面向对象遥感影像分类方法及其应用研究——以深圳市福田区植被提取为例
- 格式:pdf
- 大小:18.62 MB
- 文档页数:93
利用光谱遥感技术进行林木种类研究与分类光谱遥感技术是一种非常有用的工具,可以帮助我们了解地球上不同地区的植被分布和种类。
在林木种类研究和分类方面,光谱遥感技术在提供高效准确的数据方面有着巨大的潜力。
本文将介绍利用光谱遥感技术进行林木种类研究与分类的方法和应用。
首先,光谱遥感技术可通过分析不同波段的反射率来识别和分类不同种类的林木。
不同种类的植物具有不同的光谱特性,这些特征能够以数字化形式记录在光谱数据中。
通过比较不同种类植物在不同波段的反射率变化,我们可以得到用于分类的重要特征。
在进行林木分类之前,我们需要采集大量的光谱数据。
这些数据可以通过航空或卫星遥感技术获取。
航空遥感技术使用搭载在航空器上的高分辨率光谱仪,可以获取更为详细和准确的光谱数据。
而卫星遥感技术则能够覆盖更大范围的地区。
通过对这些数据进行处理和分析,我们可以了解不同地区的植被类型和林木种类。
利用光谱遥感技术进行林木种类研究与分类需要一些先验知识。
在开始研究时,我们需要进行地面调查和数据采集,确定不同地区的林木种类和分布情况。
这些数据可以作为训练样本,用于开发分类算法和建立模型。
常用的光谱遥感技术中,最常使用的是多光谱遥感技术。
多光谱遥感数据包含了多个波段的信息,从可见光到红外波段。
这些波段各自对应着不同的光谱特征,可以提供丰富的信息用于分类分析。
通过对多光谱数据进行特征提取和处理,例如主成分分析、线性判别分析和神经网络等方法,可以提取出林木种类分类所需的信息。
除了多光谱数据,高光谱遥感数据也被广泛应用于林木种类研究与分类。
高光谱遥感数据包含更多的波段信息,通常涵盖了可见光和近红外波段。
这种数据可以提供更为详细和精确的光谱特征,能够更准确地识别和分类不同种类的林木。
在利用光谱遥感技术进行林木种类研究与分类时,建立一个准确的分类模型是至关重要的。
在模型的建立中,我们通常使用监督学习算法,例如支持向量机、随机森林和人工神经网络等方法。
这些方法能够根据已知的训练样本进行分类模型的训练和测试,然后将学习到的模型应用于未知数据进行林木种类的分类。
城市绿地生态系统服务功能及其价值评估——以深圳市福田区为例姜刘志;杨道运;梅岑岑;班远冲;杨小毛【摘要】根据WorldView-3遥感影像数据,对深圳市福田区城市绿地的空间分布特征进行了分析,在此基础上构建指标体系对其生态服务价值进行评价.结果表明:福田区城市绿地的生态服务价值为11 683.41万元,单位面积城市绿地的生态服务价值为8.35万元;各项生态服务价值排序为:固碳释氧>涵养水源>调节气候>环境净化>维持生物多样性>土壤保持>景观游憩;从单位面积生态服务价值来看,乔木最大,草地最低,具体表现为乔木>乔灌>乔草>乔灌草>灌木>灌草>草地;从各街道分布情况来看,莲花街道>沙头街道>香蜜湖街道>梅林街道>福田街道>福保街道>园岭街道>华强北街道>华富街道>南园街道,其价值量大小主要取决于各街道所拥有的城市绿地面积.作为深圳市的中心城区,福田区在今后的城市绿地建设规划与管理过程中,要适当考虑不同类型城市绿地的空间异质性,优化城市绿地结构,维持绿地系统的生态平衡,充分发挥绿地系统的生态服务与功能.%Based on the interpretation results of Worldview-3 data,the spatial distribu tion characteristics of city green space is analyzed in Futian District,and its ecological service value is assessed,referring to the Forest Ecosystem Service Function Evaluation Specification.The results showed that:1) the ecosystem service value of urban green space reached up to 116.834 1 million Yuan in Futian District,and the average value per unit area was 83,500 Yuan.2) Various kinds ecological service values were sorted as follows:carbon fixation and oxygen release>water resources conservation >climate regulation>environment purification> biodiversity maintenance> soil conservation> landscape recreation.3) The average value per unit area was various among different urban green space,namely,arbor>arbor-shrub>arbor grass>arbor-shrub-grass> shrub> shrub-grass>grass.4) The value of urban green space in different sub district depended on the respective area of urban green space,namely,Lianhua>Shatou>Xiangmihu> Meilin>Futian> Fubao> Yuanling> Huaqiangbei> Huafu>Nanyuan.As the central urban area in Shenzhen,it is important for Futian District to increase spatial heterogene ity,diversify species composition,optimize plant structure,and provide sound urban green space management,which is able to maintain the ecological balance and improve the ecological services of urban green space.