是错误的,但作出的决策是接受备择假设,则犯了第二类错误 【答案】C 二、填空题1、测得自动车床加工的10个零件的尺寸与规定尺寸的偏差(微米)如下: +2,+1,-2,+3,+2,+4,-2,+5,+3,+4 则零件尺寸偏差的数学期望的无偏估计量是 【答案】22、设总体服从正态分布,且未知,设为来自该总体的一个样本,记,则的置信水平为的置信区间公式是 ;若已知,则要使上面这个置信区间长度小于等于0.2,则样本容量n 至少要取__ __。
第二章习题一、单项选择题 在每小题列出的四个备选项中只有一个是符合题目要求的。
1.设随机变量X则k=A.0.1B.0.2C.0.3D.0.42.设随机变量X 的分布函数是F (x )(-∞<x <∞),则以下描述正确的是( B ) A.F (1)=1 B.F (-∞)=0 C.F (∞)=∞ D.F (0)=03.设随机变量X ~ B ⎪⎭⎫⎝⎛31,3,则P{X ≥1}=( C )A .271B .278C .2719D .27264.设随机变量X 的分布函数F (x )表示下列事件的概率:P{12x X x <≤} =( C ) A.1()F x B. 2()F x C. 2()F x -1()F x D.05.设随机变量X 的概率密度为f (x )=⎩⎨⎧≤≤,,0,10 ,2其他x x 则P {0≤X ≤}21=( A )A.41B.31 C.21 D.43 6.设下列函数的定义域均为(-∞,+∞),则其中可作为概率密度的是( C )A. f (x )=-e -xB. f (x )=e -xC. f (x )=||-e 21x D. f (x )=||-e x7.设随机变量X 的概率密度为f (x )=⎪⎩⎪⎨⎧≤<-≤<其它021210x x x x,则P (0.2<X<1.2)=( C )A .0.5B .0.6C .0.66D .0.78.已知随机变量X 的分布函数为( A )F(x)= ⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧≥<≤<≤<313132102100x x x x ,则P }{1X ==A .61 B .21 C .32D .1 二、填空题 请在每小题的空格中填上正确答案。
错填、不填均无分。
1.设随机变量X~B (1,0.8)(二项分布),则X 的分布函数为__()0,00.2,011,1x F x x x <⎧⎪=≤<⎨⎪≥⎩2.若随机变量X 服从参数为2、2σ的正态分布,且P{2≤X ≤4}=0.3, 则 P{X ≤0}=_____0.2______3.设随机变量X ~N (0,1),Φ(x )为其分布函数,已知P {X >1}=0.1587,则Φ(1)=_0.8413_____. 4.设随机变量X 的概率分布为F (x )为其分布函数,则F (3)= _5356_____. 5.设X 是连续型随机变量,则P {X =5}=____0_____.6.设随机变量X 的分布函数为F (x ),已知F (2)=0.5,F (-3)=0.1, 则P {-3<X ≤2}=_____0.4____.7.设随机变量X 的分布函数为F (x )=⎩⎨⎧<≥--,0 ,0,0,e 1x x x 则当x >0时,X 的概率密度f (x )=__(),00,0x e x f x x -⎧≥=⎨<⎩_______. 8.设X~N(μ,σ2),其分布函数F(x),Φ(x)为标准正态分布函数,则F(x)与Φ(x)之间的关系是F(x)= ___________.(){}X x x F x P X x P μμμσσσ---⎧⎫⎛⎫=≤=≤=Φ⎨⎬ ⎪⎩⎭⎝⎭三、计算题1.某柜台做顾客调查,设每小时到达柜台的顾客数X 服从泊松分布,则X~P (λ),若已知P (X=1)=P (X=2)。
