面向对象的遥感影像分类技术
- 格式:ppt
- 大小:5.26 MB
- 文档页数:26
面向对象的影像分类技术“同物异谱,同谱异物”会对影像分类产生的影响,加上高分辨率影像的光谱信息不是很丰富,还有经常伴有光谱相互影响的现象,这对基于像素的分类方法提出了一种挑战,面向对象的影像分类技术可以一定程度减少上述影响。
本小节以ENVI中的面向对象的特征提取FX模块为例,对这种技术和处理流程做一个简单的介绍。
本专题包括以下内容:面向对象分类技术概述ENVI FX简介ENVI FX操作说明1、面向对象分类技术概述面向对象分类技术集合临近像元为对象用来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据的空间,纹理,和光谱信息来分割和分类的特点,以高精度的分类结果或者矢量输出。
它主要分成两部分过程:影像对象构建和对象的分类。
影像对象构建主要用了影像分割技术,常用分割方法包括基于多尺度的、基于灰度的、纹理的、基于知识的及基于分水岭的等分割算法。
比较常用的就是多尺度分割算法,这种方法综合遥感图像的光谱特征和形状特征,计算图像中每个波段的光谱异质性与形状异质性的综合特征值,然后根据各个波段所占的权重,计算图像所有波段的加权值,当分割出对象或基元的光谱和形状综合加权值小于某个指定的阈值时,进行重复迭代运算,直到所有分割对象的综合加权值大于指定阈值即完成图像的多尺度分割操作。
影像对象的分类,目前常用的方法是“监督分类”和“基于知识分类”。
这里的监督分类和我们常说的监督分类是有区别的,它分类时和样本的对比参数更多,不仅仅是光谱信息,还包括空间、纹理等信息。
基于知识分类也是根据影像对象的熟悉来设定规则进行分类。
目前很多遥感软件都具有这个功能,如ENVI的FX扩展模块、易康(现在叫Definiens)、ERDAS的Objective模块、PCI的FeatureObjeX(新收购)等。
表1为三大类分类方法的一个大概的对比。
面向对象的分类方法几何信息、结构信息以及光谱信息一个个影像对象中高分辨率多光谱和全色影像速度比较慢表1 传统基于光谱、基于专家知识决策树与基于面向对象的影像分类对比表2、ENVI FX简介全名叫“面向对象空间特征提取模块—Feature Extraction”,基于影像空间以及影像光谱特征,即面向对象,从高分辨率全色或者多光谱数据中提取信息,该模块可以提取各种特征地物如车辆、建筑、道路、桥、河流、湖泊以及田地等。
⾯向对象的⾼分辨率遥感影像分类⼆○⼀⼀届毕业设计⾯向对象的⾼分辨率遥感影像分类Object-oriented Classification of high Resolution RemoteSensing images学院:地质⼯程与测绘学院专业:遥感科学与技术姓名:学号:指导教师:完成时间:2011年6⽉17⽇⼆〇⼀⼀年七⽉摘要⾼空间分辨率遥感影像使得在较⼩的空间尺度上观察地表细节变化,进⾏⼤⽐例尺遥感制图,以及监测⼈为活动对环境的影响成为可能。
随着⾼分辨率影像的应⽤越来越普及,迫切要求⼈们对⾼分辨率遥感信息提取进⾏研究,以满⾜⾼分辨率影像信息不断增长的应⽤和研究需要⾼分辨率遥感影像光谱信息有限,空间信息丰富,地物的尺⼨、形状及相邻地物间的关系都得到很好的反映。
⾯向对象的分类⽅法与传统的基于像素的分类相⽐,不仅仅是依靠光谱信息,⽽且还充分利⽤影像的空间信息,分类时也克服了基于像元的逐点分类⽆法对相同语义特征的像素集合进⾏识别的缺点,是⼀种⽬前最适合于⾼分辨率遥感影像的分类⽅法。
本⽂采⽤⾯向对象的分类⽅法对⾼分辨率影像进⾏分类,该⽅法⾸先对影像进⾏多尺度分割获得同质区域对象,在此基础上利⽤模糊分类思想对分割后的对象进⾏分类。
该⽅法不仅充分利⽤了⾼分辨率影像的空间信息,还将基于像素的分类提升到了基于对象的分类。
多尺度分割采⽤的是区域⽣长合并算法,通过对尺度阈值、光谱因⼦及形状因⼦等参数的控制,可以获得不同尺度下有意义的对象。
分割后的对象不仅包含了原始的光谱信息,还可以提供⼤量辅助特征,如纹理、形状、拓扑等特征。
综合利⽤这些特征以及模糊分类的思想,使得⾼分辨率影像分类在减少分类不确定性的同时,还提⾼了分类的精度。
