信号系统题型归纳---7
- 格式:docx
- 大小:241.98 KB
- 文档页数:5
1. 系统的激励是)t (e ,响应为)t (r ,若满足dt)t (de )t (r =,则该系统为 线性、时不变、因果。
(是否线性、时不变、因果?) 2. 求积分dt )t ()t (212-+⎰∞∞-δ的值为 5 。
3. 当信号是脉冲信号f(t)时,其 低频分量 主要影响脉冲的顶部,其 高频分量 主要影响脉冲的跳变沿。
4. 若信号f(t)的最高频率是2kHz ,则t)f(2的乃奎斯特抽样频率为 8kHz 。
5. 信号在通过线性系统不产生失真,必须在信号的全部频带内,要求系统幅频特性为 一常数相频特性为_一过原点的直线(群时延). 6. 系统阶跃响应的上升时间和系统的 截止频率 成反比。
7. 若信号的3s F(s)=(s+4)(s+2),求该信号的=)j (F ωj 3(j +4)(j +2)ωωω。
8. 为使LTI 连续系统是稳定的,其系统函数)s (H 的极点必须在S 平面的 左半平面 。
9. 已知信号的频谱函数是))00(()j (F ωωδωωδω--+=,则其时间信号f(t)为01sin()t j ωπ。
10. 若信号f(t)的211)s (s )s (F +-=,则其初始值=+)(f 0 1 .二、判断下列说法的正误,正确请在括号里打“√",错误请打“×"。
(每小题2分,共10分)1.单位冲激函数总是满足)()(t t -=δδ ( √ )2.满足绝对可积条件∞<⎰∞∞-dt t f )(的信号一定存在傅立叶变换,不满足这一条件的信号一定不存在傅立叶变换。
( × ) 3.非周期信号的脉冲宽度越小,其频带宽度越宽。
( √ )4.连续LTI 系统的冲激响应的形式取决于系统的特征根,于系统的零点无关。
( √ )5。
所有周期信号的频谱都是离散谱,并且随频率的增高,幅度谱总是渐小的。
( × )三、计算分析题(1、3、4、5题每题10分,2题5分, 6题15分,共60分)1.信号)t (u e )t (f t-=21,信号⎩⎨⎧<<=其他,01012t )t (f ,试求)t (f *)t (f 21。
信号与系统复习题答案1. 信号的分类有哪些?信号可以分为连续时间信号和离散时间信号。
连续时间信号是指在时间上连续变化的信号,而离散时间信号是指在时间上以离散点变化的信号。
2. 什么是线性时不变系统?线性时不变系统是指满足叠加性和时间不变性的系统。
叠加性意味着系统对多个输入信号的响应等于对各个输入信号单独响应的和;时间不变性意味着系统对输入信号的响应不随时间变化。
3. 傅里叶变换的性质有哪些?傅里叶变换的性质包括线性、时移、频移、尺度、对称性、卷积定理等。
线性性质表明,信号的线性组合的傅里叶变换等于各个信号傅里叶变换的线性组合;时移性质表明,信号的时间平移会导致其傅里叶变换的相位变化;频移性质表明,信号的频率平移会导致其傅里叶变换的幅度变化;尺度性质表明,信号的尺度变化会导致其傅里叶变换的频率变化;对称性性质表明,实信号的傅里叶变换是共轭对称的;卷积定理表明,时域的卷积对应于频域的乘积。
4. 拉普拉斯变换与傅里叶变换的关系是什么?拉普拉斯变换是傅里叶变换的推广,它通过引入复频率变量s来扩展傅里叶变换的应用范围。
当s的虚部趋于无穷大时,拉普拉斯变换退化为傅里叶变换。
5. 什么是采样定理?采样定理指出,如果一个连续时间信号的频谱只包含在一定频率范围内,那么可以通过在一定采样率下对该信号进行采样来完全恢复原信号。
采样率必须大于信号最高频率的两倍,即奈奎斯特率。
6. 什么是系统的频率响应?系统的频率响应是指系统对不同频率的输入信号的响应。
它可以通过系统的传递函数在频域内进行分析,反映了系统对不同频率成分的放大或衰减情况。
7. 什么是系统的稳定性?系统的稳定性是指当输入信号为有界信号时,系统输出信号也保持有界的性质。
线性时不变系统可以通过其传递函数的极点位置来判断其稳定性。
8. 什么是系统的因果性?系统的因果性是指系统的输出在任何时刻只取决于当前和过去的输入,而不依赖于未来的输入。
因果系统的传递函数在频域内表现为左半平面的极点。
信号与系统题目汇总 选择题:1.试确定信号()3cos(6)4x t t π=+的周期为 B 。
A. 2πB.3π C. π D. 3π2. 试确定信号5()2cos()cos()466x k k k πππ=++的周期为 A 。
A. 48B. 12C. 8D. 363.下列表达式中正确的是 B 。