2021年大二重点课程概率论与数理统计期末考试题及答案(新版)一、单选题1、设X 1,X 2,…X n ,X n+1, …,X n+m 是来自正态总体2(0,)N σ的容量为n+m 的样本,则统计量2121ni i n mi i n m V n =+=+X =X ∑∑服从的分布是A) (,)F m n B) (1,1)F n m -- C) (,)F n m D) (1,1)F m n -- 【答案】C2、设n X X X ,,21为来自正态总体),(2σμN 简单随机样本,X 是样本均值,记2121)(11X X n S ni i --=∑=,2122)(1X X n S n i i -=∑=,2123)(11μ--=∑=n i i X n S , 22411()ni i S X n μ==-∑,则服从自由度为1-n 的t 分布的随机变量是(A) 1/1--=n S X t μ(B) 1/2--=n S X t μ(C) n S X t /3μ-=(D) nS X t /4μ-=【答案】B3、在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为的样本,则下列说法正确的是____ _(A)方差分析的目的是检验方差是否相等 (B)方差分析中的假设检验是双边检验(C) 方差分析中包含了随机误差外,还包含效应间的差异im 211.()im r e ij i i j S y y ===-∑∑(D) 方差分析中包含了随机误差外,还包含效应间的差异【答案】D4、在假设检验问题中,犯第一类错误的概率α的意义是( ) (A)在H 0不成立的条件下,经检验H 0被拒绝的概率 (B)在H 0不成立的条件下,经检验H 0被接受的概率 (C)在H 00成立的条件下,经检验H 0被拒绝的概率 (D)在H 0成立的条件下,经检验H 0被接受的概率 【答案】C5、若X ~211(,)μσ,Y ~222(,)μσ那么),(Y X 的联合分布为A ) 二维正态,且0=ρB )二维正态,且ρ不定C ) 未必是二维正态D )以上都不对 【答案】C6、在单因子方差分析中,设因子A 有r 个水平,每个水平测得一个容量为的样本,则下列说法正确的是___ __(A)方差分析的目的是检验方差是否相等 (B)方差分析中的假设检验是双边检验(C)方差分析中包含了随机误差外,还包含效应间的差异(D)方差分析中包含了随机误差外,还包含效应间的差异【答案】D7、设12,,,n X X X ⋅⋅⋅是取自总体X 的一个简单样本,则2()E X 的矩估计是(A )22111()1n i i S X X n ==--∑(B )22211()n i i S X X n ==-∑(C )221S X + (D )222S X + 【答案】D2.1()rA i i i S m y y ==-∑im 211.()im r e ij i i j S y y ===-∑∑2.1()rA i i i S m y y ==-∑8、设X 1,X 2,…X n ,X n+1, …,X n+m 是来自正态总体2(0,)N σ的容量为n+m 的样本,则统计量2121ni i n mi i n m V n =+=+X =X ∑∑服从的分布是A) (,)F m n B) (1,1)F n m -- C) (,)F n m D) (1,1)F m n -- 【答案】C9、设81,,X X 和101,,Y Y 分别来自两个相互独立的正态总体)2,1(2-N 和)5,2(N 的样本, 21S 和22S 分别是其样本方差,则下列服从)9,7(F 的统计量是( ))(A 222152S S )(B 222145S S )(C 222154S S )(D 222125S S 【答案】B10、设X 的密度函数为)(x f ,分布函数为)(x F ,且)()(x f x f -=。
概率论与数理统计试题 A 卷 2007-2008学年 第二学期 2008.06一、填空题(每空3分,共18分)1. 事件A 发生的概率为0.3,事件B 发生的概率为0.6,事件A ,B 至少有一个发生的概率为0.9,则事件A ,B 同时发生的概率为____________2. 设随机向量(X ,Y )取数组(0,0),(-1,1),(-1,2),(1,0)的概率分别为,45,41,1,21cc c c 取其余数组的概率均为0,则c =__________3. 设随机变量X 在(1,6)上服从均匀分布,则关于y 的方程012=+-Xy y 无实根的概率为_______________. 4. 若)1,0(~N X ,)1,0(~N Y ,且X 与Y 相互独立,则Y X Z +=服从______________5. 