2020高考数学二轮复习专题检测十四点直线平面之间的位置关系理
- 格式:doc
- 大小:231.50 KB
- 文档页数:5
高中数学必修《点直线平面之间的位置关系》知识点高中数学必修的《点直线平面之间的位置关系》是一个重要的几何知识点,主要涉及直线与平面、点与直线、点与平面之间的位置关系。
这个知识点对于理解几何图形的形状和性质具有重要作用,也为后续的三角函数、向量等知识打下基础。
下面将详细介绍该知识点的内容。
一、直线与平面的位置关系1.平面方程:平面的一般方程为Ax+By+Cz+D=0,其中A、B、C为不能同时为0的实数,A、B、C为平面的法向量,D为常数项。
2.直线与平面的位置关系:(1)直线与平面相交:直线与平面相交可以有一个交点,也可以有无穷多个交点。
(2)直线含于平面:如果直线的所有点都在平面上,则直线被称为含于平面。
(3)直线与平面平行:如果直线与平面的交点集为空集,则直线与平面平行。
(4)直线与平面垂直:如果直线与平面的任意一条直线都垂直,则直线与平面垂直。
二、点与直线的位置关系1.点与直线的距离:点P(x0,y0)到直线Ax+By+C=0的距离公式为d=,Ax0+By0+C,/√(A^2+B^2)。
2.点到线段的距离:点P到线段AB的距离:(1)如果P在AB的延长线上,则距离为AP或BP的长度。
(2)如果P在线段AB的两边,则距离为点P到线段AB所在直线的距离。
(3)如果P在线段AB上,则距离为0。
三、点与平面的位置关系1.点在平面上:点P(x0,y0,z0)在平面Ax+By+Cz+D=0上的充要条件是Ax0+By0+Cz0+D=0。
2.点到平面的距离:点P到平面Ax+By+Cz+D=0的距离公式为d=,Ax0+By0+Cz0+D,/√(A^2+B^2+C^2)。
3.点关于平面的对称点:点P(x0,y0,z0)关于平面Ax+By+Cz+D=0的对称点的坐标为:(x',y',z')=(x0-2*Ax0/(A^2+B^2+C^2),y0-2*By0/(A^2+B^2+C^2),z0-2*Cz0/(A^2+B^2+C^2))。
空间直线和平面的位置关系一、考纲要求1.掌握平面的基本性质,空间两条直线、直线和平面、两个平面的位置关系(特别是平行和垂直关系)以及它们所成的角与距离的概念.2.对于异面直线的距离,只要求会计算已给出公垂线时的距离.3.能运用上述概念以及有关两条直线、直线和平面、两个平面的平行和垂直关系的性质与判定,进行论证和解决有关问题.4.会用斜二侧的画法画水平放置的平面图形(特别是正三角形、正四边形、正五边形、两个平面、直线和平面的各种位置关系的图形,能够根据图形想象它们的位置关系.5.理解用反证法证明命题的思路,会用反证法证明一些简单的问题.二、知识结构1.空间多边形不在同一平面内的若干线段首尾相接所成的图形叫做空间折线.若空间折线的最后一条线段的尾端与最初一条线段的首端重合,则叫做封闭的空间折线.若封闭的空间折线各线段彼此不相交,则叫做这空间多边形平面,平面是一个不定义的概念,几何里的平面是无限伸展的.平面通常用一个平行四边形来表示.平面常用希腊字母α、β、γ…或拉丁字母M、N、P来表示,也可用表示平行四边形的两个相对顶点字母表示,如平面AC.在立体几何中,大写字母A,B,C,…表示点,小写字母,a,b,c,…l,m,n,…表示直线,且把直线和平面看成点的集合,因而能借用集合论中的符号表示它们之间的关系,例如:A∈l—点A在直线l上;A∉α—点A不在平面α内;l⊂α—直线l在平面α内;a⊄α—直线a不在平面α内;l∩m=A—直线l与直线m相交于A点;α∩l=A—平面α与直线l交于A点;α∩β=l—平面α与平面β相交于直线l.2.平面的基本性质公理1如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在这个平面内.公理2如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.公理3经过不在同一直线上的三个点,有且只有一个平面.根据上面的公理,可得以下推论.推论1经过一条直线和这条直线外一点,有且只有一个平面.推论2经过两条相交直线,有且只有一个平面.推论3经过两条平行直线,有且只有一个平面.3.证题方法直接证法4.空间线面的位置关系 平行—没有公共点 共面 (1)直线与直线相交—有且只有一个公共点异面(既不平行,又不相交)直线在平面内—有无数个公共点(2)直线和平面直线不在平面内平行—没有公共点(直线在平面外)相交—有且只有一个公共点相交—有一条公共直线(无数个公共点)(3)平面与平面平行—没有公共点5.异面直线的判定证明两条直线是异面直线通常采用反证法.有时也可用定理“平面内一点与平面外一点的连线,与平面内不经过该点的直线是异面直线”.6.线面平行与垂直的判定(1)两直线平行的判定①定义:在同一个平面内,且没有公共点的两条直线平行.②如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线和交线平行,即若a ∥α,a β,α∩β=b,则a ∥b.③平行于同一直线的两直线平行,即若a ∥b,b ∥c,则a ∥c.④垂直于同一平面的两直线平行,即若a ⊥α,b ⊥α,则a ∥b⑤两平行平面与同一个平面相交,那么两条交线平行,即若α∥β,α∩γ,β∩γ=b,则a ∥b⑥如果一条直线和两个相交平面都平行,那么这条直线与这两个平面的交线平行,即若α∩β=b,a ∥α,a ∥β,则a ∥b.(2)两直线垂直的判定①定义:若两直线成90°角,则这两直线互相垂直.②一条直线与两条平行直线中的一条垂直,也必与另一条垂直.即若b ∥c,a ⊥b,则a ⊥c③一条直线垂直于一个平面,则垂直于这个平面内的任意一条直线.即若a ⊥α,b α,a ⊥b.④三垂线定理和它的逆定理:在平面内的一条直线,若和这个平面的一条斜线的射影垂直,则它也和这条斜线垂直.⑤如果一条直线与一个平面平行,那么这条直线与这个平面的垂线垂直.即若a ∥α,b ⊥α,则a ⊥b.⑥三个两两垂直的平面的交线两两垂直,即若α⊥β,β⊥γ,γ⊥α,且α∩β=a,β∩γ证题方法 间接证法反证同一=b,γ∩α=c,则a⊥b,b⊥c,c⊥a.(3)直线与平面平行的判定①定义:若一条直线和平面没有公共点,则这直线与这个平面平行.②如果平面外一条直线和这个平面内的一条直线平行,则这条直线与这个平面平行.即若a⊄α,b⊂α,a∥b,则a∥α.③两个平面平行,其中一个平面内的直线平行于另一个平面,即若α∥β,l⊂α,则l∥β.④如果一个平面和平面外的一条直线都垂直于同一平面,那么这条直线和这个平面平行.即若α⊥β,l⊥β,l⊄α,则l∥α.⑤在一个平面同侧的两个点,如果它们与这个平面的距离相等,那么过这两个点的直线与这个平面平行,即若A∉α,B∉α,A、B在α同侧,且A、B到α等距,则AB∥α.⑥两个平行平面外的一条直线与其中一个平面平行,也与另一个平面平行,即若α∥β,a⊄α,a⊄β,a∥α,则α∥β.⑦如果一条直线与一个平面垂直,则平面外与这条直线垂直的直线与该平面平行,即若a⊥α,b⊄α,b⊥a,则b∥α.⑧如果两条平行直线中的一条平行于一个平面,那么另一条也平行于这个平面(或在这个平面内),即若a∥b,a∥α,b∥α(或b⊂α)(4)直线与平面垂直的判定①定义:若一条直线和一个平面内的任何一条直线垂直,则这条直线和这个平面垂直.②如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.即若m⊂α,n⊂α,m∩n=B,l⊥m,l⊥n,则l⊥α.③如果两条平行线中的一条垂直于一个平面,那么另一条也垂直于同一平面.即若l∥a,a⊥α,则l⊥α.④一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面,即若α∥β,l⊥β,则l⊥α.⑤如果两个平面互相垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面,即若α⊥β,a∩β=α,l⊂β,l⊥a,则l⊥α.⑥如果两个相交平面都垂直于第三个平面,则它们的交线也垂直于第三个平面,即若α⊥γ,β⊥γ,且a∩β=α,则a⊥γ.(5)两平面平行的判定①定义:如果两个平面没有公共点,那么这两个平面平行,即无公共点⇔α∥β.②如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行,即若a,b⊂α,a∩b=P,a∥β,b∥β,则α∥β.③垂直于同一直线的两平面平行.即若α⊥a,β⊥a,则α∥β.④平行于同一平面的两平面平行.即若α∥β,β∥γ,则α∥γ.⑤一个平面内的两条直线分别平行于另一平面内的两条相交直线,则这两个平面平行,即若a,b⊂α,c,d⊂β,a∩b=P,a∥c,b∥d,则α∥β.(6)两平面垂直的判定①定义:两个平面相交,如果所成的二面角是直二面角,那么这两个平面互相垂直,即二面角α-a-β=90°⇔α⊥β.②如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直,即若l⊥β,l⊂α,则α⊥β.③一个平面垂直于两个平行平面中的一个,也垂直于另一个.即若α∥β,α⊥γ,则β⊥γ.7.直线在平面内的判定(1)利用公理1:一直线上不重合的两点在平面内,则这条直线在平面内.