【期刊名称】《华中师范大学学报(自然科学版)》【年(卷),期】2018(052)003【总页数】8页(P424-431)【关键词】城市绿地;生态系统服务功能;价值评估;深圳市;福田区【作者】姜刘志;杨道运;梅岑岑;班远冲;杨小毛【作者单位】北京大学城市与环境学院,北京100871;北京大学香港科技大学深圳研修院,广东深圳518057;深圳市深港产学研环保工程技术股份有限公司,广东深圳518055;深圳市深港产学研环保工程技术股份有限公司,广东深圳518055;深圳市深港产学研环保工程技术股份有限公司,广东深圳518055;深圳市深港产学研环保工程技术股份有限公司,广东深圳518055;北京大学城市与环境学院,北京100871;深圳市深港产学研环保工程技术股份有限公司,广东深圳518055【正文语种】中文【中图分类】Q346+.3;X171.1随着城市化进程的日益加快和城市人口的高度集中,用地紧张、交通拥挤、污染加重等环境问题严重干扰着城市生态系统,使其成为人为的生态脆弱带.作为城市生态系统的重要组成部分,城市绿地是指城市中保持着自然景观,或自然景观得到恢复的地域.从景观生态学角度来看,城市绿地是指在城市灰色基底上具有一定格局和生态功能的绿色斑块和廊道[1].城市绿地在调节气候、保持土壤、涵养水源、净化环境、维持生态系统稳定等方面具有重要作用,是城市环境的“绿色卫士”[2-3].然而,长期受传统经济理念的影响,城市绿地尚未形成市场需求,其生态价值更难以真正体现.因此,合理评价城市绿地的生态服务价值不仅是充分发挥其生态功能的基础,也是城市主体开展绿地建设与规划管理的重要依据.从定性研究到定量估算,城市绿地生态服务价值评价已逐渐成为国内外研究的热点[4].Costanza等[5]对全球生态系统的价值评估为城市绿地生态系统研究奠定了基础;Zoulia等[6]对雅典城市绿地的缓解热岛效应进行了监测;Larondelle & Haase[7]对欧州城市绿地的气候调节、降温及娱乐等生态服务功能进行了定量评价.国内很多学者也通过建立不同的指标体系,对北京、上海、广州等[8-14]城市的绿地生态系统服务功能进行了综合评价.但目前关于城市绿地生态系统的价值评估大多集中于大、中型城市,对于区域层面的城市绿地生态系统的评估甚为少见.本研究根据WorldView-3遥感影像解译结果,首先分析了深圳市福田区城市绿地的空间分布特征,在此基础上,对城市绿地生态系统的服务价值进行定量评估,以期为深圳市福田区城市绿地的规划建设与管理、区域生态环境改善以及城市生态系统持续健康发展等提供一定的理论依据.1 研究区概况福田区位于深圳市中部,总面积78.66 km2,占全市面积的4%,下辖福保、福田、华富、华强北、莲花、梅林、南园、沙头、香蜜湖、园岭10个街道.福田区属于亚热带海洋性季风气候,冬暖夏凉,温和湿润,多年平均气温为22.5℃,多年平均日照时数为1 933.8 h,多年平均降雨量为1 966.3 mm,常年盛行东南风,多年平均风速为2.7 m/s.经过十多年的城市开发建设,除北部的梅林山体、南部的红树林保护区外,大部分区域已发展成为城市建成区.福田区立足中心城区的特色及惠及民生的追求,持续开展公园建设,全力打造“公园之城”,公园总数达109个,其中市政公园12个,社区公园97个,“百园福田”已然形成;已建成绿道146.9 km,基本实现了城区公共绿地系统的有机串联和衔接.2 数据与方法2.1 城市绿地数据采集方法本研究选取2015年1月31日的WorldView-3原始数据(包括空间分辨率为1.24 m的多光谱数据和空间分辨率为0.31 m的全色数据)作为主要数据源,以1∶50 000的DEM数据、福田区行政区划图、土地利用现状图等为辅助数据,主要用于遥感数据的几何校正、监督分类以及精度检验等.在Erdas image遥感处理平台上对WorldView-3遥感数据进行几何纠正、空间配准、数据融合、图像增强等预处理,通过野外调查,建立福田区不同类型城市绿地的遥感解译标志.在ArcGIS9.3中进行人工目视判读解译,并结合实地抽样调查进行验证,对误判的类型进行修正,得到福田区2015年城市绿地现状分布专题图.本研究中的城市绿地资源是指分布于基本生态控制线范围以外的各种绿地,包括各种公园绿地、社区绿地、交通绿地、附属绿地等.根据城市绿地植被的种植结构,将其分为乔木、灌木、草地、乔灌草、乔灌、乔草和灌草7类.2.2 城市绿地生态服务价值评价方法通过参考国内外已有研究成果[11,15-19],综合考虑深圳市福田区特定的气候条件、生态环境、社会经济发展水平以及城市绿地的主要生态服务功能,按照评价因子的整体性、前瞻性、简单可操作性、相关性和便于比较性原则[20],选取土壤保持(固土、保肥)、涵养水源(调节水量、净化水质)、环境净化(吸收SO2、NOx、氟化物、滞尘)、固碳释氧(固碳、释氧)、调节气候、维持生物多样性、景观游憩等7个大项14个小项构建城市绿地生态服务功能评价体系.根据不同生态服务功能的特点,分别采用替代成本法、替代工程法、恢复费用法、影子工程法等对城市绿地的各项生态服务功能进行价值评价.评价过程中所涉及到的相关参数、系数尽量选取与福田区土壤、气候、植被分布特征基本一致的深圳市、广东省或邻近区域的研究结果[21-32](详见表1),相关建设成本、恢复费用等社会公共数据采用《森林生态系统服务功能评估规范(LY/T1721-2008)》[33]中推荐使用的价格.