A. (2)()t t δδ= B. 1(2)()2t t δδ= C. (2)2()t t δδ= D. 12()(2)2t t δδ= 4.积分55(1)(24)t t dt δ---+=⎰C 。
A. -1B. 1C. 0.5D. -0.55.下列等式不成立的是 D 。
A. 102012()()()()f t t f t t f t f t -*+=* B. ()()()f t t f t δ*= C. ()()()f t t f t δ''*= D.[][][]1212()()()()d d df t f t f t f t dt dt dt*=* 6. (3)(2)x k k δ+*-的正确结果是 B 。
A. (5)(2)x k δ-B. (1)x k +C. (1)(2)x k δ-D. (5)x k +7.序列和()k k δ∞=-∞∑等于 D 。
A. (1)x k +B. ∞C. ()k εD. 18. 已知某系统的系统函数H(s),唯一决定该系统单位冲激响应h(t)函数形式的是( A ) A. H(s)的极点B. H(s)的零点C.系统的输入信号D.系统的输入信号与H(s)的极点9. 已知f(t)的傅立叶变换F(jw),则信号f(2t-5)的傅立叶变换是( D )A.51()22j j F e ωω-B.5()2j j F e ωω- C. 52()2j j F e ωω- D.521()22j j F e ωω- 10.已知信号f1(t)如下图所示,其表达式是( D )A. ε(t)+2ε(t -2)-ε(t -3)B. ε(t -1)+ε(t -2)-2ε(t -3)C. ε(t)+ε(t -2)-ε(t -3)D. ε(t -1)+ε(t -2)-ε(t -3)11. 若系统的冲激响应为h(t),输入信号为f(t),系统的零状态响应是( C ) A.()()f t h tB.()()f t t δC.()()f h t d τττ∞-∞-⎰D.()()tf h t d τττ-⎰12.某二阶系统的频率响应为22()32j j j ωωω+++,则该系统的微分方程形式为 B 。
《信号与系统》题型总结(按内容)答题时注意审题一、计算题(大题)1 求信号的单双边LT ,单双边ZT, FT ,FS, 单双边ILT ,单双边IZT,IFT(1)定义,(2)性质2 求卷积、卷积和3 求系统状态跳跃(1)物理分析法,(2)冲激函数匹配法4 时域法求连续或离散系统自由响应、强迫响应、零输入响应、零状态响应、冲激响应、阶跃响应、完全响应5 变换域法求连续或离散系统自由响应、强迫响应、零输入响应、零状态响应、冲激响应、阶跃响应、完全响应6 求系统函数,求解卷积(小题)1 求信号直流、交流分量,信号能量,信号功率2 用冲激信号的抽样性、乘积运算、卷积性化简3 求可逆系统,用LTI 系统的性质进行运算4 FT,LT,ZT 性质的运用(F(s),X(z)求时域信号的极限)5 求信号带宽6 求抽样频率与抽样间隔,连续信号的奈奎斯特频率和间隔7 求系统的稳态响应、瞬态响应9 基本公式的应用000(t ) 1 (t-t )0(t t )t d t δδ∞-∞-==≠⎰000()()()()f t t t f t t t δδ-=-000()0()()(0)0t t t t t δδδ=-≠=,00()(),()()t t t t t t δδδδ--无意义δ(t)的抽样性性质00()()()f t t t dt f t δ+∞-∞-=⎰ ()()t d u t δττ-∞=⎰()du t t dt δ=()()()dr t u t dt =00()()()f t t t dt f t δ+∞-∞''-=-⎰()()t t δδ-=信号功率=直流功率+交流功率()()2e f t f t f t +-=()()()2o f t f t f t --=()**11()[()()]()[()()]22r i f t f t f t f t f t f t j =+=-信号功率=偶分量功率+奇分量功率完全响应=自由响应+强迫响应=零输入响应+零状态响应10卷积和的抽样性、阶跃性应用11 求信号的周期(离散、连续)二、证明题1 证明冲激信号的抽样性,00()()()f t t t dt f t δ+∞-∞-=⎰2证明δ’(t)的抽样性性质00()()()f t t t dt f t δ+∞-∞''-=-⎰3 证明冲激信号的卷积性4 证明卷积结合律5 证明卷积微积分性,6 证明FT 的对称性7 证明FT ,LT ,ZT 的尺度变换性、时域平移性、变换域平移性、微分性、时域卷积性,证明ZT 的终值定理,8 证明一般周期信号的FT 计算公式9 证明ILT 部分分解的系数计算公式。