最后将⾯向对象分类结果与传统的基于像素分类结果进⾏对⽐分析,发现其分类精度要明显⾼于传统法,且具有较强的抗噪声的功能,分类所得的地物结果相对较为完整,具有更丰富的语义信息,更加符合客观现实情形。
面向对象的遥感影像分类研究一、内容综述随着遥感技术的不断发展,遥感影像分类在地理信息系统(GIS)、资源与环境调查、城市规划以及农业监测等领域发挥着越来越重要的作用。
传统的遥感影像分类方法主要依赖于人工解译和传统机器学习算法,如支持向量机、随机森林等。
这些方法在面对高分辨率、多光谱和大数据量的遥感影像时,存在效率低、精度不高等问题。
面向对象的遥感影像分类方法逐渐成为研究热点。
该方法将遥感影像划分为多个连续的区域(对象),利用计算机视觉、模式识别和统计学习等方法对每个对象进行分类。
相较于传统的遥感影像分类方法,面向对象的遥感影像分类具有更高的精确度、更快的运算速度和更好的鲁棒性。
本文将对面向对象的遥感影像分类方法的研究进展进行综述,包括研究对象和方法、特征提取与选择、模型构建与优化以及分类结果验证等方面。
通过对现有研究的分析,可以发现面向对象的遥感影像分类方法在处理高分辨率、多光谱和大数据量的遥感影像方面仍面临诸多挑战,未来的研究需要继续探索更为高效和准确的分类方法。
1. 遥感影像分类的重要性和意义随着遥感技术的发展,遥感影像已经广泛应用于农业、生态、环境、城市规划等多个领域。
遥感影像的分类问题一直是一个重要的研究课题。
本文首先简要介绍了遥感影像的分类及其重要性。
遥感影像分类是指利用计算机技术对遥感影像进行处理、分析和识别,以获取或推导信息、知识和结论的过程。
在很多情况下,遥感影像包含了丰富的空间、时间和光谱信息,这些信息对于人类和计算机来说都是难以直接获取和处理的。
需要借助机器学习、深度学习等人工智能技术来实现遥感影像的分类。
通过遥感影像分类,我们可以更加准确地认识和理解地球表面的自然现象和社会经济活动,为国家和地方的管理和决策提供科学依据。
遥感影像分类还有助于环境保护、资源管理等方面的工作,从而为人类的可持续发展做出贡献。
遥感影像分类具有重要的理论和实际应用价值,是当前研究的热点之一。
2. 面向对象方法在遥感影像分类中的应用背景与发展趋势随着遥感技术的不断发展,遥感影像在地理信息系统中扮演着越来越重要的角色。
面向对象的遥感图像分类方法在测绘中的应用遥感技术是一种能够获取地球表面信息的技术手段,在测绘领域中有着广泛的应用。
随着计算机科学技术的发展,面向对象的遥感图像分类方法也被引入到测绘中,为地图制图和地理信息系统的建设提供了更加精确和高效的方案。
一、遥感图像分类遥感图像分类是遥感技术的核心应用之一,它是将遥感图像中的像素点根据其反射率、辐射亮度等特征进行分类,从而得到具有不同类别的地物信息。
传统的遥感图像分类方法主要基于像素级的分类,即将图像中的每个像素点单独进行分类,这种方法容易受到噪声影响,分类结果不够准确。
而面向对象的遥感图像分类方法则能够克服这些问题。
二、面向对象的遥感图像分类方法面向对象的遥感图像分类方法是基于图像中的对象进行分类的一种方法,它将图像中的像素点组合成不同的对象,然后根据对象的形状、纹理、光谱等特征进行分类。
相比于像素级的分类方法,面向对象的方法能够更好地保留地物的空间结构信息,提高分类的准确性和稳定性。
面向对象的遥感图像分类方法包括以下几个关键步骤。
首先是图像分割,将遥感图像分割成不同的对象。
常用的分割方法有基于区域的分割方法和基于边界的分割方法,其目的是将图像分解成较小的、空间连续的对象。
接下来是对象特征提取,通过计算对象的形状、纹理、光谱等特征来描述对象。
常用的特征提取方法有灰度共生矩阵、纹理特征、主成分分析等。
然后是分类器的训练和模型的建立,根据已经分类好的样本数据,训练分类器来对新的对象进行分类。
常用的分类器有支持向量机、随机森林等。
最后是分类结果的验证和评价,通过对分类结果进行验证和评价,来判断分类方法的准确性和可靠性。
三、面向对象的遥感图像分类在测绘中的应用面向对象的遥感图像分类方法在测绘中有着广泛的应用。
首先,它能够提高地图制图的精度和效率。