表1 福田区城市绿地生态服务价值核算因子汇总表Tab.1 Parameters of ecological service value of urban green space in Futian District核算内容核算因子参数取值资料来源土壤保持现实土壤侵蚀模数0.718 5 t/(hm2·a)采用欧阳志云等[21]关于《海南岛生态系统生态调节功能及其生态经济价值》的研究结果潜在土壤侵蚀模数10.925 7 t/(hm2·a)土壤容重1.585 g/cm3采用张波等[22]关于《深圳城市绿地土壤孔隙状况与水分特征研究》的研究结果土壤有机质含量25 g/kg采用周波等[23]关于《深圳市光明新区土壤肥力时空演变的主成分分析》相关研究成果土壤含氮量610 mg/kg土壤含磷量153 mg/kg土壤含钾量203mg/kg涵养水源地表径流量262.4 mm采用刘树华等[24]关于《鼎湖山主要生态系统的水热过程研究及脆弱性初探》的相关数据环境净化SO2年吸收率120.85 kg/hm2采用《中国生物多样性国情研究报告》[29]中的相关研究结果HF年吸收率4.65 kg/hm2NOx年吸收率380 kg/hm2年滞尘量10.11t /hm2提供负离子平均浓度1650个/cm3采用刘凯昌等[25]关于广州市不同植被类型提供负离子浓度的调查结果植被平均高度4m固碳释氧土壤固碳速率1.701 t/(hm2·a)采用郭然等[30]关于《中国草地土壤生态系统固碳现状和潜力》的研究结果调节气候植被蒸腾吸热量4.59×108 J/(hm2·d)采用张彪[31]等关于《北京城市绿地的蒸腾降温功能及其经济价值评估》的相关研究成果3 结果与分析3.1 福田区城市绿地空间分布特征根据WorldView-3遥感影像解译结果,深圳市福田区城市绿地面积为1 398.75 hm2,占福田区总面积的17.78%.其中,乔木面积为1 035.78 hm2,占城市绿地总面积的74.05%;灌木面积为55.28 hm2,占城市绿地总面积的3.95%;草地面积为176.04 hm2,占城市绿地总面积的12.59%;乔灌草面积为46.52 hm2,占城市绿地总面积的3.33%;乔灌面积为37.67 hm2,占城市绿地总面积的2.69%;乔草面积为38.14 hm2,占城市绿地总面积的2.73%;灌草面积为9.32 hm2,占城市绿地总面积的0.67%(如表2和图1).从空间分布情况来看,莲花街道的城市绿地面积最大,达325.80 hm2,占福田区城市绿地面积的23.29%;其次是沙头街道、香蜜湖街道、梅林街道和福田街道,面积之和约占福田区城市绿地总面积的56%;南园街道、华强北街道、华富街道和园岭街道的城市绿地面积最少,面积之和仅占福田区城市绿地总面积的14.2%.表2 福田区2015年城市绿地分布情况Tab.2 The distribution of urban green space in Futian District in 2015 hm2城市绿地类型福田区各街道分布情况福保福田华富华强北莲花梅林南园沙头香蜜湖园岭乔木1035.7863.64127.4342.1543.94250.3132.8621.13156.79143.3154.23灌木55.285.6310.220.580.3113.147.800.409.696.600.91草地176.0412.289.092.396.0325.9519.655.4470.8020.683.73乔灌草46.523.339.260.820.1414.452.640.954.908.361.67乔灌37.672.832.073.920.965.250.380.394.3515.731.79乔草38.147.282.081.250.8913.783.830.542.872.842.78灌草9.320.870.230.750.092.930.240.182.031.900.10合计1398.7595.86160.3851.8652.36325.8167.429.03251.43199.4265.21图1 福田区城市绿地的空间分布情况Fig.1 The spatial distribution of urban green space in Futian District这一空间分布特征除与各街道行政区划面积大小相关外,主要与各类公园及绿地的分布情况有关.莲花山公园、香蜜湖公园以及部分没有纳入生态控制线范围内的梅林山体的分布是莲花街道、香蜜湖街道和梅林街道城市绿地面积较大的主要原因;位于沙头街道的深圳高尔夫俱乐部,以及市民中心和深南大道片区公共绿地的分布使得沙头街道和福田街道城市绿地面积较大;由于没有公园分布,仅有少量的道路绿地和零星的社区绿地,南园街道、华强北街道、华富街道和园岭街道的城市绿地面积较少.3.2 福田区城市绿地生态系统服务价值作为城市生态环境的重要组成部分,城市绿地蕴含着巨大的生态服务价值.经核算,2015年深圳市福田区城市绿地生态服务总价值为11 683.41万元,单位面积城市绿地的生态服务价值为8.35万元,人均城市绿地生态服务价值为81.1元.从价值构成来看,固碳释氧功能的价值最高,达4442.3万元,占总价值的38.02%,其中,固定二氧化碳量为17 509.57 t/年,释放氧气量为39 301.5 t/年;其次是涵养水源和调节气候功能,价值量分别为3 778.67万元、2 570.16万元,三者之和占总价值的92.36%;而环境净化、土壤保持、维持生物多样性和景观游憩功能价值相对较小,四者之和占总价值的比例不足8%.从城市绿地的不同类型来看,乔木的生态服务价值最高,达8 712.05万元,占总价值的74.56%;其次是草地,生态服务价值为1 428.79万元,占总价值的12.22%;灌草的生态服务价值最低,仅有76.12万元.从单位面积生态服务价值来看,乔木最大,高达8.41万元/ hm2,而草地最低,仅为8.12万元/ hm2,包含乔木在内的不同绿地结构的生态服务价值均高于单一的灌木和草地类型,即乔木>乔灌>乔草>乔灌草>灌木>灌草>草地.表3 福田区2015年城市绿地生态服务价值评价结果Tab.3 Ecosystem service value of urban green space in Futian District in 2015 万元城市绿地类型土壤保持涵养水源环境净化固碳释氧调节气候维持生物多样性景观游憩总价值单位面积价值乔木127.592798.12256.713292.101903.21228.79105.528 712.058.41灌木2.05149.3413.42175.34101.588.643.99454.348.22草地6.33475.5742.60557.20323.4716.127.501 428.798.12乔灌草3.04125.6711.35147.5585.487.273.36383.728.25乔灌3.02101.769.24119.6169.227.103.28313.238.32乔草3.03103.039.33120.9770.085.962.76315.168.26灌草0.3425.182.2629.5317.131.150.5476.128.17合计145.403778.67344.914442.302 570.16275.03126.9411 683.418.35福田区各街道城市绿地生态系统服务价值量及分布见图2.