(2)若两个平面互相垂直,则经过第一个平面内的一点垂直于第二个平面的直线在第一个平面内,即若α⊥β,A∈α,AB⊥β,则AB⊂α.(3)过一点和一条已知直线垂直的所有直线,都在过此点而垂直于已知直线的平面内,即若A∈a,a⊥b,A∈α,b⊥α,则a⊂α.(4)过平面外一点和该平面平行的直线,都在过此点而与该平面平行的平面内,即若P∉α,P∈β,β∥α,P∈a,a∥α,则a⊂β.(5)如果一条直线与一个平面平行,那么过这个平面内一点与这条直线平行的直线必在这个平面内,即若a∥α,A∈α,A∈b,b∥a,则b⊂α.8.存在性和唯一性定理(1)过直线外一点与这条直线平行的直线有且只有一条;(2)过一点与已知平面垂直的直线有且只有一条;(3)过平面外一点与这个平面平行的平面有且只有一个;(4)与两条异面直线都垂直相交的直线有且只有一条;(5)过一点与已知直线垂直的平面有且只有一个;(6)过平面的一条斜线且与该平面垂直的平面有且只有一个;(7)过两条异面直线中的一条而与另一条平行的平面有且只有一个;(8)过两条互相垂直的异面直线中的一条而与另一条垂直的平面有且只有一个.9.射影及有关性质(1)点在平面上的射影自一点向平面引垂线,垂足叫做这点在这个平面上的射影,点的射影还是点.(2)直线在平面上的射影自直线上的两个点向平面引垂线,过两垂足的直线叫做直线在这平面上的射影.和射影面垂直的直线的射影是一个点;不与射影面垂直的直线的射影是一条直线.(3)图形在平面上的射影一个平面图形上所有的点在一个平面上的射影的集合叫做这个平面图形在该平面上的射影.当图形所在平面与射影面垂直时,射影是一条线段;当图形所在平面不与射影面垂直时,射影仍是一个图形.(4)射影的有关性质从平面外一点向这个平面所引的垂线段和斜线段中:(i)射影相等的两条斜线段相等,射影较长的斜线段也较长;(ii)相等的斜线段的射影相等,较长的斜线段的射影也较长;(iii)垂线段比任何一条斜线段都短.10.空间中的各种角等角定理及其推论定理若一个角的两边和另一个角的两边分别平行,并且方向相同,则这两个角相等.推论若两条相交直线和另两条相交直线分别平行,则这两组直线所成的锐角(或直角)相等.异面直线所成的角(1)定义:a、b是两条异面直线,经过空间任意一点O,分别引直线a′∥a,b′∥b,则a′和b′所成的锐角(或直角)叫做异面直线a和b所成的角.(2)取值范围:0°<θ≤90°.(3)求解方法①根据定义,通过平移,找到异面直线所成的角θ;②解含有θ的三角形,求出角θ的大小.11.直线和平面所成的角(1)定义和平面所成的角有三种:(i)垂线面所成的角的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和这个平面所成的角.(ii)垂线与平面所成的角直线垂直于平面,则它们所成的角是直角.(iii)一条直线和平面平行,或在平面内,则它们所成的角是0°的角.(2)取值范围0°≤θ≤90°(3)求解方法①作出斜线在平面上的射影,找到斜线与平面所成的角θ.②解含θ的三角形,求出其大小.③最小角定理斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角,亦可说,斜线和平面所成的角不大于斜线与平面内任何直线所成的角.12.二面角及二面角的平面角(1)半平面直线把平面分成两个部分,每一部分都叫做半平面.(2)二面角条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个平面叫做二面角的面,即二面角由半平面一棱一半平面组成.若两个平面相交,则以两个平面的交线为棱形成四个二面角.二面角的大小用它的平面角来度量,通常认为二面角的平面角θ的取值范围是0°<θ≤180°(3)二面角的平面角①以二面角棱上任意一点为端点,分别在两个面内作垂直于棱的射线,这两条射线所组成的角叫做二面角的平面角.如图,∠PCD是二面角α-AB-β的平面角.平面角∠PCD的大小与顶点C在棱AB 上的位置无关.②二面角的平面角具有下列性质:(i)二面角的棱垂直于它的平面角所在的平面,即AB⊥平面PCD.(ii)从二面角的平面角的一边上任意一点(异于角的顶点)作另一面的垂线,垂足必在平面角的另一边(或其反向延长线)上.(iii)二面角的平面角所在的平面与二面角的两个面都垂直,即平面PCD⊥α,平面PCD⊥β.③找(或作)二面角的平面角的主要方法.(i)定义法(ii)垂面法(iii)三垂线法(Ⅳ)根据特殊图形的性质(4)求二面角大小的常见方法①先找(或作)出二面角的平面角θ,再通过解三角形求得θ的值.②利用面积射影定理S ′=S ·cos α其中S 为二面角一个面内平面图形的面积,S ′是这个平面图形在另一个面上的射影图形的面积,α为二面角的大小.③利用异面直线上两点间的距离公式求二面角的大小.13.空间的各种距离点到平面的距离(1)定义面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.(2)求点面距离常用的方法:1)直接利用定义求①找到(或作出)表示距离的线段;②抓住线段(所求距离)所在三角形解之.2)利用两平面互相垂直的性质.即如果已知点在已知平面的垂面上,则已知点到两平面交线的距离就是所求的点面距离.3)体积法其步骤是:①在平面内选取适当三点,和已知点构成三棱锥;②求出此三棱锥的体积V 和所取三点构成三角形的面积S ;③由V=31S ·h ,求出h 即为所求.这种方法的优点是不必作出垂线即可求点面距离.难点在于如何构造合适的三棱锥以便于计算.4)转化法将点到平面的距离转化为(平行)直线与平面的距离来求.14.直线和平面的距离(1)定义一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离.(2)求线面距离常用的方法①直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之.②将线面距离转化为点面距离,然后运用解三角形或体积法求解之.③作辅助垂直平面,把求线面距离转化为求点线距离.15.平行平面的距离(1)定义个平行平面同时垂直的直线,叫做这两个平行平面的公垂线.公垂线夹在两个平行平面间的部分,叫做这两个平行平面的公垂线段.两个平行平面的公垂线段的长度叫做这两个平行平面的距离.(2)求平行平面距离常用的方法①直接利用定义求证(或连或作)某线段为距离,然后通过解三角形计算之.②把面面平行距离转化为线面平行距离,再转化为线线平行距离,最后转化为点线(面)距离,通过解三角形或体积法求解之.16.异面直线的距离(1)定义条异面直线都垂直相交的直线叫做两条异面直线的公垂线.两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.任何两条确定的异面直线都存在唯一的公垂线段.(2)求两条异面直线的距离常用的方法①定义法题目所给的条件,找出(或作出)两条异面直线的公垂线段,再根据有关定理、性质求出公垂线段的长.此法一般多用于两异面直线互相垂直的情形.②转化法为以下两种形式:线面距离面面距离③等体积法④最值法⑤射影法⑥公式法直线与平面【例题】【例1】 正三棱锥P-ABC 的高和底面边长都等于a ,EF 是PA 与BC 的公垂线,E 、F 分别是垂足。
——教学资料参考参考范本——高考数学二轮复习专题检测十四点直线平面之间的位置关系理______年______月______日____________________部门一、选择题1.已知E,F,G,H是空间四点,命题甲:E,F,G,H四点不共面,命题乙:直线EF和GH不相交,则甲是乙成立的( ) A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:选B 若E,F,G,H四点不共面,则直线EF和GH肯定不相交,但直线EF和GH不相交,E,F,G,H四点可以共面,例如EF∥GH,故甲是乙成立的充分不必要条件.2.已知m,n是两条不同的直线,α,β是两个不同的平面,给出四个命题:①若α∩β=m,n⊂α,n⊥m,则α⊥β;②若m⊥α,m⊥β,则α∥β;③若m⊥α,n⊥β,m⊥n,则α⊥β;④若m∥α,n∥β,m∥n,则α∥β.其中正确的命题是( )A.①② B.②③C.①④ D.②④解析:选B 两个平面斜交时也会出现一个平面内的直线垂直于两个平面的交线的情况,①不正确;垂直于同一条直线的两个平面平行,②正确;当两个平面与两条互相垂直的直线分别垂直时,它们所成的二面角为直二面角,故③正确;当两个平面相交时,分别与两个平面平行的直线也平行,故④不正确.3.如图,在三棱锥PABC中,不能证明AP⊥BC的条件是( )A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PBC.平面BPC⊥平面APC,BC⊥PCD.AP⊥平面PBC解析:选B A中,因为AP⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC.又BC⊂平面PBC,所以AP⊥BC,故A正确;C中,因为平面BPC⊥平面APC,BC⊥PC,所以BC⊥平面APC.又AP⊂平面APC,所以AP⊥BC,故C正确;D中,由A知D正确;B中条件不能判断出AP⊥BC,故选B.4.