设总体X 的概率密度为⎩⎨⎧<<+=其他,0,10,)1();(x x x f θθθ,n X X X ,,21 为来自总体X 的一个样本,则待估参数)(-1>θθ的最大似然估计量为_____________. 6. 当2σ已知,正态总体均值μ的置信度为α-1的置信区间为(样本容量为n )___________二、选择题(每题3分,共18分)1. 对任意事件A 与B ,下列成立的是-------------------------------------------------------------( ) (A ))0)((),()|(≠=B P A P B A P (B ))()()(B P A P B A P += (C ))0)((),|()()(≠=A P A B P A P AB P (D ))()()(B P A P AB P =2. 设随机变量X ),(~p n B 且期望和方差分别为48.0)(,4.2)(==X D X E ,则----( )(A) 3.0,8==p n (B) 4.0,6==p n (C) 4.0,3==p n (D ) 8.0,3==p n 3. 设随机变量X 的分布函数为F X (x ),则24+=X Y 的分布函数F Y (y )为-------------( ) (A) 1()22X F y + (B) 1(2)2X F y +(C) (2)4X F y - (D )(24)X F y -4. 若随机变量X 和Y 的相关系数0=XY ρ,则下列错误的是---------------------------------( ))1(~-n t S X (A) Y X ,必相互独立 (B) 必有)()()(Y E X E XY E = (C) Y X ,必不相关 (D ) 必有)()()(Y D X D Y X D +=+5. 总体)1,0(~N X ,n X X X ,,21 为来自总体X 的一个样本,2,S X 分别为样本均值和样本方差,则下列不正确的是--------------------------------------------------------------------( )(A) ),0(~n N X n (B) (C) (D )6. 设随机变量)2,1( =k X k 相互独立,具有同一分布, ,0=k EX ,2σ=K DX ,2,1=k ,则当n 很大时,1nkk X=∑的近似分布是--------------------------------------------------------( ) (A) 2(0,)N n σ (B) 2(0,)N σ (C) 2(0,/)N n σ(D) 22(0,/)N n σ三、解答题(共64分)1. (本题10分)设一批混合麦种中一、二、三等品分别占20%、70%、10%,三个等级的发芽率依次为0.9,0.7,0.3,求这批麦种的发芽率。
1 概率统计重难点题 1.已知一个家庭有3个小孩,且其中一个为女孩,求至少有一个男孩的概率(小孩为男为女是等可能的). 【解】 设A={其中一个为女孩},B={至少有一个男孩},样本点总数为23=8,故 ()6/86()()7/87PABPBAPA
或在缩减样本空间中求,此时样本点总数为7. 6()7PBA
2.已知5%的男人和0.25%的女人是色盲,现随机地挑选一人,此人恰为色盲,问此人是男人的概率(假设男人和女人各占人数的一半). 【解】 设A={此人是男人},B={此人是色盲},则由贝叶斯公式 ()()()()()()()()()PAPBAPAB
PABPBPAPBAPAPBA
0.50.05200.50.050.50.002521
3.在一个盒中装有15个乒乓球,其中有9个新球,在第一次比赛中
任意取出3个球,比赛后放回原盒中;第二次比赛同样任意取出3个球,求第二次取出的3个球均为新球的概率. 【解】 设Ai={第一次取出的3个球中有i个新球},i=0,1,2,3.B={第二次取出的3球均为新球} 由全概率公式,有 30()()()iiiPBPBAPA 2
33123213336996896796333333331515151515151515
CCCCCCCCCCCCCCCCCC
0.089 4.某保险公司把被保险人分为三类:“谨慎的”,“一般的”,“冒失的”.