从图中可以看出,莲花街道城市绿地的生态服务价值最高,为2 692.41万元,占福田区总价值的23.29%;南园街道城市绿地的生态服务价值最低,为239.92万元,仅占福田区总价值的2.08%.由于城市绿地内部结构相似,不同街道城市绿地生态服务价值量的差别主要体现在街道所拥有的城市绿地面积的大小,即莲花街道>沙头街道>香蜜湖街道>梅林街道>福田街道>福保街道>园岭街道>华强北街道>华富街道>南园街道.从人均城市绿地的生态服务功能价值来看,香蜜湖街道最高,达165.07元/人,其次是莲花街道,151.32元/人,南园街道最低,仅20.43元/人.4 结论与讨论基于WorldView-3遥感影像解译结果,本研究分析了深圳市福田区城市绿地的空间分布特征,并对福田区城市绿地的土壤保持、涵养水源、环境净化、固碳释氧、调节气候、维持生物多样性、景观游憩等7项生态服务价值进行评价.结果表明,福田区共有城市绿地1 398.75 hm2,占福田区总面积的17.78%;2015年福田区城市绿地生态系统服务总价值高达11 683.41万元,单位面积城市绿地的生态系统服务价值为8.35万元;城市绿地生态服务价值的大小排序为:固碳释氧、涵养水源、调节气候、环境净化、维持生物多样性、土壤保持、景观游憩;从不同类型城市绿地的单位面积生态服务价值来看,乔木最大,草地最低,具体表现为乔木>乔灌>乔草>乔灌草>灌木>灌草>草地;从各街道分布情况来看,其价值量的差别主要体现为所拥有城市绿地面积的大小,即莲花街道>沙头街道>香蜜湖街道>梅林街道>福田街道>福保街道>园岭街道>华强北街道>华富街道>南园街道.图2 福田区各街道城市绿地生态系统服务价值Fig.2 Ecosystem service value of urban green space in each sub-district in Futian District区别于森林、草地、湿地等自然生态系统,城市绿地系统受人为干扰更为强烈,在自然和人为因素共同影响下的物质流、能量流和信息流更为复杂[34],鉴于这种复杂性,目前还没有统一的量化方法来评价城市绿地的生态服务价值.福田区作为深圳市的中心城区,其城市绿地大多是通过人工规划和营造而成,与自然状态下的绿地具有一定的差异性,而本研究在选取某些参数时主要参考自然生态系统的相关研究结果,导致城市绿地系统的部分生态服务价值被人为高估.除此以外,城市绿地所提供的生态服务功能不仅局限于文中提到的7个方面,如杀菌、减噪等生态功能,物质产出等经济功能,以及维护人类健康等社会功能均没有被纳入到评价指标体系中.因此,本研究只是应用生态经济学原理对福田区城市绿地的生态服务价值进行粗略与保守估计,但基本可以反映福田区城市绿地主要生态服务功能的价值.同时,选取乡镇街道作为最小核算单元,可以使城市绿地的生态服务价值更加明确,若将各街道范围内城市绿地的面积及价值进行定期动态更新,可以在一定程度上直观反映城市开发建设活动对城市绿地系统的影响与破坏,进而作为领导干部政绩考核和离任审计的重要依据之一.由于城市独特的生态环境,城市绿地的生态服务价值构成也与森林、草地、湿地等自然生态系统显著不同.在福田区城市绿地生态系统中,固碳释氧、涵养水源和调节气候三项生态功能价值构成比例超过92%,而其他几项指标价值所占比例不足8%,由此说明,福田区城市绿地的主要生态服务功能是固碳释氧、涵养水源和调节气候,同时也反映了城市绿地在固碳增汇、涵养水源、缓解城市热岛效应方面潜力巨大.虽然福田区城市绿地的环境净化功能价值比较低,价值构成比例仅为2.95%,但是由于该项功能不具有空间转移性,只能依靠城市系统内部来实现[35],因此,福田区在今后的城市绿地建设与规划过程中,要重点考虑如何充分发挥城市绿地的环境净化功能.城市绿地系统生态服务功能的高低不仅取决于城市绿地的数量,即面积的大小,更取决于城市绿地的质量,如绿地系统的组成、结构、景观格局以及管理水平等[36].同时,在经济发展与城市建设过程中的一些人类活动将在一定程度上改变绿地生态机体的生存条件,如过多的人为管理和规划将会直接导致绿地植被的同质性特征[36],对绿地系统的健康构成较大威胁.福田区作为深圳市的中心城区,城市绿化用地极为有限,城市人口迅速增加,公众对于人居环境的需求也在不断提高,因此,不能单纯通过扩大绿地面积来提高城市绿地覆盖率,要适当考虑不用类型城市绿地的空间异质性,通过乔灌草不同植被配置,优化城市绿地结构,增加绿地植物的多样性,维持绿地系统的生态平衡,充分发挥绿地系统的生态服务与功能.参考文献:[1] 祝宁,周洪泽,刘晓丹. 哈尔滨城市绿地景观体系研究[J].环境保护科学,2002, 28(110):39.ZHU N, ZHOU H Z, LIU X D. Research on the scenical system of greenland in Haerbin[J]. Environmental Protection Science, 2002,28(110):39.(Ch).[2] 赵煜,赵千钧,崔胜辉,等. 城市森林生态服务价值评估研究进展[J].生态学报, 2009, 29(12):6723-6732.ZHAO Y, ZHAO Q J, CUI S H, et al. Progress in ecological services evaluation of urban forest[J]. Ecologica Sinica, 2009, 29(12):6723-6732.(Ch).[3] 徐乃雄. 城市绿地与环境[M].北京:中国建材工业出版社,2002.XU N X. The Urban Green Space and the Environment[M]. Beijing: China Building Materials Press, 2002. (Ch).[4] 韩明臣,李智勇. 城市森林生态效益评价及模型研究现状[J].世界林业研究,2011, 24(2):42-46.HAN M C, LI Z Y. Ecological benefits evaluation of urban forest and its models[J]. World Forestry Research, 2011, 24(2):42-46. (Ch).