已知α,β表示两个不同平面,a,b表示两条不同直线,对于下列两个命题:①若b⊂α,a⊄α,则“a∥b”是“a∥α”的充分不必要条件;②若a⊂α,b⊂α,则“α∥β”是“a∥β且b∥β”的充要条件.判断正确的是( )A.①②都是真命题B.①是真命题,②是假命题C.①是假命题,②是真命题D.①②都是假命题解析:选B 若b⊂α,a⊄α,a∥b,则由线面平行的判定定理可得a∥α,反过来,若b⊂α,a⊄α,a∥α,则a,b可能平行或异面,则b⊂α,a⊄α,“a∥b”是“a∥α”的充分不必要条件,①是真命题;若a⊂α,b⊂α,α∥β,则由面面平行的性质可得a∥β,b∥β,反过来,若a⊂α,b⊂α,a∥β,b∥β,则α,β可能平行或相交,则a⊂α,b⊂α,则“α∥β ”是“a∥β,b∥β ”的充分不必要条件,②是假命题,选项B正确.5.(20xx·惠州三调)如图是一几何体的平面展开图,其中四边形ABCD为正方形,E,F分别为PA,PD的中点,在此几何体中,给出下面4个结论:①直线BE与直线CF异面;②直线BE与直线AF异面;③直线EF∥平面PBC;④平面BCE⊥平面PAD.其中正确的有( )A.1个 B.2个C.3个 D.4个解析:选B 将展开图还原为几何体(如图),因为E,F分别为PA,PD的中点,所以EF∥AD∥BC,即直线BE与CF共面,①错;因为B∉平面PAD,E∈平面PAD,E∉AF,所以BE与AF是异面直线,②正确;因为EF∥AD∥BC,EF⊄平面PBC,BC⊂平面PBC,所以EF∥平面PBC,③正确;平面PAD与平面BCE不一定垂直,④错.故选B.6.在下列四个正方体中,能得出异面直线AB⊥CD的是( )解析:选A 对于A,作出过AB的平面ABE,如图①,可得直线CD与平面ABE垂直,根据线面垂直的性质知,AB⊥CD成立,故A正确;对于B,作出过AB的等边三角形ABE,如图②,将CD平移至AE,可得CD与AB所成的角等于60°,故B不成立;对于C、D,将CD平移至经过点B的侧棱处,可得AB,CD所成的角都是锐角,故C和D均不成立.故选A.二、填空题7.如图,DC⊥平面ABC,EB∥DC,EB=2DC,P,Q分别为AE,AB的中点.则直线DP与平面ABC的位置关系是________.解析:连接CQ,在△ABE中,P,Q分别是AE,AB的中点,所以PQ綊EB.又DC綊EB,所以PQ綊DC,所以四边形DPQC为平行四边形,所以DP∥CQ.又DP⊄平面ABC,CQ⊂平面ABC,所以DP∥平面ABC.答案:平行8.如图,∠ACB=90°,DA⊥平面ABC,AE⊥DB交DB于E,AF⊥DC交DC于F,且AD=AB=2,则三棱锥DAEF 体积的最大值为________.解析:因为DA⊥平面ABC,所以DA⊥BC,又BC⊥AC,DA∩AC=A,所以BC⊥平面ADC,所以BC⊥AF.又AF⊥CD,BC∩CD=C,所以AF⊥平面DCB,所以AF⊥EF,AF⊥DB.又DB⊥AE,AE∩AF=A,所以DB⊥平面AEF,所以DE为三棱锥DAEF的高.因为AE为等腰直角三角形ABD斜边上的高,所以AE=,设AF=a,FE=b,则△AEF的面积S=ab≤·=×=,所以三棱锥DAEF的体积V≤××=(当且仅当a=b=1时等号成立).答案:269.如图,直三棱柱ABC A1B1C1中,侧棱长为2,AC=BC=1,∠ACB=90°,D是A1B1的中点,F是BB1上的动点,AB1,DF交于点E.要使AB1⊥平面C1DF,则线段B1F的长为________.解析:设B1F=x,因为AB1⊥平面C1DF,DF⊂平面C1DF,所以AB1⊥DF.由已知可以得A1B1=,设Rt△AA1B1斜边AB1上的高为h,则DE=h.又2×=h,所以h=,DE=.在Rt△DB1E中,B1E==.由面积相等得× =x,得x=.即线段B1F的长为.答案:12三、解答题10.(20xx·江苏高考)如图,在三棱锥ABCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E,F(E与A,D不重合)分别在棱AD,BD上,且EF⊥AD.求证:(1)EF∥平面ABC;(2)AD⊥AC.证明:(1)在平面ABD内,因为AB⊥AD,EF⊥AD,所以EF∥AB.又因为EF⊄平面ABC,AB⊂平面ABC,所以EF∥平面ABC.(2)因为平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,BC⊂平面BCD,BC⊥BD,所以BC⊥平面ABD.因为AD⊂平面ABD,所以BC⊥AD.又AB⊥AD,BC∩AB=B,AB⊂平面ABC,BC⊂平面ABC,所以AD⊥平面ABC.又因为AC⊂平面ABC,所以AD⊥AC.11.(20xx·安徽名校阶段性测试)如图所示,正方形ABCD所在平面与圆O所在平面相交于CD,线段CD为圆O的弦,AE垂直于圆O所在平面,垂足E是圆O上异于C,D的点,AE=3,圆O的直径CE=9.(1)求证:平面ABE⊥平面ADE;(2)求五面体ABCDE的体积.解:(1)证明:∵AE垂直于圆O所在平面,CD⊂圆O所在平面,∴AE⊥CD.又CD⊥DE,AE∩DE=E,AE⊂平面ADE,DE⊂平面ADE,∴CD⊥平面ADE.在正方形ABCD中,CD∥AB,∴AB⊥平面ADE.又AB⊂平面ABE,∴平面ABE⊥平面ADE.(2)连接AC,BD,设正方形ABCD的边长为a,则AC=a,又AC2=CE2+AE2=90,∴a=3,DE=6,∴VBADE=BA·S△ADE=×3×=9.又AB∥CD,CD⊂平面CDE,∴点B到平面CDE的距离等于点A到平面CDE的距离,即AE,∴VBCDE=AE·S△CDE=×3×=9,故VABCDE=VBCDE+VBADE=18.12.(20xx·郑州第二次质量预测)如图,高为1的等腰梯形ABCD 中,AM=CD=AB=1.现将△AMD沿MD折起,使平面AMD⊥平面MBCD,连接AB,AC.(1)在AB边上是否存在点P,使AD∥平面MPC?(2)当点P为AB边的中点时,求点B到平面MPC的距离.解:(1)当AP=AB时,有AD∥平面MPC.理由如下:连接BD交MC于点N,连接NP.在梯形MBCD中,DC∥MB,==,在△ADB中,=,∴AD∥PN.∵AD⊄平面MPC,PN⊂平面MPC,∴AD∥平面MPC.(2)∵平面AMD⊥平面MBCD,平面AMD∩平面MBCD=DM,AM⊥DM,∴AM⊥平面MBCD.∴VPMBC=×S△MBC×=××2×1×=.在△MPC中,MP=AB=,MC=,又PC==,∴S△MPC=××=.∴点B到平面MPC的距离为d===.。
高考数学备考复习卷:点、直线、平面之间的位置关系一、选择题(共9小题)1.空间A、B、C、D四点不共面,则下列结论中正确的是()A.四点中必有三点共线B.四点中必有三点不共线C.AB、BC、CD、DA中总有两条平行D.AB与CD必相交2.下列四个命题:(1)分别在两个平面内的两条直线是异面直线;(2)和两条异面直线都垂直的直线有且只有一条;(3)和两条异面直线都相交的两条直线必异面;(4)若a与b是异面直线,b与c是异面直线,则a与c也是异面直线.其中是真命题的个数为()A.3 B.2 C.1 D.03.l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面4.下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行5.设l是直线,α,β是两个不同的平面()A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β6.正方体ABCD﹣A′B′C′D′中,AB的中点为M,DD′的中点为N,则异面直线B′M与CN 所成角的大小为()A.0° B.45°C.60°D.90°7.平面α∥平面β,点A,C∈α,B,D∈β,则直线AC∥直线BD的充要条件是()A.AB∥CD B.AD∥CBC.AB与CD相交D.A,B,C,D四点共面8.已知三条不重合的直线m、n、l与两个不重合的平面α、β,有下列命题:①若m∥n,n⊂α,则m∥α;②若l⊥α,m⊥β,且l∥m,则α∥β;③若m⊂α,n⊂α,m∥β,n∥β,则α∥β;④若α⊥β,α∩β=m,n⊂β,n⊥m,则n⊥α.其中正确的命题个数是()A.1 B.2 C.3 D.4 9.P为△ABC所在平面外的一点,则点P在此三角形所在平面上的射影是△ABC垂心的充分必要条件是()A.PA=PB=PCB.PA⊥BC,PB⊥ACC.点P到△ABC三边所在直线距离相等D.平面PAB、平面PBC、平面PAC与△ABC所在的平面所成的角相等二、填空题(共3小题)10.若四面体ABCD的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,则(写出所有正确结论编号)①四面体ABCD每组对棱相互垂直②四面体ABCD每个面的面积相等③从四面体ABCD每个顶点出发的三条棱两两夹角之和大于90°而小于180°④连接四面体ABCD每组对棱中点的线段互垂直平分⑤从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长.11.已知m,n是两条不同的直线,α,β为两个不同的平面,有下列四个命题:①若m⊥α,n⊥β,m⊥n,则α⊥β;②若m∥α,n∥β,m⊥n,则α∥β;③若m⊥α,n∥β,m⊥n,则α∥β;④若m⊥α,n∥β,α∥β,则m⊥n.