信号与系统考试方式:闭卷 考试题型:1、简答题(5个小题),占30分;计算题(7个大题),占70分。
一、简答题:1.dtt df t f x e t y t )()()0()(+=-其中x(0)是初始状态,为全响应,为激励,)()(t y t f 试回答该系统是否是线性的?[答案:非线性]2.)()(sin )('t f t ty t y =+试判断该微分方程表示的系统是线性的还是非线性的,是时变的还是非时变的?[答案:线性时变的]3.已知有限频带信号)(t f 的最高频率为100Hz ,若对)3(*)2(t f t f 进行时域取样,求最小取样频率s f =?[答案:400s f Hz =]4.简述无失真传输的理想条件。
[答案:系统的幅频特性为一常数,而相频特性为通过原点的直线]5.求[]⎰∞∞--+dt t t e t )()('2δδ的值。
[答案:3]6.已知)()(ωj F t f ↔,求信号)52(-t f 的傅立叶变换。
[答案:521(25)()22j f t e F j ωω--↔]7.已知)(t f 的波形图如图所示,画出)2()2(t t f --ε的波形。
[答案: ]8.已知线性时不变系统,当输入)()()(3t e e t x t t ε--+=时,其零状态响应为)()22()(4t e e t y t t ε--+=,求系统的频率响应。
[答案:())4)(2(52)3(++++ωωωωj j j j ]9.求象函数2)1(32)(++=s s s F ,的初值)0(+f 和终值)(∞f 。
[答案:)0(+f =2,0)(=∞f ]10.若LTI 离散系统的阶跃响应为)(k g ,求其单位序列响应。
其中:)()21()(k k g k ε=。
[答案:1111()()(1)()()()(1)()()(1)222k k k h k g k g k k k k k εεδε-=--=--=--]11.已知()1 1 , 0,1,20 , k f k else ==⎧⎨⎩ ,()2 1 , 0,1,2,30 , k k f k else -==⎧⎨⎩设()()()12f k f k f k =*,求()3?f =。
.试题一一. 选择题(共10题,20分) 1、n j n j een x )34()32(][ππ+=,该序列是 。
A.非周期序列B.周期3=NC.周期8/3=ND. 周期24=N2、一连续时间系统y(t)= x(sint),该系统是 。
A.因果时不变B.因果时变C.非因果时不变D.非因果时变 3、一连续时间LTI 系统的单位冲激响应)2()(4-=-t u e t h t ,该系统是 。
A.因果稳定B.因果不稳定C.非因果稳定D. 非因果不稳定4、若周期信号x[n]是实信号和奇信号,则其傅立叶级数系数a k 是 。
A.实且偶B.实且为奇C.纯虚且偶D. 纯虚且奇 5、一信号x(t)的傅立叶变换⎩⎨⎧><=2||02||1)(ωωω,,j X ,则x(t)为 。
A. t t 22sinB. tt π2sin C. t t 44sin D.t t π4sin6、一周期信号∑∞-∞=-=n n t t x )5()(δ,其傅立叶变换)(ωj X 为 。
A. ∑∞-∞=-k k )52(52πωδπ B. ∑∞-∞=-k k )52(25πωδπC. ∑∞-∞=-k k )10(10πωδπD. ∑∞-∞=-k k)10(101πωδπ7、一实信号x[n]的傅立叶变换为)(ωj e X ,则x[n]奇部的傅立叶变换为 。
A.)}(Re{ωj e X j B. )}(Re{ωj e XC. )}(Im{ωj e X j D. )}(Im{ωj e X8、一信号x(t)的最高频率为500Hz ,则利用冲激串采样得到的采样信号x(nT)能唯一表示出原信号的最大采样周期为 。
A. 500B. 1000C. 0.05D. 0.001 9、一信号x(t)的有理拉普拉斯共有两个极点s=-3和s=-5,若)()(4t x e t g t =,其傅立叶变换)(ωj G 收敛,则x(t)是 。
A. 左边B. 右边C. 双边D. 不确定10、一系统函数1}Re{1)(->+=s s e s H s,,该系统是 。
1. 某线性时不变系统的微分方程为:)(6)('2)(2)('3)("t e t e t y t y t y +=++, 已知:3)0('1)0()()(===--y y t t e 、,ε。
求:零输入响应)(t y zi 、零状态响应)(t y zs 和全响应)(t y 。