[5] COSTANZA R. The value of the world’s ecosystem services and natural capital[J]. Nature, 1997, 387,243-260.[6] ZOULIA I,SANTAMOURIS M,DIMOUDI A.Monitoring the effect of urban green areas on the heat island in Athens[J].Environmental Monitoring and Assessment, 2009, 156(1-4):275-292.[7] LARONDELLE N,HAASE D.Urban ecosystem services assessment alonga rural-urban gradient: A cross-analysis of European cities[J].Ecological Indicators, 2013, 29(10):179-190.[8] 张彪,谢高地,薛康,等. 北京城市绿地调蓄雨水径流功能及其价值评估[J].生态学报, 2011, 31(13):3839-3845.ZHANG B, XIE G D, XUE K, et al. Evaluation of rainwater runoff storage by urban green spaces in Beijing[J]. Ecologica Sinica, 2011, 31(13):3839-3845.(Ch).[9] 陈龙,谢高地,盖力强,等. 道路绿地消减噪声服务功能研究——以北京市为例[J].自然资源学报, 2011, 26(9):1526-1534.CHEN L, XIE G D, GAI L Q, et al. Research on noise reduction service of road green spaces—a case study of beijing[J]. Journal of Natural Resources,2011, 26(9):1526-1534. (Ch).[10] 徐剑波,刘振华,宋立生,等. 基于遥感的广州市城市绿地生态服务功能评价[J].生态学杂志, 2012, 31(2):440-445.XU J B, LIU Z H, SONG L S, et al. Evaluation on ecological services of urban green space in Guangzhou City of South China based on remote sensing[J]. Chinese Journal of Ecology, 2012, 31(2):440-445.(Ch).[11] 柳云龙,朱建青,施振香,等. 上海城市绿地净化服务功能及其价值评估[J].中国人口·资源与环境, 2009(5):28-32.LIU Y L, ZHU J Q, SHI Z X, et al. Purification services and their value assessment of city green space in Shanghai[J]. China Population Resources and Environment, 2009(5):28-32. (Ch).[12] 张绪良,徐宗军,张朝晖,等. 青岛市城市绿地生态系统的环境净化服务价值[J].生态学报, 2011, 31(9):2576-2584.ZHANG X L, XU Z J, ZHANG C H, et al. Environment purification service value of urban green space ecosystem in Qingdao City[J]. Ecologica Sinica,2011, 31(9):2576-2584. (Ch).[13] 李锋,王如松. 城市绿地系统的生态服务功能评价、规划与预测研究-以扬州市为例[J].生态学报, 2003, 23(9):1929-1936.LI F, WANG R S. Evaluat ion, planning and predict ion of ecosystem services of urban green space: A case study of Yangzhou City[J]. Ecologica Sinica, 2003, 23(9):1929-1936. (Ch).[14] 胡小飞,傅春. 南昌城市绿地系统生态调节服务功能价值动态分析[J].江西农业大学学报, 2014, 36(1):230-237.HU X F, FU C. Dynamic analysis of ecological service function value for urban green space in Nanchang[J]. Acta Agriculturae Universitatis Jiangxiensis, 2014, 36(1):230-237. (Ch).[15] KUTTLER W,STRASSBURGER A.Air quality measurements in urban green areas-a case study[J].Atmospheric Environment,1999,33(24-25):4101-4108.[16] HAMADA S,OHTA T.Seasonal variations in the cooling effect of urban green areas on surrounding urban areas[J].Urban Forestry and Urban Greening, 2010, 9(1):15-24.[17] 康文星,吴耀兴,何介南,等. 城市森林生态系统服务价值指标体系与评价方法[J].林业科学, 2008, 44(12):129-134.KANG W X, WU Y X, HE J N, et al. Index system and methods for evaluating urban forest ecosystem service value[J]. Scientia Silvae Sinicae,2008, 44(12):129-134. (Ch).