其中正确的命题是(填上所有正确命题的序号).12.四棱锥P﹣ABCD的底面是边长为a的正方形,PA⊥平面ABCD,侧棱PB与底面ABCD所成的角为60°,则这个四棱锥的体积是.三、解答题(共6小题)13.如图,在五棱锥P﹣ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC,∠ABC=45°,AB=2,BC=2AE=4,三角形PAB是等腰三角形.(Ⅰ)求证:平面PCD⊥平面PAC;(Ⅱ)求直线PB与平面PCD所成角的大小;(Ⅲ)求四棱锥P﹣ACDE的体积.14.如图所示,在四棱锥P﹣ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD 为正三角形,其所在的平面垂直于底面ABCD.(1)若G为AD边的中点,求证:BG⊥平面PAD;(2)求证:AD⊥PB;(3)求二面角A﹣BC﹣P的大小;(4)若E为BC边的中点,能否在棱PC上找一点F,使得平面DEF⊥平面ABCD?并证明你的结论.15.如图所示,在四棱锥P﹣ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB的中点,F是CD 上的点且,PH为△PAD中AD边上的高.(1)证明:PH⊥平面ABCD;(2)若PH=1,,FC=1,求三棱锥E﹣BCF的体积;(3)证明:EF⊥平面PAB.16.如图所示,已知PA⊥平面ABCD,PA=AB=AD=2,AC与BD交于E点,BD=2,BC=CD=.(1)取PD的中点F,求证:PB∥平面AFC;(2)求多面体PABCF的体积.17.如图所示,在直四棱柱ABCD﹣A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.(1)求证:B1D1∥面A1BD;(2)求证:MD⊥AC;(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.18.如图所示,在四棱锥P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=PA=2,PA⊥平面ABCD,E是PC的中点,F是AB的中点.(1)求证:BE∥平面PDF;(2)求证:平面PDF⊥平面PAB;(3)求BE与平面PAC所成的角.高考数学备考复习卷:点、直线、平面之间的位置关系参考答案与试题解析一、选择题(共9小题)1.(2007秋•工农区校级期末)空间A、B、C、D四点不共面,则下列结论中正确的是()A.四点中必有三点共线B.四点中必有三点不共线C.AB、BC、CD、DA中总有两条平行D.AB与CD必相交【分析】先根据条件把四点的位置限定下来,即可得到答案.【解答】解:由空间四点A、B、C、D不共面得:四点所处的位置即为一个三棱锥的顶点和底面上的顶点.可得只有答案B成立.故选 B.【点评】本题的考点是平面公理得应用,可以借助于空间几何体有助理解,考查了空间想象能力,属于基础题.2.(2010•广东模拟)下列四个命题:(1)分别在两个平面内的两条直线是异面直线;(2)和两条异面直线都垂直的直线有且只有一条;(3)和两条异面直线都相交的两条直线必异面;(4)若a与b是异面直线,b与c是异面直线,则a与c也是异面直线.其中是真命题的个数为()A.3 B.2 C.1 D.0【分析】利用异面直线的定义,逐一分析研究各个选项,通过举反例判断一个命题是假命题.【解答】解:(1)不正确,分别在两个平面内的两条直线可以平行,也可以相交.(2)不正确,和两条异面直线都垂直的直线有无数多条.(3)不正确,和两条异面直线都相交的两条直线可以是相交直线,如这2条直线的交点在2条异面直线中的某一条上时.(4)不正确,若a与b是异面直线,b与c是异面直线,则a与c有可能平行,也有可能相交.综上,真命题的个数为0,故选 D.【点评】本题考查异面直线的定义及异面直线的判断,通过举反例判断一个命题是假命题,是一种常用的、有效的方法.3.(2011•四川)l1,l2,l3是空间三条不同的直线,则下列命题正确的是()A.l1⊥l2,l2⊥l3⇒l1∥l3B.l1⊥l2,l2∥l3⇒l1⊥l3C.l1∥l2∥l3⇒l1,l2,l3共面D.l1,l2,l3共点⇒l1,l2,l3共面【分析】通过两条直线垂直的充要条件两条线所成的角为90°;判断出B对;通过举常见的图形中的边、面的关系说明命题错误.【解答】解:对于A,通过常见的图形正方体,从同一个顶点出发的三条棱两两垂直,A错;对于B,∵l1⊥l2,∴l1,l2所成的角是90°,又∵l2∥l3∴l1,l3所成的角是90°∴l1⊥l3,B对;对于C,例如三棱柱中的三侧棱平行,但不共面,故C错;对于D,例如三棱锥的三侧棱共点,但不共面,故D错.故选B.【点评】本题考查两直线垂直的定义、考查判断线面的位置关系时常借助常见图形中的边面的位置关系得到启示.4.(2012•四川)下列命题正确的是()A.若两条直线和同一个平面所成的角相等,则这两条直线平行B.若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行C.若一条直线平行于两个相交平面,则这条直线与这两个平面的交线平行D.若两个平面都垂直于第三个平面,则这两个平面平行【分析】利用直线与平面所成的角的定义,可排除A;利用面面平行的位置关系与点到平面的距离关系可排除B;利用线面平行的判定定理和性质定理可判断C正确;利用面面垂直的性质可排除D.【解答】解:A、若两条直线和同一个平面所成的角相等,则这两条直线平行、相交或异面,故A错误;B、若一个平面内有三个点到另一个平面的距离相等,则这两个平面平行或相交,故B错误;C、设平面α∩β=a,l∥α,l∥β,由线面平行的性质定理,在平面α内存在直线b∥l,在平面β内存在直线c∥l,所以由平行公理知b∥c,从而由线面平行的判定定理可证明b∥β,进而由线面平行的性质定理证明得b∥a,从而l∥a,故C正确;D,若两个平面都垂直于第三个平面,则这两个平面平行或相交,排除D.故选C.【点评】本题主要考查了空间线面平行和垂直的位置关系,线面平行的判定和性质,面面垂直的性质和判定,空间想象能力,属基础题.5.(2012•浙江)设l是直线,α,β是两个不同的平面()A.若l∥α,l∥β,则α∥βB.若l∥α,l⊥β,则α⊥βC.若α⊥β,l⊥α,则l⊥βD.若α⊥β,l∥α,则l⊥β【分析】利用面面垂直的判定定理可证明B是正确的,对于其它选项,可利用举反例法证明其是错误命题【解答】解:A,若l∥α,l∥β,则满足题意的两平面可能相交,排除A;B,若l∥α,l⊥β,则在平面α内存在一条直线垂直于平面β,从而两平面垂直,故B正确;C,若α⊥β,l⊥α,则l可能在平面β内,排除C;D,若α⊥β,l∥α,则l可能与β平行,相交,排除D故选 B【点评】本题主要考查了空间线面、面面位置关系,空间线面、面面垂直于平行的判定和性质,简单的逻辑推理能力,空间想象能力,属基础题6.(2011•湖南模拟)正方体ABCD﹣A′B′C′D′中,AB的中点为M,DD′的中点为N,则异面直线B′M与CN所成角的大小为()A.0° B.45°C.60°D.90°【分析】利用异面直线所成的角的定义,取A′A的中点为 E,则直线B′M与CN所成角就是直线B′M与BE成的角.【解答】解:取A′A的中点为 E,连接BE,则直线B′M与CN所成角就是直线B′M与BE成的角,由题意得 B′M⊥BE,故异面直线B′M与CN所成角的大小为90°,故选 D.【点评】本题考查异面直线所成的角的定义,求异面直线所成的角的方法.取A′A的中点为 E,判断直线B′M与CN所成角就是直线B′M与BE成的角,是解题的关键.7.(2013秋•瑞金市校级期末)平面α∥平面β,点A,C∈α,B,D∈β,则直线AC∥直线BD的充要条件是()A.AB∥CD B.AD∥CBC.AB与CD相交D.A,B,C,D四点共面【分析】利用线面平行的性质以及直线平行的判断条件进行求解.【解答】解:因为平面α∥平面β,要使直线AC∥直线BD,则直线AC与BD是共面直线,即A,B,C,D四点必须共面.故选D.【点评】本题主要考查面面平行的性质以及直线平行的判断条件,比较基础.8.(2012•黄州区校级模拟)已知三条不重合的直线m、n、l与两个不重合的平面α、β,有下列命题:①若m∥n,n⊂α,则m∥α;②若l⊥α,m⊥β,且l∥m,则α∥β;③若m⊂α,n⊂α,m∥β,n∥β,则α∥β;④若α⊥β,α∩β=m,n⊂β,n⊥m,则n⊥α.其中正确的命题个数是()A.1 B.2 C.3 D.4【分析】①,由线面关系得出m∥α或m⊂α;②,由垂直于同一直线的两个平面平行得到;③由面面平行的判定定理得到;④由面面垂直的性质定理得到.【解答】解:对于①,若m∥n,n⊂α,则m∥α或m⊂α,①不正确;对于②,若l⊥α,m⊥β且l∥m,则α∥β,显然成立;对于③,若m⊂α,n⊂α,m∥β,n∥β,则α∥β,由面面平行的判定定理知它是不正确的;对于④,若α⊥β,α∩β=m,n⊂β,n⊥m,则n⊥α,由面面垂直的性质定理知它是正确的;综上所述,正确命题的个数为2,故选B.