统计资料表明,上述三种人在一年内发生事故的概率依次为0.05,0.15和0.30;如果“谨慎的”被保险人占20%,“一般的”占50%,“冒失的”占30%,现知某被保险人在一年内出了事故,则他是“谨慎的”的概率是多少? 【解】 设A={该客户是“谨慎的”},B={该客户是“一般的”}, C={该客户是“冒失的”},D={该客户在一年内出了事故} 则由贝叶斯公式得 ()()(|)(|)()()(|)()(|)()(|)PADPAPDAPADPDPAPDAPBPDBPCPDC
0.20.050.0570.20.050.50.150.30.3
31.设随机变量
X~U(0,1),试求: (1) Y=eX的分布函数及密度函数; (2) Z=2lnX的分布函数及密度函数. 【解】(1) (01)1PX 故 (1ee)1XPY 当1y时()()0YFyPYy 当13
ln0dlnyxy
当y≥e时()(e)1XYFyPy 即分布函数 0,1()ln,1e1,eYyFyyyy
故Y的密度函数为
11e,()0,Yyyfy
其他
(2) 由P(0(0)1PZ 当z≤0时,()()0ZFzPZz 当z>0时,()()(2ln)ZFzPZzPXz /2(ln)(e)2zzPXPX
/21/2ed1ezzx
即分布函数
-/20,0()1-e,ZzzFzz
0
故Z的密度函数为
/21e,0()20,zZzfzz
0
5.设随机变量X的密度函数为
f(x)=22,0π,π0,.xx其他 4
试求Y=sinX的密度函数. 【解】(01)1PY 当y≤0时,()()0YFyPYy 当0(0arcsin)(πarcsinπ)PXyPyX arcsinπ220πarcsin22ddππyyxxxx
2222
11
arcsin1πarcsinππyy--()()
2arcsinπy
当y≥1时,()1YFy 故Y的密度函数为 6.设随机变量(X,Y)的概率密度为 f(x,y)=.,0,10,,1其他xxy 求条件概率密度fY|X(y|x),fX|Y(x|y).
题11图 【解】()(,)dXfxfxyy 1d2,01,0,.xxyxx
其他 5
111d1,10,()(,)d1d1,01,0,.yYyxyyfyfxyxxyy
其他
所以
|1,||1,(,)(|)2()0,.YXX
yxfxyfyxxfx
其他
|1, 1,1(,)1(|),1,()10,.XYY
yxyfxyfxyyxfyy
其他
7.设二维随机变量(X,Y)在以(0,0),(0,1),(1,0)为顶点的三角形区域上服从均匀分布,求Cov(X,Y),ρXY. 【解】如图,SD=12,故(X,Y)的概率密度为
题18图 2,(,),(,)0,xyDfxy
其他.
()(,)ddDEXxfxyxy
11001d2d3xxxy
22()(,)ddDEXxfxyxy
112001d2d6xxxy
从而222111()()[()].6318DXEXEX 6
同理11(),().318EYDY 而 11001()(,)dd2ddd2d.12xDDEXYxyfxyxyxyxyxxyy 所以 1111Cov(,)()()()123336XYEXYEXEY.
从而 1Cov(,)1362()()111818XYXYDXDY 8.某车间有同型号机床200部,每部机床开动的概率为0.7,假定各机床开动与否互不影响,开动时每部机床消耗电能15个单位.问至少供应多少单位电能才可以95%的概率保证不致因供电不足而影响生产. 【解】要确定最低的供应的电能量,应先确定此车间同时开动的机床数目最大值m,而m要满足200部机床中同时开动的机床数目不超过m的概率为95%,于是我们只要供应15m单位电能就可满足要求.令X表同时开动机床数目,则X~B(200,0.7), ()140,()42,EXDX
1400.95{0}().42mPXmPXm
查表知 1401.64,42m ,m=151.
所以供电能151×15=2265(单位). 9.某药厂断言,该厂生产的某种药品对于医治一种疑难的血液病的 7
治愈率为0.8.医院检验员任意抽查100个服用此药品的病人,如果其中多于75人治愈,就接受这一断言,否则就拒绝这一断言. (1) 若实际上此药品对这种疾病的治愈率是0.8,问接受这一断言的概率是多少? (2) 若实际上此药品对这种疾病的治愈率是0.7,问接受这一断言的概率是多少? 【解】1,,1,2,,100.0,.iiXi第人治愈其他
令1001.iiXX (1) X~B(100,0.8), 1001751000.8{75}1{75}11000.80.2iiPXPX
1(1.25)(1.25)0.8944. (2) X~B(100,0.7), 1001751000.7{75}1{75}11000.70.3iiPXPX
51()1(1.09)0.1379.21
10. 对于一个学生而言,来参加家长会的家长人数是一个随机变量,设一个学生无家长、1 名家长、2名家长来参加会议的概率分别为0.05,0.8,0.15.若学校共有400名学生,设各学生参加会议的家长数相与独立,且服从同一分布. (1) 求参加会议的家长数X超过450的概率? (2) 求有1名家长来参加会议的学生数不多于340的概率.