[18] 肖建武,康文星,尹少华,等. 广州市城市森林生态系统服务功能价值评估[J].中国农学通报, 2011, 27(31):27-35.XIAO J W, KANG W X, YIN S H, et al. Evaluation for Service functionsof urban forest ecosystem in Guangzhou[J] Chinese Agricultural Science Bulletin, 2011, 27(31):27-35.[19] 王洪威,徐建刚,桂昆鹏,等. 城市绿地系统生态服务效能评价及优化研究-以淮安生态新城为例[J].环境科学学报, 2012, 32(4):1018-1024.WANG H W, XU J G, GUI K P, et al. Study on evaluation and optimization of ecological service efficiency of urban greenbelt system: A case study of Huai’an ecological new town[J]. Scientiae Circumstantiae,2012, 32(4):1018-1024.[20] 张利华,邹波,黄宝荣. 城市绿地生态功能综合评价体系研究的新视角[J].中国人口·资源与环境, 2012, 22(4):67-71.ZHANG L H, ZOU B, HUANG B R. New perspective of comprehensive evaluation research on urban green space ecosystem[J]. China Population,Resources and Environment, 2012, 22(4):67-71. (Ch).[21] 欧阳志云,赵同谦,赵景柱,等. 海南岛生态系统生态调节功能及其生态经济价值研究[J].应用生态学报,2004,15(8):1395-1402.OUYANG Z Y, ZHAO T Q, ZHAO J Z, et al. Ecological regulation services of Hainan Island ecosystem and their valuation[J]. Chinese Journal of Applied Ecology, 2004, 15(8):1395-1402. (Ch).[22] 张波,史正军,张朝,等. 深圳城市绿地土壤孔隙状况与水分特征研究[J].中国农学通报, 2012, 28(04):299-304.ZHANG B, SHI Z J, ZHANG C, et al. Study on soil porosity and water characteristics of urban green space in Shenzhen city[J]. Chinese Agricultural Science Bulletin, 2012, 28(4):299-304. (Ch).[23] 周波,陈旭飞,张聪俐,等. 深圳市光明新区土壤肥力时空演变的主成分分析[J].华南农业大学学报, 2012, 33(4):448-452.ZHOU B, CHEN X F, ZHANG C L, et al. Principal component analysis of spatial and temporal evolution of soil fertility in guangming new sistrict,Shenzhen city[J]. Journal of South China Agricultural University, 2012,33(4):448-452. (Ch).[24] 刘树华,李浩,陆宏芳. 鼎湖山南亚热带森林生态系统服务价值动态[J].生态环境学报, 2011, 20(6-7):1042-1047.LIU S H, LI H, LU H F. Dynamics in ecosystem service values of lower subtropical forest in Dinghushan[J]. Ecology and Environmental Sciences,2011, 20(6-7):1042-1047. (Ch).[25] 刘凯昌,苏树权,江建发,等. 不同植被类型空气负离子状况初步调查[J].广东林业科技, 2002, 18(2):37-39.LIU K C, SU S Q, JIANG J F, et al. Investigation of anion content of environment on some types of vegetation[J]. Forestry Science and Technology, 2002, 18(2):37-39. (Ch).[26] 马新辉,任志远,孙根年. 城市植被净化大气价值计量与评价——以西安市为例[J].中国生态农业学报, 2004, 12(2):180-182.MA X H, REN Z Y, SUN G N. The calculation and assessment to the values of air purification by vegetation in Xi’ an City[J]. Chinese Journal of Eco-Agriculture, 2004, 12(2):180-182. (Ch).[27] 马新辉,孙根年,任志远. 西安市植被净化大气物质量的测定及其价值评价[J].干旱区资源与环境, 2002, 16(4):83-86.MA X H, SUN G N, REN Z Y. The values of vegetation purified air and its measure in Xi’an City[J]. Journal of Arid Land Resources and Environment,[28] 王兵. 广东省森林生态系统服务功能评估[M].