【点评】本题主要考查线面平行和线面垂直的判定定理和性质定理.9.P为△ABC所在平面外的一点,则点P在此三角形所在平面上的射影是△ABC垂心的充分必要条件是()A.PA=PB=PCB.PA⊥BC,PB⊥ACC.点P到△ABC三边所在直线距离相等D.平面PAB、平面PBC、平面PAC与△ABC所在的平面所成的角相等【分析】本题利用直接法和排除法联合求解,对于选项A,C,D用排除法,对于B,用直接法进行证明.【解答】解:条件A为外心的充分必要条件,条件C、D为内心或旁心的必要条件(当射影在△ABC的形内时为内心,在形外时为旁心).对于B:∵PH⊥平面ABC于H,∴PH⊥BC,又PA⊥平面PBC,∴PA⊥BC,∴BC⊥平面PAH,∴BC⊥AH,即AH是三角形ABC的高线,同理,BH、CH也是三角形ABC的高线,∴垂足H是△ABC的垂心.反之也成立.故选B.【点评】本题主要考查了三角形五心、必要条件、充分条件与充要条件的判断,以及空间几何体的概念、空间想象力,属于基础题.二、填空题(共3小题)10.(2012•安徽)若四面体ABCD的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,则②④⑤(写出所有正确结论编号)①四面体ABCD每组对棱相互垂直②四面体ABCD每个面的面积相等③从四面体ABCD每个顶点出发的三条棱两两夹角之和大于90°而小于180°④连接四面体ABCD每组对棱中点的线段互垂直平分⑤从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长.【分析】①将四面体ABCD的三组对棱分别看作平行六面体的对角线,由于三组对棱分别相等,所以平行六面体为长方体.结合长方体的性质判断②四面体ABCD的每个面是全等的三角形,面积是相等的.③由②,从四面体ABCD每个顶点出发的三条棱两两夹角能够等量代换为同一个三角形内的三个内角,它们之和为180°.④连接四面体ABCD每组对棱中点构成菱形,线段互垂直平分⑤由①,设所在的长方体长宽高分别为a,b,c ,则每个顶点出发的三条棱长分别为,,易知能构成三角形.【解答】解:①将四面体ABCD的三组对棱分别看作平行六面体的对角线,由于三组对棱分别相等,所以平行六面体为长方体.由于长方体的各面不一定为正方形,所以同一面上的面对角线不一定垂直,从而每组对棱不一定相互垂直.①错误②四面体ABCD的每个面是全等的三角形,面积是相等的.②正确③由②,四面体ABCD的每个面是全等的三角形,从四面体ABCD每个顶点出发的三条棱两两夹角能够等量代换为同一个三角形内的三个内角,它们之和为180°.③错误④连接四面体ABCD每组对棱中点构成菱形,线段互垂直平分④正确⑤由①,设所在的长方体长宽高分别为a,b,c ,则每个顶点出发的三条棱长分别为,,,任意两边之和大于第三边,能构成三角形.⑤正确故答案为:②④⑤【点评】本题考查空间几何体的结构特征,线线位置故选,要具有良好的转化,推理、论证能力.11.(2014•武进区校级三模)已知m,n是两条不同的直线,α,β为两个不同的平面,有下列四个命题:①若m⊥α,n⊥β,m⊥n,则α⊥β;②若m∥α,n∥β,m⊥n,则α∥β;③若m⊥α,n∥β,m⊥n,则α∥β;④若m⊥α,n∥β,α∥β,则m⊥n.其中正确的命题是(填上所有正确命题的序号)①④.【分析】①∵若m⊥α,m⊥n,∴n ⊂α或n∥α再由面面垂直的判定定理得到结论.②根据面面平行的判定定理判断.③若m ⊥α,m⊥n,则n⊂α或n∥α,再由面面平行的判定定理判断.④若m⊥α,α∥β,由面面平行的性质定理可得m⊥β,再由n∥β得到结论.【解答】解:①∵若m⊥α,m⊥n,∴n⊂α或n∥α又∵n⊥β,∴α⊥β;故正确.②若m∥α,n∥β,由面面平行的判定定理可知,若m与n相交才平行,故不正确.③若m⊥α,m⊥n,则n⊂α或n∥α,由面面平行的判定定理可知,只有n∥β,两平面不一定平行,故不正确.④若m⊥α,α∥β,则m⊥β,又∵n∥β,则m⊥n.故正确.故答案为:①④【点评】本题主要考查线与线,线与面,面与面的位置关系及垂直与平行的判定定理和性质定理,综合性强,方法灵活,属中档题.12.四棱锥P﹣ABCD的底面是边长为a的正方形,PA⊥平面ABCD,侧棱PB与底面ABCD所成的角为60°,则这个四棱锥的体积是.【分析】利用线面垂直和线面角即可得出四棱锥的高PA,再利用四棱锥的体积计算公式即可得出.【解答】解:如图所示,∵PA⊥平面ABCD,∴PA⊥AB,∴∠PBA=60°.又AB=a,∴PA=AB•tan60°=.∴VP﹣ABCD===.故答案为.【点评】熟练掌握线面垂直的性质、线面角、四棱锥的体积计算公式等是解题的关键.三、解答题(共6小题)13.(2010•山东)如图,在五棱锥P﹣ABCDE中,PA⊥平面ABCDE,AB∥CD,AC∥ED,AE∥BC,∠ABC=45°,AB=2,BC=2AE=4,三角形PAB是等腰三角形.(Ⅰ)求证:平面PCD⊥平面PAC;(Ⅱ)求直线PB与平面PCD所成角的大小;(Ⅲ)求四棱锥P﹣ACDE的体积.【分析】(Ⅰ)要证平面PCD⊥平面PAC,只需证明平面PCD内的直线CD,垂直平面PAC内的两条相交直线PA、AC即可;(Ⅱ)过点A作AH⊥PC于H,说明∠PBO为所求角,然后解三角形求直线PB与平面PCD所成角的大小,也可以利用空间直角坐标系,求出向量,平面PCD 的一个法向量,计算,即可.(Ⅲ)直接求出底面面积和高,再求四棱锥P﹣ACDE的体积.【解答】解:(Ⅰ)证明:因为∠ABC=45°,AB=2,BC=4,所以在△ABC 中,由余弦定理得:,解得,所以AB2+AC2=8+8=16=BC2,即AB⊥AC,又PA⊥平面ABCDE,所以PA⊥AB,又PA∩AC=A,所以AB⊥平面PAC,又AB∥CD,所以CD⊥平面PAC,又因为CD⊂平面PCD,所以平面PCD⊥平面PAC;(Ⅱ)由(Ⅰ)知平面PCD⊥平面PAC,所以在平面PAC内,过点A作AH⊥PC于H,则AH⊥平面PCD,又AB∥CD,AB⊄平面PCD内,所以AB平行于平面PCD,所以点A到平面PCD的距离等于点B到平面PCD的距离,过点B作BO⊥平面PCD于点O,则∠BPO为所求角,且AH=BO,又容易求得AH=2,所以,即∠BPO=30°,所以直线PB与平面PCD所成角的大小为30°;另解:(Ⅱ)因为△PAB 为等腰三角形,所以又AB∥CD,所以点B到平面PCD的距离等于点A到平面PCD的距离.由CD⊥平面PAC,在Rt△PAC 中,,所以PC=4.故PC边上的高为2,即点A到平面的距离,即点点B到平面PCD的距离为2.设直线PB与平面PCD 所成的角为θ,则,又,所以.(Ⅱ)由(Ⅰ)知AB,AC,AP两两互相垂直,分别以AB,AC,AP为x,y,z轴建立如图所示的空间直角坐标系,由△PAB 为等腰直角三角形,所以,而,则因为AC∥ED,CD⊥AC,所以四边形ACDE是直角梯形.因为AE=2,∠ABC=45°,AE∥BC,所以∠BAE=135°,∠CAE=45°,故,所以.因此,设是平面PCD的一个法向量,则,解得x=0,y=z.取y=1,得,而.设θ表示向量与平面PCD 的法向量所成的角,则因此直线PB与平面PCD 所成角的大小为;(Ⅲ)由(Ⅰ)知CD⊥平面PAC,所以CD⊥AC,又AC∥ED,所以四边形ACDE是直角梯形,又容易求得,AC=,所以四边形ACDE 的面积为,所以四棱锥P﹣ACDE 的体积为=.【点评】本题主要考查空间中的基本关系,考查线面垂直、面面垂直的判定以及线面角和几何体体积的计算,考查识图能力、空间想象能力和逻辑推理能力.14.如图所示,在四棱锥P﹣ABCD中,底面ABCD是∠DAB=60°且边长为a的菱形,侧面PAD 为正三角形,其所在的平面垂直于底面ABCD.(1)若G为AD边的中点,求证:BG⊥平面PAD;(2)求证:AD⊥PB;(3)求二面角A﹣BC﹣P的大小;(4)若E为BC边的中点,能否在棱PC上找一点F,使得平面DEF⊥平面ABCD?并证明你的结论.【分析】(1)证明BG⊥AD,通过平面与平面垂直的性质,即可证明BG⊥平面PAD.(2)连接PG,证明PG⊥AD,通过BG⊥AD,证明AD⊥平面PGB,然后证明AD⊥PB.(3)证明∠PBG为二面角A﹣BC﹣P的平面角,即可得到结论;(4)当F为PC边的中点时,满足平面DEF⊥平面ABCD,证明如下:取PC 的中点F,连接DE、EF、DF,通过证明BG⊥PG,PG⊥AD,AD∩BG=G,PG⊥平面ABCD,即可证明平面DEF⊥平面ABCD.【解答】(1)证明:在底面菱形ABCD中,∠DAB=60°,G为AD边的中点,所以BG⊥AD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以BG⊥平面PAD.(2)证明:连接PG,因为△PAD为正三角形,G为AD边的中点,得PG⊥AD,由(1)知BG⊥AD,PG⊂平面PGB,BG⊂平面PGB,PG∩BG=G,所以AD⊥平面PGB,因为PB⊂平面PGB.所以AD⊥PB.(3)解:由(2)知,PG⊥AD,又平面PAD⊥平面ABCD,平面PAD∩平面ABCD=AD,所以PG⊥平面ABCD.