传统的地图制图方法往往依靠人工解译遥感图像来获取地物信息,这种方法效率低下且容易出现误差。
而面向对象的方法能够通过计算机自动解译遥感图像,大大提高了地图制图的效率,并且分类结果更加准确。
遥感的面向对象分类法传统的基于像素的遥感影像处理方法都是基于遥感影像光谱信息极其丰富,地物间光谱差异较为明显的基础上进行的。
对于只含有较少波段的高分辨率遥感影像,传统的分类方法,就会造成分类精度降低,空间数据的大量冗余,并且其分类结果常常是椒盐图像,不利于进行空间分析。
为解决这一传统难题,模糊分类技术应运而生。
模糊分类是一种图像分类技术,它是把任意范围的特征值转换为 0 到 1 之间的模糊值,这个模糊值表明了隶属于一个指定类的程度。
通过把特征值翻译为模糊值,即使对于不同的范围和维数的特征值组合,模糊分类能够标准化特征值。
模糊分类也提供了一个清晰的和可调整的特征描述。
对于影像分类来说,基于像元的信息提取是根据地表一个像元范围内辐射平均值对每一个像元进行分类,这种分类原理使得高分辨率数据或具有明显纹理特征的数据中的单一像元没有很大的价值。
影像中地物类别特征不仅由光谱信息来刻画的,很多情况下(高分辨率或纹理影像数据)通过纹理特征来表示。
此外背景信息在影像分析中很重要,举例来说,城市绿地与某些湿地在光谱信息上十分相似,在面向对象的影像分析中只要明确城市绿地的背景为城市地区,就可以轻松地区分绿地与湿地,而在基于像元的分类中这种背景信息几乎不可利用。
面向对象的影像分析技术是在空间信息技术长期发展的过程中产生的,在遥感影像分析中具有巨大的潜力,要建立与现实世界真正相匹配的地表模型,面向对象的方法是目前为止较为理想的方法。
面向对象的处理方法中最重要的一部分是图像分割。
随着对地观测任务逐渐精细化,高分辨率遥感卫星影像的应用越来越广泛。
这对遥感影像分类方法提出了挑战。
已有的研究表明:基于像元的高分辨率遥感影像分类存在明显的限制。
近年来,面向对象影像分析(Object-Based ImageAnalysis,OBIA)在高分辨率遥感影像处理中渐露头角,被认为是遥感与地理信息科学发展的重要趋势。
本文针对面向对象影像分类(Object-Based Image Classification,OBIC)方法中的若干问题开展研究。
主题:遥感影像在面向对象分类中的应用文章内容:一、遥感影像的概念和特点1.1 遥感影像是指利用遥感技术获取的地面、海面、大气等物体的影像信息。
1.2 遥感影像具有多光谱、高分辨率、全天候、大范围等特点。
二、面向对象分类的基本原理2.1 面向对象分类是指将遥感影像中的像元根据其空间位置、光谱特征、纹理特征等属性进行分割和分类。
2.2 面向对象分类与传统的基于像元的分类相比,能够更好地保留地物的空间信息和形状特征。
三、遥感影像在面向对象分类中的应用3.1 遥感影像在土地利用/覆盖分类中的应用:可以利用遥感影像进行土地利用/覆盖的监测和分类,为土地管理、资源规划提供科学依据。
3.2 遥感影像在环境监测中的应用:可以利用遥感影像进行环境监测,如水体变化监测、植被覆盖度监测等,为环境保护和治理提供支持。
3.3 遥感影像在灾害监测中的应用:可以利用遥感影像进行灾害监测,如洪涝灾害、火灾等,为灾害的防范和救援提供帮助。
四、面向对象分类中的技术挑战和发展趋势4.1 技术挑战:遥感影像在面向对象分类中仍然面临着遥感影像分割、特征提取、分类算法等方面的技术挑战。
4.2 发展趋势:随着计算机视觉和人工智能技术的不断发展,面向对象分类技术将更加智能化、自动化,能够更好地适应各种复杂场景的分类需求。
结语:遥感影像在面向对象分类中有着广泛的应用前景,随着技术的不断发展和创新,相信遥感影像在面向对象分类中的应用将会变得更加广泛和深入。
五、面向对象分类的方法和技术5.1 基于规则的分类方法:基于人工定义的规则和特征进行分类,需要人工干预和指导,适用于简单场景的分类任务。
5.2 基于机器学习的分类方法:利用已知类别的样本数据训练分类器,从而实现自动分类,适用于复杂场景的分类任务。
5.3 深度学习方法:近年来,随着深度学习技术的发展,深度学习在遥感影像的面向对象分类中得到了广泛的应用。