北京:中国林业出版社,2011.WANG B. The Value of the Forest Ecosystem Services of Guangdong Province[M]. Beijing:China Forestry Press, 2011. (Ch).[29] 中国生物多样性国情研究报告编写组.中国生物多样性国情研究报告[M].北京:中国环境科学出版社,1998.The Writing Group of the Research Report on the National Conditions of Chana’s Biodiversity. The Research Report on the National Conditions of China’s Biodiversity[M]. Beijing: China Environmental Science Press,1998. (Ch).[30] 郭然,王效科,逯非,等. 中国草地土壤生态系统固碳现状和潜力[J].生态学报, 2008, 28(2):862-867.GUO R, WANG X K, LU F, et al. Soil carbon sequestration and its potential by grassland ecosystems in China[J] Ecologica Sinica, 2008,28(2):862-867. (Ch).[31] 张彪,高吉喜,谢高地,等. 北京城市绿地的蒸腾降温功能及其经济价值评估[J].生态学报, 2012, 32(24):7698-7705.ZHANG B, GAO J X, XIE G D, et al. Preliminary evaluation of air temperature reduction of urban green spaces in Beijing[J]. Acta Ecologica Sinica, 2012, 32(24):7698-7705. (Ch).[32] 谢高地,甄霖,鲁春霞,等. 一个基于专家知识的生态系统服务价值化方法[J].自然资源学报, 2008, 23(5):911-919.XIE G D, ZHEN L, LU C X, et al. Expert knowledge based valuation method of ecosystem services in china[J]. Journal of Natural Resources,[33] 国家林业局.森林生态系统服务功能评估规范( LY/T 1721-2008) [M].北京:中国标准出版社,2008.SFA. Specifications for Assessment of Forest Ecosystem Services in China( LY/T 1721-2008) [M].Beijing:China Standards Press, 2008. (Ch).[34] 徐华清,杨水平,陈玉碧,等. 城市绿地生态服务功能价值评估——以北京林业大学为例[J].宁夏农林科技, 2014, 55(02):48-51.XU H Q, YANG S P, CHEN Y B, et al. Evaluation of ecological service function of urban green space-taking Beijing forestry university as an example[J]. Ningxia Journal of Agriculture and Forestry Science and Technology, 2014, 55(2):48-51. (Ch).[35] 彭建,王仰麟,陈燕飞,等. 城市生态系统服务功能价值评估初探——以深圳市为例[J].北京大学学报(自然科学版), 2005, 41(4):594-604.PENG J, WANG Y L, CHEN Y F, et al. Economic value of urban ecosystem services:a case study in shenzhen[J]. Acta Scicentiarum Naturalum Universitis Pekinesis, 2005, 41(4):594-604. (Ch).[36] 毛齐正,罗上华,马克明,等. 城市绿地生态评价研究进展[J].生态学报,2012, 32(17):5589-5600.MAO Q Z, LUO S H, MA K M, et al. Research advances in ecological assessment of urban greenspace[J]. Ecologica Sinica, 2012, 32(17):5589-5600. (Ch).。
遥感图像分类方法及应用示例遥感技术是通过卫星、飞机等远距离传感器获取地表信息的一种技术手段。
遥感图像分类是遥感技术中的一项重要任务,它可以将遥感图像中的像素按照其特征进行分类,并生成分类结果。
本文将介绍遥感图像分类的方法,并给出一些应用示例。
一、遥感图像分类方法1. 基于像元的分类方法基于像元的分类方法是将遥感图像中的每个像素点看作一个样本进行分类,通过像素点的光谱特征来确定其所属类别。
常见的方法有最大似然法、支持向量机等。
最大似然法是一种基于统计学原理的分类方法,它通过求解样本的概率密度函数来确定像素点的类别。
支持向量机是一种基于样本间距离的分类方法,它通过构建超平面将不同类别的样本分开。
2. 基于对象的分类方法基于对象的分类方法是将遥感图像中的像素组成的对象进行分类,通过对象的形状、纹理等特征来确定其所属类别。
常见的方法有基于区域的分割和基于对象的分类。
基于区域的分割将遥感图像中的像素按照相似性进行分组,形成具有相同特征的区域。
基于对象的分类是在分割得到的区域基础上,通过提取区域的特征来确定其所属类别。
3. 基于深度学习的分类方法随着深度学习技术的发展,基于深度学习的分类方法在遥感图像分类中得到了广泛应用。
深度学习通过构建深层神经网络模型,可以自动学习遥感图像中的特征表示。
常见的方法有卷积神经网络(CNN)、循环神经网络(RNN)等。
卷积神经网络可以有效地提取图像的空间特征,循环神经网络可以捕捉图像序列的时序特征。