因为BG⊥AD,所以BG⊥BC,所以∠PBG为二面角A﹣BC﹣P的平面角因为PG=BG=,所以∠PBG=45°;(4)解:当F为PC边的中点时,满足平面DEF⊥平面ABCD,证明如下:取PC 的中点F,连接DE、EF、DF,在△PBC中,FE∥PB,在菱形ABCD中,EF∩DE=E,所以平面DEF∥平面PGB,因为BG⊥平面PAD,所以BG⊥PG,又因为PG⊥AD,AD∩BG=G,∴PG⊥平面ABCD,而PG⊂平面PGB,所以平面PGB⊥平面ABCD,所以平面DEF⊥平面ABCD.【点评】本题考查直线与平面垂直,平面与平面垂直的证明,考查空间角,考查空间想象能力,逻辑推理能力.15.(2012•广东)如图所示,在四棱锥P﹣ABCD中,AB⊥平面PAD,AB∥CD,PD=AD,E是PB 的中点,F是CD 上的点且,PH为△PAD中AD边上的高.(1)证明:PH⊥平面ABCD;(2)若PH=1,,FC=1,求三棱锥E﹣BCF的体积;(3)证明:EF⊥平面PAB.【分析】(1)因为AB⊥平面PAD,所以PH⊥AB,因为PH为△PAD中AD边上的高,所以PH⊥AD,由此能够证明PH⊥平面ABCD.(2)连接BH,取BH中点G,连接EG,因为E是PB的中点,所以EG∥PH,因为PH⊥平面ABCD,所以EG⊥平面ABCD,由此能够求出三棱锥E﹣BCF的体积.(3)取PA中点M,连接MD,ME,因为E是PB 的中点,所以,因为ME,所以ME DF,故四边形MEDF是平行四边形.由此能够证明EF⊥平面PAB.【解答】解:(1)证明:∵AB⊥平面PAD,∴PH⊥AB,∵PH为△PAD中AD边上的高,∴PH⊥AD,∵AB∩AD=A,∴PH⊥平面ABCD.(2)如图,连接BH,取BH中点G,连接EG,∵E是PB的中点,∴EG∥PH,∵PH⊥平面ABCD,∴EG⊥平面ABCD,则,∴=(3)证明:如图,取PA中点M,连接MD,ME,∵E是PB的中点,∴ME,∵,∴ME DF,∴四边形MEDF是平行四边形,∴EF∥MD,∵PD=AD,∴MD⊥PA,∵AB⊥平面PAD,∴MD⊥AB,∵PA∩AB=A,∴MD⊥平面PAB,∴EF⊥平面PAB.【点评】本题考查直线与平面垂直的证明,求三棱锥的体积,解题时要认真审题,注意合理地化立体几何问题为平面几何问题.16.如图所示,已知PA⊥平面ABCD,PA=AB=AD=2,AC与BD交于E点,BD=2,BC=CD=.(1)取PD的中点F,求证:PB∥平面AFC;(2)求多面体PABCF的体积.【分析】(1)以AC、AP分别为y、z轴,点A为原点,建立如图所示空间直角坐标系.欲证PB ∥平面ACF,只须证PB∥EF ,分别求出向量、的坐标,可得,结合向量的线性运算法则得PB∥EF,由此可得PB∥平面ACF.(2)根据题意算出等边△ABD和等腰Rt△BCD的面积,从而得到四边形ABCD的面积SABCD=+1,结合PA=2是四棱锥P﹣ABCD的高,利用锥体体积公式算出四棱锥P﹣ABCD的体积,即得多面体PABCF的体积.【解答】解:(1)以AC、AP分别为y、z轴,A为原点,建立如图所示空间直角坐标系,∵PA=AB=AD=BD=2,BC=CD,∴△ABC≌△ADC,∴△ABD是等边三角形,且E是BD中点,AC⊥BD,则A(0,0,0)、B(1,,0)、D(﹣1,,0)、E(0,,0)、P(0,0,2)、F (﹣,,1)∵=(1,,﹣2),=(,,﹣1),∴,可得PB∥EF,∵PB⊄平面ACF,EF⊂平面ACF,∴PB∥平面ACF.(2)∵△ABD是边长为2的等边三角形,∴S△ABD==又∵△BCD中,BC=CD=且BD=2,∴△BCD是以BC、CD作为直角边的等腰直角三角形,可得S△BCD==1因此,四边形ABCD的面积SABCD=S△ABD+S△BCD=+1∵PA⊥平面ABCD,得PA是四棱锥P﹣ABCD的高∴四棱锥P﹣ABCD的体积V=SABCD×PA=(+1)×2=即多面体PABCF 的体积等于.【点评】本题给出四棱锥的高等于2,底面由边长为2的正三角形和斜边长等于2的等腰直角三角形组成的四边形,证明直线与平面垂直并求锥体的体积.着重考查了利用向量的方法证明线面平行、锥体的体积求法等知识,属于中档题.17.(2016•石景山区一模)如图所示,在直四棱柱ABCD﹣A1B1C1D1中,DB=BC,DB⊥AC,点M是棱BB1上一点.(1)求证:B1D1∥面A1BD;(2)求证:MD⊥AC;(3)试确定点M的位置,使得平面DMC1⊥平面CC1D1D.【分析】(1)在平面A1BD内找到和B1D1平行的直线BD即可.利用线线平行来推线面平行.(2)先利用条件BB1⊥AC和BD⊥AC证得AC⊥面BB1D,再证明MD⊥AC即可.(3)因为棱BB1上最特殊的点是中点,所以先看中点.取DC的中点N,D1C1的中点N1,连接NN1交DC1于O,⇒BN⊥DC⇒面ABCD⊥面DCC1D1,⇒BN⊥面DCC1D1.而又可证得BN∥OM,所以可得OM⊥平面CC1D1D⇒平面DMC1⊥平面CC1D1D.【解答】解:(1)证明:由直四棱柱,得BB1∥DD1且BB1=DD1,所以BB1D1D是平行四边形,所以B1D1∥BD.而BD⊂平面A1BD,B1D1⊄平面A1BD,所以B1D1∥平面A1BD.(2)证明:因为BB1⊥面ABCD,AC⊂面ABCD,所以BB1⊥AC,又因为BD⊥AC,且BD∩BB1=B,所以AC⊥面BB1D,而MD⊂面BB1D,所以MD⊥AC.(3)当点M为棱BB1的中点时,平面DMC1⊥平面CC1D1D取DC的中点N,D1C1的中点N1,连接NN1交DC1于O,连接OM.因为N是DC中点,BD=BC,所以BN⊥DC;又因为DC是面ABCD与面DCC1D1的交线,而面ABCD⊥面DCC1D1,所以BN⊥面DCC1D1.又可证得,O是NN1的中点,所以BM∥ON且BM=ON,即BMON是平行四边形,所以BN∥OM,所以OM⊥平面CC1D1D,因为OM⊂面DMC1,所以平面DMC1⊥平面CC1D1D.【点评】本题考查平面和平面垂直的判定和性质.在证明面面垂直时,其常用方法是在其中一个平面内找两条相交直线和另一平面内的某一条直线垂直.18.(2010•武清区一模)如图所示,在四棱锥P﹣ABCD中,底面ABCD是菱形,∠BAD=60°,AB=PA=2,PA⊥平面ABCD,E是PC的中点,F是AB的中点.(1)求证:BE∥平面PDF;(2)求证:平面PDF⊥平面PAB;(3)求BE与平面PAC所成的角.【分析】(1)利用线面平行的判定定理去证明.(2)利用面面垂直的判定定理去证明.(3)利用定义或向量法求直线与平面所成的角.【解答】解:(1)证明:取PD的中点为M,连接ME,MF,∵E是PC的中点,∴ME是△PCD的中位线.∴ME∥CD,ME=CD.又∵F是AB的中点,且由于ABCD是菱形,∴AB∥CD,AB=CD,∴ME∥FB,且ME=FB.∴四边形MEBF是平行四边形,∴BE∥MF.∵BE⊄平面PDF,MF⊂平面PDF,∴BE∥平面PDF.(2)证明:∵PA⊥平面ABCD,DF⊂平面ABCD,∴DF⊥PA.连接BD,∵底面ABCD是菱形,∠BAD=60°,∴△DAB为正三角形.∵F是AB的中点,∴DF⊥AB.∵PA∩AB=A,∴DF⊥平面PAB.∵DF⊂平面PDF,∴平面PDF⊥平面PAB.(3)连结BD交AC于O,∵底面ABCD是菱形,∴AC⊥BD,∵PA⊥平面ABCD,∴PA⊥BD,∴BD⊥平面PAC.∴OB⊥OE,即OE是BE在平面PAC上的射影.∴∠BEO是BE与平面PAC所成的角.∵O,E,分别是中点,∴OE=AP=1,OD===1,∴Rt△BOE为等腰直角三角形,∴∠BEO=45°,即BE与平面PAC所成的角的大小为45°.【点评】本题主要考查线面平行和面面垂直的位置关系的判定,要求熟练掌握线面、面面垂直与平行的判定定理和性质定理.综合性较强.。
专题五立体几何第二讲点、直线、平面之间的位置关系1.公理1 如果一条直线上两点在一个平面内,那么这条直线在此平面内.此公理可以用来判断直线是否在平面内.2.公理2 过不在一条直线上的三个点,有且只有一个平面.3.公理3 如果两个不重合的平面有一个公共点,那么这两个平面有且只有一条过该点的公共直线.4.公理4 平行于同一条直线的两条直线互相平行.判断下面结论是否正确(请在括号中打“√”或“×”).(1)如果两个不重合的平面α,β有一条公共直线a,就说平面α,β相交,并记作α∩β=a.(√)(2)两个平面α,β有一个公共点A,就说α,β相交于A点的任意一条直线.(×)(3)两个平面α,β有一个公共点A,就说α,β相交于A点,并记作α∩β=A.(×)(4)两个平面ABC与DBC相交于线段BC.(×)(5)经过两条相交直线,有且只有一个平面.(√)1.给出下列命题,正确命题的个数是(B)①梯形的四个顶点在同一平面内②有三个公共点的两个平面必重合③三条平行直线必共面④每两条都相交且交点不相同的四条直线一定共面A.1个 B.2个C.3个 D.4个2.若空间三条直线a,b,c满足a⊥b,b∥c,则直线a与c(D)A.一定平行B.一定相交C.一定是异面直线D.一定垂直3. (2015·卷)设α,β是两个不同的平面,m是直线且m⊂α,“m∥β”是“α∥β”的(B)A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:当m∥β时,过m的平面α与β可能平行也可能相交,因而m∥βD/⇒α∥β;当α∥β时,α内任一直线与β平行,因为m⊂α,所以m∥β.综上知,“m∥β”是“α∥β”的必要而不充分条件.4.