通过构建深度卷积神经网络,可以自动学习遥感影像中的特征,实现高效准确的分类。
高分辨率遥感影像面向对象分类方法研究一、本文概述随着遥感技术的快速发展,高分辨率遥感影像的应用越来越广泛,尤其在城市规划、环境监测、灾害预警等领域发挥着重要作用。
面向对象分类方法作为高分辨率遥感影像处理的关键技术之一,能够有效提取影像中的地物信息,提高分类精度和效率。
本文旨在研究高分辨率遥感影像面向对象分类方法的相关理论和技术,分析其在实际应用中的优缺点,并提出相应的改进策略。
文章首先介绍了高分辨率遥感影像的特点和面向对象分类方法的基本原理,然后详细阐述了面向对象分类方法的流程、关键技术及其在实际应用中的案例。
通过对现有方法的梳理和评价,本文旨在为相关领域的研究人员和实践者提供有益的参考和借鉴,推动高分辨率遥感影像面向对象分类方法的进一步发展。
二、高分辨率遥感影像特点及应用价值高分辨率遥感影像以其精细的空间分辨率和丰富的光谱信息,为地表覆盖类型的识别和监测提供了前所未有的机会。
其特点和应用价值主要体现在以下几个方面:高分辨率:高分辨率遥感影像能够提供地面物体的详细纹理和结构信息,使得地表覆盖类型的边界更加清晰,有利于精细分类和识别。
多光谱信息:多数高分辨率遥感影像具备多个光谱波段,能够反映地物在不同光谱段的反射和辐射特性,为地物识别和分类提供了更多维度的信息。
时效性:高分辨率遥感影像的获取周期短,能够迅速反映地表覆盖的动态变化,对于城市扩张、农业种植结构调整等研究具有重要的应用价值。
高定位精度:借助精确的地理定位信息,高分辨率遥感影像能够实现地物空间位置的精确获取,为地理信息系统更新提供了可靠的数据基础。
城市规划与建设:高分辨率遥感影像能够精确反映城市建成区的空间分布和形态特征,为城市规划、城市扩张监测、城市绿地规划等提供数据支持。
农业管理:通过高分辨率遥感影像,可以监测农作物生长状况、病虫害发生情况,评估农业产量,为农业管理决策提供科学依据。
环境保护与监测:高分辨率遥感影像在环境监测中发挥着重要作用,如水体污染监测、森林火灾预警、生态环境评估等。
基于像元的分类方法,依据主要是利用像元的光谱特征,大多应用在中低分辨率遥感图像。
而高分辨率遥感图像的细节信息丰富,图像的局部异质性大,传统的基于像元的分类方法易受高分辨率影像局部异质性大的影响和干扰。
而面向对象分类方法可以高分辨率图像丰富的光谱、形状、结构、纹理、相关布局以及图像中地物之间的上下文信息,可以结合专家知识进行分类,可以显著提高分类精度,而且使分类后的图像含有丰富的语义信息,便于解译和理解。
对高分辨率影像来说,还是一种非常有效的信息提取方法,具有很好的应用前景。
附录对象属性说明:(1)Spatial属性属性描述AREA多边形的面积,单位与Map单位一致LENGTH多边形外边框周长,包括洞的边框周长,单位与Map单位一致COMPACT 紧密性,描述多边形紧密性的度量。
如圆是紧密性最好的形状,其值为1/Pi,正方形的的值为1/2(sqrt(pi)).COMPARCT=Sqrt (4 * AREA / pi) /周长CONVEXITY 凸出的状态,没有洞的凸多边形的值为1,其余的为小于1. CONVEXITY= length of convex hull / LENGTHSOLIDITY 坚固性,多边形面积与周围凸出多边形面积比。
SOLIDITY = AREA / area of convex hullROUNDNESS 描述多边形的圆特征,圆的值为1,正方形的值为4/Pi ROUNDNESS = 4 * (面积) / (pi *最大直径2)FORMFACTOR 形状要素,圆的值为1,正方形的值为Pi/4 FORMFACTOR = 4 * pi * (面积) / (周长)2ELONGATION 延伸性,最大直径与最小直径的比值,正方形的值为1,矩形的值大于1. ELONGATION =最大直径/最小直径RECT_FIT 矩形形状的度量,矩形的值为1,非矩形的值小于1. RECT_FIT =面积/ (最大直径*最小直径)MAINDIR 主方向,长轴(最大直径)与X轴之间的夹角。