【解】:(1) 求零输入响应)(t y zi在零输入情况下,0)(=t e 。
此时微分方程为齐次方程0)(2)(3)("=++t y t y t y ,其特征根为:2121-=-=λλ、。
零输入响应)(t y zi 可写为0)(221≥+=--t e C e C t y tx t x zi ①由初始条件3)0('1)0(==--y y 、确定待定系数1x C 和2x C 。
⎩⎨⎧-==⇒⎩⎨⎧=--===+==----4532)0(')0('1)0()0(212121x x x x zi x x zi C C C C y y C C y y 故零输入响应为:045)(2≥-=--t e et y ttzi ②(2) 求零状态响应)(t y zs零状态响应是假设系统的初始状态为零,仅由激励引起的响应。
于是有0)0(')0(==--zs zs y y但是,)0(')0(++zs zs y y 、有可能不为零。
就零状态响应本身而言,它包含齐次解和特解。
此题的零状态响应可写为0)()(221>++=--t t y e C e C t y p t s t s zs ③先求式③中的特解。
因为激励信号为)()(t t e ε=(可以认为激励信号为常数),设特解为)0()(>=t P t y p 或写为 )()(t P t y p ε=将)()(t P t y p ε=及)()(t t e ε=代入原微分方程中,在0>t 时,有3)(6)(2=⇒=P t t P εε因此,式③可该写为03)(221>++=--t e C e C t y t s t s zs ④式④中的待定系数21s s C C 、由)0(')0(++zs zs y y 、确定,而)0(')0(++zs zs y y 、的值由系统的状态从-=0t 到+=0t 的跳变量决定。
1、 若系统的输入f (t )、输出y (t) 满足()3()4t y t e ft -=,则系统为 线性的 (线性的、非线性的)、 时变的 (时变的、时不变)、 稳定的 (稳定的、非稳定的).2、 非周期、连续时间信号具有 连续 、非周期频谱;周期、连续时间信号具有离散、非周期 频谱;非周期、离散时间信号具有 连续 、周期频谱;周期、离散时间信号具有离散、 周期 频谱。
3、 信号f(t)的占有频带为0-10KHz,被均匀采样后,能恢复原信号的最大采样周期为 5×10—5 s 。
4、 )100()(2t Sa t f =是 能量信号 (功率信号、能量信号、既非功率亦非能量信号)。
5、 ()2cos()f t t =+是 功率信号 (功率信号、能量信号、既非功率亦非能量信号)。
6、 连续信号f(t )=sint 的周期T 0= 2π ,若对f (t )以fs=1Hz 进行取样,所得离散序列f(k)=sin(k ) ,该离散序列是周期序列? 否 。
7、 周期信号2sin(/2)()j n tn n f t e n ππ+∞=-∞=∑,此信号的周期为 1s 、直流分量为 2/π 、频率为5Hz 的谐波分量的幅值为 2/5 。
8、 f (t) 的周期为0。
1s 、傅立叶级数系数**03355532F F F F F j --=====、其余为0。
试写出此信号的时域表达式f (t ) = 5 + 6 cos ( 60 π t ) - 4 sin (100 π t ) . 9、 f (k ) 为周期N=5的实数序列,若其傅立叶级数系数()205=F ()52511,πjeF -+=()54512πjeF -+=、 则F 5 (3 )= ()54512πjeF +=- 、F 5 (4 )= ()52511πj eF +=- 、F 5 (5 )= 2 ;f(k ) =())1.7254cos(62.052)9.3552cos(62.152525140525︒-⨯+︒-⨯+=∑=k k e n F n k jn πππ。
信号与线性系统复习题单项选择题。
1. 已知序列3()cos()5f k k π=为周期序列,其周期为 ( C ) A . 2 B. 5 C. 10 D. 122. 题2图所示()f t 的数学表达式为 ( B )图题2A .()10sin()[()(1)]f t t t t πεε=+- B. ()10sin()[()(1)]f t t t t πεε=-- C. ()10sin()[()(2)]f t t t t πεε=-- D. ()10sin()[()(2)]f t t t t πεε=+-3.已知sin()()()t f t t dt t πδ∞-∞=⎰,其值是 ( A )A .π B. 2π C. 3π D. 4π4.