(2015·某某卷)若直线l1和l2是异面直线,l1在平面α内,l2在平面β内,l是平面α与平面β的交线,则下列命题正确的是(D)A.l与l1,l2都不相交B.l与l1,l2都相交C.l至多与l1,l2中的一条相交D.l至少与l1,l2中的一条相交解析:由直线l1和l2是异面直线可知l1与l2不平行,故l1,l2中至少有一条与l相交.一、选择题1.l1,l2是两条异面直线,直线m1,m2与l1,l2都相交,则m1,m2的位置关系是(D) A.异面或平行 B.相交C.异面 D.相交或异面解析:若m1,m2过直线l1或l2上的同一个点,则m1,m2相交;若m1,m2与直线l1,l2有四个不同交点,则m1,m2异面.2.在下列命题中,不是公理的是(A)A.平行于同一个平面的两个平面相互平行B.过不在同一条直线上的三点,有且只有一个平面C.如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内D.如果两个不重合的平面有一个公共点,那么他们有且只有一条过该点的公共直线3. (2015·某某卷)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m”是“l∥α”的(B)A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:∵ m⊥α,若l∥α,则必有l⊥m,即l∥α⇒l⊥m.但l⊥m⇒/ l∥α,∵ l⊥m时,l可能在α内.故“l⊥m”是“l∥α”的必要而不充分条件.4.已知m,n为异面直线,m⊥平面α,n⊥平面β.直线l满足l⊥m,l⊥n,l⊄α,l⊄β,则(D)A.α∥β,且l∥αB.α⊥β,且l⊥βC.α与β相交,且交线垂直于lD.α与β相交,且交线平行于l解析:结合给出的已知条件,画出符合条件的图形,然后判断得出.根据所给的已知条件作图,如图所示.由图可知α与β相交,且交线平行于l.故选D.5.如图,已知六棱锥PABCDEF的底面是正六边形,PA⊥平面ACD,PA=2AB,则下列结论正确的是(D)A.PB⊥ADB .平面PAB⊥平面PBC C .直线BC∥平面PAED .直线PD 与平面ABC 所成的角为45°解析:解法一 由三垂线定理,因AD 与AB 不相互垂直,排除A ;作AG⊥PB 于G ,因平面PAB⊥平面ABCDEF ,而AG 在平面ABCDEF 上的射影在AB 上,而AB 与BC 不相互垂直,故排除B ;由BC ∥EF ,而EF 是平面PAE 的斜线,故排除C.故选D.解法二 设底面正六边形边长为a ,则AD =2a ,PA =2AB =2a ,由PA⊥平面ABC 可知PA⊥AD,又PA =AD ,所以直线PD 与平面ABC 所成的角为∠PDA=45°.故选D.6.下图是某个正方体的侧面展开图,l 1,l 2是两条侧面对角线,则在正方体中,l 1与l 2(D )A .互相平行B .异面且互相垂直C .异面且夹角为π3D .相交且夹角为π3二、填空题7.设α和β为不重合的两个平面,给出下列命题:①若α内的两条相交直线分别平行于β内的两条直线,则α平行于β; ②若α外一条直线l 与α内的一条直线平行,则l 和α平行;③设α和β相交于直线l ,若α内有一条直线垂直于l ,则α和β垂直; ④直线l 与α垂直的充分必要条件是l 与α内的两条直线垂直. 上面命题中,真命题的序号是①②.解析:考查立体几何中的直线、平面的垂直与平行判定的相关定理.8.如图,边长为a 的正三角形ABC 中线AF 与中位线DE 相交于G ,已知△A′ED 是△AED 绕DE 旋转过程中的一个图形,现给出下列命题,其中正确的命题有①②③(填序号).①动点A′在平面ABC上的射影在线段AF上②三棱锥A′FED的体积有最大值③恒有平面A′GF⊥平面BCED④异面直线A′E与BD不可能互相垂直解析:由题意知AF⊥DE,∴A′G⊥DE,FG⊥DE,∴DE⊥平面A′FG,DE⊂平面ABC,∴平面A′FG⊥平面ABC,交线为AF,∴①③均正确.当A′G⊥平面ABC时,A′到平面ABC的距离最大.故三棱锥A′FED的体积有最大值.故②正确.当A′F2=2EF2时,EF⊥A′E,即BD⊥A′E,故④不正确.三、解答题9.(2015·某某卷)如图,在直三棱柱ABCA1B1C1中,已知AC⊥BC,BC=CC1,设AB1的中点为D,B1C∩BC1=E.求证:(1)DE∥平面AA1C1C;(2)BC1⊥AB1.解析:(1)由题意知,E为B1C的中点,又D为AB1的中点,因此DE∥AC.又因为DE⊄平面AA1C1C,AC⊂平面AA1C1C,所以DE∥平面AA1C1C.(2)因为棱柱ABCA1B1C1是直三棱柱,所以CC1⊥平面ABC.因为AC⊂平面ABC,所以AC⊥CC1.又因为AC⊥BC,CC1⊂平面BCC1B1,BC⊂平面BCC1B1,BC∩CC1=C,所以AC⊥平面BCC1B1.又因为BC1⊂平面BCC1B1,所以BC1⊥AC.因为BC=CC1,所以矩形BCC1B1是正方形,因此BC1⊥B1C.因为AC,B1C⊂平面B1AC,AC∩B1C=C,所以BC1⊥平面B1AC.又因为AB1⊂平面B1AC,所以BC1⊥AB1.10.(2014·某某卷)在平面四边形ABCD中,AB=BD=CD=1,AB⊥BD,CD⊥BD.将△ABD 沿BD折起,使得平面ABD⊥平面BCD,如图所示.(1)求证:AB⊥CD;(2)若M为AD中点,求直线AD与平面MBC所成角的正弦值.分析:第(1)问根据面面垂直、线面垂直的性质,证明线线垂直;第(2)问利用第(1)问的结论,建立空间直角坐标系,写出点与向量的坐标,再用向量法求线面角的正弦值.解析:(1)∵平面ABD⊥平面BCD,平面ABD∩平面BCD=BD,AB⊂平面ABD,AB⊥BD,∴AB ⊥平面BCD.又CD ⊂平面BCD ,∴AB ⊥CD.(2)过点B 在平面BCD 内作BE⊥BD ,如图.由(1)知AB⊥平面BCD ,BE ⊂平面BCD ,BD ⊂平面BCD , ∴AB ⊥BE ,AB ⊥BD.以B 为坐标原点,分别以BE →,BD →,BA →的方向为x 轴,y 轴,z 轴的正方向建立空间直角坐标系.依题意,得B(0,0,0),C(1,1,0),D(0,1,0),A(0,0,1), M ⎝ ⎛⎭⎪⎫0,12,12,则BC →=(1,1,0),BM →=⎝ ⎛⎭⎪⎫0,12,12,AD →=(0,1,-1).设平面MBC 的法向量n =(x 0,y 0,z 0), 则⎩⎪⎨⎪⎧n ·BC →=0,n ·BM →=0,即⎩⎪⎨⎪⎧x 0+y 0=0,12y 0+12z 0=0, 取z 0=1,得平面MBC 的一个法向量n =(1,-1,1).设直线AD 与平面MBC 所成角为θ,则sin θ=|cos(n ,AD →)|=|n ·AD →||n|·|AD →|=63,即直线AD 与平面MBC 所成角的正弦值为63.。
高中数学点、直线、平面之间的位置关系知识点归纳与常考题型专题汇总知识点:1、空间点、直线、平面的位置关系(1)平面① 平面的概念: A.描述性说明; B.平面是无限伸展的;② 平面的表示:通常用希腊字母α、β、γ表示,如平面α(通常写在一个锐角内);也可以用两个相对顶点的字母来表示,如平面BC 。
③ 点与平面的关系:点A 在平面α内,记作A α∈;点A 不在平面α内,记作A α∉ 点与直线的关系:点A 的直线l 上,记作:A ∈l ; 点A 在直线l 外,记作A ∉l ; 直线与平面的关系:直线l 在平面α内,记作l ⊂α;直线l 不在平面α内,记作l ⊄α。
(2)公理1:如果一条直线的两点在一个平面内,那么这条直线是所有的点都在这个平面内。
(即直线在平面内,或者平面经过直线)应用:检验桌面是否平; 判断直线是否在平面内用符号语言表示公理1:,,,A l B l A B l ααα∈∈∈∈⇒⊂(3)公理2:经过不在同一条直线上的三点,有且只有一个平面。
推论:一直线和直线外一点确定一平面;两相交直线确定一平面;两平行直线确定一平面。
公理2及其推论作用:①它是空间内确定平面的依据 ②它是证明平面重合的依据(4)公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线符号:平面α和β相交,交线是a ,记作α∩β=a 。
符号语言:,P A B A B l P l ∈⇒=∈公理3的作用:①它是判定两个平面相交的方法。
②它说明两个平面的交线与两个平面公共点之间的关系:交线必过公共点。
③它可以判断点在直线上,即证若干个点共线的重要依据。
(5)公理4:平行于同一条直线的两条直线互相平行(6)空间直线与直线之间的位置关系① 异面直线定义:不同在任何一个平面内的两条直线② 异面直线性质:既不平行,又不相交。
③ 异面直线判定:过平面外一点与平面内一点的直线与平面内不过该店的直线是异面直线 ④ 异面直线所成角:直线a 、b 是异面直线,经过空间任意一点O ,分别引直线a ’∥a ,b ’∥b ,则把直线a ’和b ’所成的锐角(或直角)叫做异面直线a 和b 所成的角。