二、遥感图像分类的应用示例1. 农作物类型分类农作物类型分类是农业生产中的重要任务,可以帮助农民了解农田的分布情况和种植结构,指导农作物管理和精细化农业。
通过遥感图像分类方法,可以将农田遥感图像中的不同农作物进行分类,比如小麦、玉米、水稻等。
这样可以帮助农民进行农作物识别和农田监测,提高农业效益。
2. 土地利用分类土地利用分类是城市规划和土地资源管理中的重要任务,可以帮助决策者了解土地利用的分布情况和变化趋势,指导城市规划和土地资源开发。
面向对象的遥感影像信息提取方法研究
曹小鸿
【期刊名称】《测绘与空间地理信息》
【年(卷),期】2022(45)5
【摘要】近年来,基于遥感影像的面向对象信息提取方法得到了快速发展。
本文对相关文献进行综述统计,首先阐述了面向对象信息提取方法的研究进展及应用领域;然后给出了信息提取的技术流程,总结了对象生成、规则集构建、影像分类等关键技术及其存在的问题;最后对面向对象技术的发展趋势进行了展望。
【总页数】5页(P116-119)
【作者】曹小鸿
【作者单位】三和数码测绘地理信息技术有限公司
【正文语种】中文
【中图分类】P237
【相关文献】
1.面向对象的遥感影像水田信息提取方法研究
2.基于面向对象的遥感影像空间信息提取方法研究
3.基于规则面向对象的遥感影像分类方法在信息提取中的应用
4.一种面向对象的高分辨率遥感影像信息提取方法
5.面向对象的遥感影像地物信息提取方法研究
因版权原因,仅展示原文概要,查看原文内容请购买。
面向对象的遥感影像信息提取摘要:随着遥感技术的不断发展,遥感影像的分辨率不断的提高,如何对遥感影像中的地物信息进行高效、快速的提取,是当前研究的热点问题。
面向对象的方法先对影像进行多尺度分割得到同质区域对象,充分利用遥感影像中丰富的光谱、形状、纹理等特征对分割后的对象进行分类。
面向对象的遥感信息提取的方法克服了传统的基于像元的分类方法只依靠光谱信息的缺点,更高效的获取地物信息,得到更高精度的分类结果。
关键词:多尺度分割、分类、遥感影像、面向对象Abstract:With the continuous development of remote sensing technology, the resolution of remote sensing image is constantly improving. How to efficiently and quickly extract the ground object information in remote sensing image is a hot issue in current research. The object oriented method firstly segmented the image to obtain the homogeneous region object, and made full use of the rich spectral, shape, texture and other features of remote sensing image to classify the segmented object. The object-oriented remote sensing information extraction method overcomes the shortcoming of the traditional classification method based on pixel which only relies on spectral information, and obtains the ground object information moreefficiently and gets the classification result with higher precision.Key word:Multi-scale segmentation、classification、remote sensing image、object oriented.1引言利用面向对象的信息提取技术,可以更好掌握实际生产生活中地物变化情况,以及土地利用等情况,能够为国土空间规划、土地利用调查、资源普查、交通规划、生态旅游发展等工作提供有力的数据支撑。
遥感图像分类技术在测绘中的应用案例测绘是指通过对地球表面进行测量和记录来获取地理空间数据的一种技术与科学领域。
随着遥感技术的快速发展和普及应用,遥感图像分类技术在测绘中的应用案例也日益增多。
一、土地利用分类土地利用分类是测绘中常见的任务之一。
传统的土地利用分类通常基于田块边界等一些基本特征,但这种方法往往效率低且容易出错。
而遥感图像分类技术能够有效地从大范围的图像数据中提取地物的空间分布和特征,可以更准确地对土地利用进行分类。
以某区域的土地利用为例,通过使用遥感图像分类技术,可以将土地根据不同的利用类型进行分类,如农田、建筑用地、森林等。
这样的分类结果可以为城市规划、农田管理等提供重要的参考信息。
二、水域提取水域提取是测绘中的另一个重要任务。
传统的水域提取方法通常基于人工目视解译,这种方法耗时且容易受到主观因素的影响。
而利用遥感图像分类技术,可以自动地从图像数据中提取出水域信息。
以某湖泊的水域提取为例,通过使用遥感图像分类技术,可以将湖泊的水域与周围的陆地进行有效地区分。
这样的分类结果可以为湖泊保护、水资源管理等提供重要的参考信息。
三、植被覆盖度评估植被覆盖度评估是测绘中的常见任务之一,对于生态环境研究以及林业、农业等领域有着重要的意义。
传统的评估方法通常采用野外调查和人工计数,这种方法耗时且容易受到人为误差的影响。
而利用遥感图像分类技术,可以自动地从图像数据中提取出植被信息,并计算出植被覆盖度。
以某地区的植被覆盖度评估为例,通过使用遥感图像分类技术,可以将植被与其他地物进行有效地区分,进而计算出该地区的植被覆盖度。
这样的评估结果可以为生态环境保护、林业经营等提供重要的参考信息。
四、地表温度提取地表温度的提取是测绘中的另一个重要任务,对于气候研究、城市热岛效应分析等具有重要意义。
传统的温度提取方法往往需要大量的人力和物力投入,而利用遥感图像分类技术,可以自动地从图像数据中提取出地表温度信息。
以某城市的地表温度提取为例,通过使用遥感图像分类技术,可以将不同地表材质的温度进行有效地区分。