冲激函数()t δ的拉普拉斯变换为 ( A )A . 1 B. 2 C. 3 D. 45.为了使信号无失真传输,系统的频率响应函数应为 ( D ) A . ()djwt H jw e= B. ()djwt H jw e-= C. ()djwt H jw Ke= D. ()djwt H jw Ke-=6.已知序列1()()()3kf k k ε=,其z 变换为 ( B )A .13z z + B.13z z - C.14z z + D.14z z -7.离散因果系统的充分必要条件是 ( A ) A .0,0)(<=k k h B. 0,0)(>=k k h C. 0,0)(<<k k h D. 0,0)(>>k k h8.已知()f t 的傅里叶变换为()F jw ,则(3)f t +的傅里叶变换为 ( C ) A .()jwF jw e B. 2()j wF jw eC. 3()j wF jw eD. 4()j wF jw e9.已知)()(k k f kεα=,)2()(-=k k h δ,则()()f k h k *的值为( B ) A .)1(1--k k εαB. )2(2--k k εαC. )3(3--k k εαD. )4(4--k k εα10.连续时间系统的零输入响应的“零”是指( A ) A. 激励为零 B. 系统的初始状态为零 C. 系统的冲激响应为零 D. 系统的阶跃响应为零 11. 已知序列kjek f 3)(π=为周期序列,其周期为 ( )A . 2 B. 4 C. 6 D. 812. 题2图所示()f t 的数学表达式为 ( )A .)1()1()(--+=t t t f εε B.)1()1()(-++=t t t f εε C. )1()()(--=t t t f εε D. )1()()(-+=t t t f εε13.已知)2()(),1()(21-=-=t t f t t f εδ,则 12()()f t f t *的值是 ( ) A .)(t ε B. )1(-t ε C. )2(-t ε D. )3(-t ε14.已知ωωj j F =)(,则其对应的原函数为 ( ) A .)(t δ B. )('t δ C. )(''t δ D. )('''t δ15.连续因果系统的充分必要条件是 ( ) A . 0,0)(==t t h B. 0,0)(<=t t h C. 0,0)(>=t t h D. 0,0)(≠=t t h16.单位阶跃序列)(k ε的z 变换为 ( )A .1,1<+z z z B. 1,1>+z z z C. 1,1<-z z z D. 1,1>-z z z 17.已知系统函数ss H 1)(=,则其单位冲激响应()h t 为 ( )A .)(t ε B. )(t t ε C. )(2t t ε D. )(3t t ε18.已知()f t 的拉普拉斯变换为()F s ,则)5(t f 的拉普拉斯变换为 ( )tA .)5(s F B. )5(31s F C. )5(51s F D. )5(71s F 19.已知)2()(2-=-k k f k εα,)2()(-=k k h δ,则()()f k h k *的值为( )A .)1(1--k k εα B. )2(2--k k εαC. )3(3--k k εαD. )4(4--k k εα20.已知)(t f 的傅里叶变换为)(ωj F ,则)(jt F 的傅里叶变换为( ) A. )(ωπ-fB. )(ωπfC. )(2ωπ-fD. )(2ωπf21. 下列微分或差分方程所描述的系统是时变系统的是 ( ) A . )(2)()(2)(''t f t f t y t y -=+ B. )()(sin )('t f t ty t y =+ C. )()]([)(2't f t y t y =+ D. )()2()1()(k f k y k y k y =--+22. 已知)()(),()(21t t f t t t f εε==,则)()(21t f t f *的值是 ( ) A .)(1.02t t ε B. )(3.02t t ε C. )(5.02t t ε D. )(7.02t t ε23.符号函数)sgn(t 的频谱函数为 ( )A .ωj 1 B. ωj 2 C. ωj 3 D. ωj 424.连续系统是稳定系统的充分必要条件是 ( ) A . M dt t h ≤⎰∞∞-)( B. M dt t h ≥⎰∞∞-)(C.M dt t h ≤⎰∞∞-)( D.M dt t h ≥⎰∞∞-)(25.