专题检测(十四)点、直线、平面之间的位置关系一、选择题1.已知E,F,G,H是空间四点,命题甲:E,F,G,H四点不共面,命题乙:直线EF和GH不相交,则甲是乙成立的( )A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件解析:选B 若E,F,G,H四点不共面,则直线EF和GH肯定不相交,但直线EF和GH不相交,E,F,G,H 四点可以共面,例如EF∥GH,故甲是乙成立的充分不必要条件.2.已知m,n是两条不同的直线,α,β是两个不同的平面,给出四个命题:①若α∩β=m,n⊂α,n⊥m,则α⊥β;②若m⊥α,m⊥β,则α∥β;③若m⊥α,n⊥β,m⊥n,则α⊥β;④若m∥α,n∥β,m∥n,则α∥β.其中正确的命题是( )A.①② B.②③C.①④ D.②④解析:选B 两个平面斜交时也会出现一个平面内的直线垂直于两个平面的交线的情况,①不正确;垂直于同一条直线的两个平面平行,②正确;当两个平面与两条互相垂直的直线分别垂直时,它们所成的二面角为直二面角,故③正确;当两个平面相交时,分别与两个平面平行的直线也平行,故④不正确.3.如图,在三棱锥PABC中,不能证明AP⊥BC的条件是( )A.AP⊥PB,AP⊥PCB.AP⊥PB,BC⊥PBC.平面BPC⊥平面APC,BC⊥PCD.AP⊥平面PBC解析:选B A中,因为AP⊥PB,AP⊥PC,PB∩PC=P,所以AP⊥平面PBC.又BC⊂平面PBC,所以AP⊥BC,故A正确;C中,因为平面BPC⊥平面APC,BC⊥PC,所以BC⊥平面APC.又AP⊂平面APC,所以AP⊥BC,故C正确;D中,由A知D正确;B中条件不能判断出AP⊥BC,故选B.4.已知α,β表示两个不同平面,a,b表示两条不同直线,对于下列两个命题:①若b⊂α,a⊄α,则“a∥b”是“a∥α”的充分不必要条件;②若a⊂α,b⊂α,则“α∥β”是“a∥β且b∥β”的充要条件.判断正确的是( )A.①②都是真命题B.①是真命题,②是假命题C.①是假命题,②是真命题D.①②都是假命题解析:选B 若b ⊂α,a ⊄α,a ∥b ,则由线面平行的判定定理可得a ∥α,反过来,若b ⊂α,a ⊄α,a ∥α,则a ,b 可能平行或异面,则b ⊂α,a ⊄α,“a ∥b ”是“a ∥α”的充分不必要条件,①是真命题;若a ⊂α,b ⊂α,α∥β,则由面面平行的性质可得a ∥β,b ∥β,反过来,若a ⊂α,b ⊂α,a ∥β,b ∥β,则α,β可能平行或相交,则a ⊂α,b ⊂α,则“α∥β ”是“a ∥β,b ∥β ”的充分不必要条件,②是假命题,选项B 正确.5.(2017·惠州三调)如图是一几何体的平面展开图,其中四边形ABCD 为正方形,E ,F分别为PA ,PD 的中点,在此几何体中,给出下面4个结论:①直线BE 与直线CF 异面; ②直线BE 与直线AF 异面; ③直线EF ∥平面PBC ; ④平面BCE ⊥平面PAD . 其中正确的有( ) A .1个 B .2个 C .3个D .4个解析:选B 将展开图还原为几何体(如图),因为E ,F 分别为PA ,PD 的中点,所以EF ∥AD ∥BC ,即直线BE 与CF 共面,①错;因为B ∉平面PAD ,E ∈平面PAD ,E ∉AF ,所以BE 与AF是异面直线,②正确;因为EF ∥AD ∥BC ,EF ⊄平面PBC ,BC ⊂平面PBC ,所以EF ∥平面PBC ,③正确;平面PAD 与平面BCE 不一定垂直,④错.故选B.6.在下列四个正方体中,能得出异面直线AB ⊥CD 的是( )解析:选A 对于A ,作出过AB 的平面ABE ,如图①,可得直线CD 与平面ABE 垂直,根据线面垂直的性质知,AB ⊥CD 成立,故A 正确;对于B ,作出过AB 的等边三角形ABE ,如图②,将CD 平移至AE ,可得CD 与AB 所成的角等于60°,故B 不成立;对于C 、D ,将CD 平移至经过点B 的侧棱处,可得AB ,CD 所成的角都是锐角,故C 和D 均不成立.故选A.二、填空题7.如图,DC ⊥平面ABC ,EB ∥DC ,EB =2DC ,P ,Q 分别为AE ,AB 的中点.则直线DP 与平面ABC 的位置关系是________.綊12EB .又DC 綊12EB ,解析:连接CQ ,在△ABE 中,P ,Q 分别是AE ,AB 的中点,所以PQ所以PQ 綊DC ,所以四边形DPQC 为平行四边形,所以DP ∥CQ .又DP ⊄平面ABC ,CQ ⊂平面ABC ,所以DP ∥平面ABC .答案:平行8.如图,∠ACB =90°,DA ⊥平面ABC ,AE ⊥DB 交DB 于E ,AF ⊥DC 交DC 于F ,且AD =AB =2,则三棱锥D AEF 体积的最大值为________.解析:因为DA ⊥平面ABC ,所以DA ⊥BC ,又BC ⊥AC ,DA ∩AC =A ,所以BC ⊥平面ADC ,所以BC ⊥AF .又AF ⊥CD ,BC ∩CD =C ,所以AF ⊥平面DCB ,所以AF ⊥EF ,AF⊥DB .又DB ⊥AE ,AE ∩AF =A ,所以DB ⊥平面AEF ,所以DE 为三棱锥D AEF 的高.因为AE 为等腰直角三角形ABD 斜边上的高,所以AE =2,设AF =a ,FE =b ,则△AEF 的面积S =12ab ≤12·a 2+b 22=12×22=12,所以三棱锥D AEF 的体积V ≤13×12×2=26(当且仅当a =b =1时等号成立). 答案:269.如图,直三棱柱ABC A 1B 1C 1中,侧棱长为2,AC =BC =1,∠ACB =90°,D 是A 1B 1的中点,F 是BB 1上的动点,AB 1,DF 交于点E .要使AB 1⊥平面C 1DF ,则线段B 1F的长为________.解析:设B 1F =x ,因为AB 1⊥平面C 1DF ,DF ⊂平面C 1DF ,所以AB 1⊥DF . 由已知可以得A 1B 1=2,设Rt△AA 1B 1斜边AB 1上的高为h ,则DE =12h .又2×2=h 22+22,所以h =233,DE =33.在Rt△DB 1E 中,B 1E =⎝ ⎛⎭⎪⎫222-⎝ ⎛⎭⎪⎫332=66. 由面积相等得66× x 2+⎝⎛⎭⎪⎫222=22x ,得x =12. 即线段B 1F 的长为12.答案:12三、解答题10.(2017·江苏高考)如图,在三棱锥A BCD 中,AB ⊥AD ,BC ⊥BD ,平面ABD ⊥平面BCD ,点E ,F (E 与A ,D 不重合)分别在棱AD ,BD 上,且EF ⊥AD .求证:(1)EF ∥平面ABC ; (2)AD ⊥AC .证明:(1)在平面ABD 内,因为AB ⊥AD ,EF ⊥AD , 所以EF ∥AB .2019年又因为EF ⊄平面ABC ,AB ⊂平面ABC , 所以EF ∥平面ABC .(2)因为平面ABD ⊥平面BCD , 平面ABD ∩平面BCD =BD ,BC ⊂平面BCD ,BC ⊥BD ,所以BC ⊥平面ABD . 因为AD ⊂平面ABD , 所以BC ⊥AD .又AB ⊥AD ,BC ∩AB =B ,AB ⊂平面ABC ,BC ⊂平面ABC , 所以AD ⊥平面ABC . 又因为AC ⊂平面ABC , 所以AD ⊥AC .11.(2017·安徽名校阶段性测试)如图所示,正方形ABCD 所在平面与圆O 所在平面相交于CD ,线段CD 为圆O 的弦,AE 垂直于圆O 所在平面,垂足E 是圆O 上异于C ,D 的点,AE=3,圆O 的直径CE =9.(1)求证:平面ABE ⊥平面ADE ; (2)求五面体ABCDE 的体积.解:(1)证明:∵AE 垂直于圆O 所在平面,CD ⊂圆O 所在平面,∴AE ⊥CD . 又CD ⊥DE ,AE ∩DE =E ,AE ⊂平面ADE ,DE ⊂平面ADE , ∴CD ⊥平面ADE .在正方形ABCD 中,CD ∥AB , ∴AB ⊥平面ADE . 又AB ⊂平面ABE , ∴平面ABE ⊥平面ADE .(2)连接AC ,BD ,设正方形ABCD 的边长为a ,则AC =2a , 又AC 2=CE 2+AE 2=90, ∴a =35,DE =6, ∴V B ADE =13BA ·S △ADE=13×35×⎝ ⎛⎭⎪⎫12×3×6=9 5. 又AB ∥CD ,CD ⊂平面CDE ,∴点B 到平面CDE 的距离等于点A 到平面CDE 的距离,即AE , ∴V B CDE =13AE ·S △CDE =13×3×⎝ ⎛⎭⎪⎫12×35×6=95,故V ABCDE =V B CDE +V B ADE =18 5.2019年12.(2017·郑州第二次质量预测)如图,高为1的等腰梯形ABCD中,AM=CD=13AB=1.现将△AMD沿MD折起,使平面AMD⊥平面MBCD,连接AB,AC.(1)在AB边上是否存在点P,使AD∥平面MPC?(2)当点P为AB边的中点时,求点B到平面MPC的距离.解:(1)当AP=13AB时,有AD∥平面MPC.理由如下:连接BD交MC于点N,连接NP.在梯形MBCD中,DC∥MB,DNNB=DCMB=12,在△ADB中,APPB=12,∴AD∥PN.∵AD⊄平面MPC,PN⊂平面MPC,∴AD∥平面MPC.(2)∵平面AMD⊥平面MBCD,平面AMD∩平面MBCD=DM,AM⊥DM,∴AM⊥平面MBCD.∴V PMBC=13×S△MBC×AM2=13×12×2×1×12=16.在△MPC中,MP=12AB=52,MC=2,又PC=⎝⎛⎭⎪⎫122+12=52,∴S△MPC=12×2×⎝⎛⎭⎪⎫522-⎝⎛⎭⎪⎫222=64.∴点B到平面MPC的距离为d=3V PMBCS△MPC=3×1664=63.。