已知函数)(t f 的象函数)5)(2()6()(+++=s s s s F ,则原函数)(t f 的初值为 ( )A . 0 B. 1 C. 2 D. 3 26.已知系统函数13)(+=s s H ,则该系统的单位冲激响应为 ( ) A .)(t e tε- B.)(2t e tε- C.)(3t e tε- D. )(4t e tε- 27.已知)2()(),1()(1-=-=-k k h k k f k δεα,则)()(k h k f *的值为 ( )A .)(k kεα B.)1(1--k k εα C.)2(2--k k εα D. )3(3--k k εα28. 系统的零输入响应是指( ) A.系统无激励信号 B. 系统的初始状态为零C. 系统的激励为零,仅由系统的初始状态引起的响应D. 系统的初始状态为零,仅由系统的激励引起的响应 29.偶函数的傅里叶级数展开式中 ( )A .只有正弦项 B.只有余弦项 C. 只有偶次谐波 D. 只有奇次谐波 10. 已知信号()f t 的波形,则)2(t f 的波形为 ( ) A .将()f t 以原点为基准,沿横轴压缩到原来的12B. 将()f t 以原点为基准,沿横轴展宽到原来的2倍C. 将()f t 以原点为基准,沿横轴压缩到原来的14D. 将()f t 以原点为基准,沿横轴展宽到原来的4倍 填空题1. 已知象函数223()(1)s F s s +=+,其原函数的初值(0)f +为___________________。
第七章离散时间系统的时域分析
理解:
离散序列(时间上离散的信号,时间间隔一般取均匀,用T表示,但不是必须均匀的,通常可有连续信号均匀抽样得到)
●量化的概念(将信号的幅值用二进制代码表示,数字信号是时间
和幅值均离散的信号)
●线性系统全响应的可分解性
●抽样定理的内容(一个在频谱中不包含有大于频率fm 的分量的
有限频带的信号,由对该信号以不大于1/(2fm )的时间间隔进行抽样的抽样值唯一地确定。
)
●抽样信号频谱与原信号频谱之间的关系(原信号f(t)经抽样后得
到fs(t),而fs (t)的频谱是原信号f(t)的频谱F(jω)以抽样频率Ωs 为周期,周期延拓。
幅度为原来的1/T。
满足抽样定理的抽样,要想恢复原信号,只需要将原信号通过一个截止频率合适的低通滤波器,就可以从频域上恢复原信号频谱,即可恢复原信号。
若不满足抽样定理的条件,比如抽样频率小于原信号最高频率的两倍时,抽样后的信号频谱发生混跌失真,无法取出原信号频谱。
)
●内插公式(f(t)由一系列的抽样函数迭加而成。
抽样函数只在自
身抽样点上不为零,而在其它抽样点上全为零。
)
掌握:
●典型序列的性质、序列的运算(单位阶跃序列、单位函数)
零输入响应、单位函数响应和零状态响应的时域求解法
◆零输入响应:根据所给系统方程或电路图写出系统差分方程,求
解其特征根,根据特征根的不同形式写出零输入响应的一般形式。
(1)异实根
(2)m阶重根,n-m个异实根
(3)一对共轭复根
总的来说|v|<1 响应为衰减型,|v|>1响应为增长型。
◆单位函数响应的求法(注意先将H(S)除以S后再进行因式分解)(1)n 单根(真分式):
(2)n 重根:
(3)一对共轭复根
●离散系统特征根在Z平面内的位置与系统稳定性的关系(单位圆
内稳定,单位圆外不稳定。
详见书P 25)
●将系统等效为差分方程、转移算子H(S)和单位函数响应的方法
离散卷积
定义式:
有始序列的离散卷积为:
离散卷积性质
交换律:
结合律:
分配律:
移位后的卷积:
卷积后的差分:
卷积后的求和:
f(k)与单位函数卷积:
f(k)与单位阶跃序列卷积:
●离散时间系统与离散时间系统时域分析比较
题型:
离散时间系统的模拟和描述(根据差分方程画系统模拟框图。
三个运算器:加法器、标量乘法器、单位延迟器。
同样分为直接型、级联型、串联型三种形式,除级联型外两种的模拟框图均是唯一的。
注意,首先应将差分方程化为标准形式,即方程中左边最低次项为y(k)。
例题PPT 31)
直接型模拟框图如下:
●根据框图列写差分方程
●线性非移变系统的判定方法(注意和连续做对比)
●图解法求解离散卷积((1)、将f1 (k)和f2 (k)两个函数的变量
由k换成j ;(2)、将其中一个序列反折并移动;(3)、将两个序列对应点相乘并求和)
重要结论:(例题 PPT 53)
1、两个相同的矩形序列(对称的)的卷积是一个三角形序列;
2、其长度为两序列之和减1,一般地一个序列的长度为N,另一
个序列的长度为M,则它们卷积的长度为N+M-1;
3、最大值为两个序列的能量f2(k)求和。
例题见第八章PPT 34。