面向对象的遥感影象分类
- 格式:ppt
- 大小:4.19 MB
- 文档页数:18
面向对象分类法arcgis 面向对象分类法(Object-Oriented Classification,OOC)是将遥感数据像素根据物体或地物类型进行分类的方法。
OOC分类法在遥感数据处理和应用中广泛使用,尤其是在地物覆盖类型分类方面。
ArcGIS是一款著名的GIS软件,它支持多种分类法。
本文将介绍面向对象分类法在ArcGIS中的应用。
一、面向对象分类法基本概念面向对象分类法是一种“基于物体”而不是基于像元的分类方法,它将像素组合成具有物理意义的物体(对象),例如建筑物、道路、水体等,然后再将这些物体分类为不同的地物类型。
OOC分类法通常分为三个步骤:物体分割、物体属性提取和物体分类。
1.物体分割物体分割是将像素聚集成具有物理意义的物体的过程。
这个过程通常使用图像分割算法来实现。
常用的分割算法有单阈值分割、多阈值分割、区域生长、水平集等。
2.物体属性提取物体属性提取是从物体中提取有意义的特征的过程。
这些特征可以用于下一步的分类过程。
物体属性提取通常使用遥感影像的光谱、纹理、形状、结构等特征来描述物体。
3.物体分类物体分类是将物体按照它们的物理意义分类的过程。
这个过程通常使用基于强分类器的机器学习方法来实现,例如支持向量机、随机森林等。
二、面向对象分类法在ArcGIS中的应用ArcGIS是一款功能强大的GIS软件,它支持多种遥感数据分类方法,包括像元分类、基于物体分类和混合分类等。
其中基于物体的分类法就是面向对象分类法。
使用ArcGIS进行面向对象分类法分析的步骤如下:1.数据准备首先需要准备一幅高分辨率的遥感影像,这个影像最好是多光谱遥感影像,因为多光谱遥感影像包含了丰富的地物信息,可以提高面向对象分类的精度。
其次需要准备一个数字高程模型(Digital Elevation Model,DEM),这个DEM可以用于去除地形效应,提高分类的精度。
2.物体分割在ArcGIS中实现物体分割是通过“物体识别工具”来实现的。
面向对象的影像分类技术“同物异谱,同谱异物”会对影像分类产生的影响,加上高分辨率影像的光谱信息不是很丰富,还有经常伴有光谱相互影响的现象,这对基于像素的分类方法提出了一种挑战,面向对象的影像分类技术可以一定程度减少上述影响。
本小节以ENVI中的面向对象的特征提取FX模块为例,对这种技术和处理流程做一个简单的介绍。
本专题包括以下容:面向对象分类技术概述ENVI FX简介ENVI FX操作说明1、面向对象分类技术概述面向对象分类技术集合临近像元为对象用来识别感兴趣的光谱要素,充分利用高分辨率的全色和多光谱数据的空间,纹理,和光谱信息来分割和分类的特点,以高精度的分类结果或者矢量输出。
它主要分成两部分过程:影像对象构建和对象的分类。
影像对象构建主要用了影像分割技术,常用分割方法包括基于多尺度的、基于灰度的、纹理的、基于知识的及基于分水岭的等分割算法。
比较常用的就是多尺度分割算法,这种方法综合遥感图像的光谱特征和形状特征,计算图像中每个波段的光谱异质性与形状异质性的综合特征值,然后根据各个波段所占的权重,计算图像所有波段的加权值,当分割出对象或基元的光谱和形状综合加权值小于某个指定的阈值时,进行重复迭代运算,直到所有分割对象的综合加权值大于指定阈值即完成图像的多尺度分割操作。
影像对象的分类,目前常用的方法是“监督分类”和“基于知识分类”。
这里的监督分类和我们常说的监督分类是有区别的,它分类时和样本的对比参数更多,不仅仅是光谱信息,还包括空间、纹理等信息。
基于知识分类也是根据影像对象的熟悉来设定规则进行分类。
目前很多遥感软件都具有这个功能,如ENVI的FX扩展模块、易康(现在叫Definiens)、ERDAS的Objective模块、PCI的FeatureObjeX(新收购)等。
表1为三大类分类方法的一个大概的对比。
表1 传统基于光谱、基于专家知识决策树与基于面向对象的影像分类对比表2、ENVI FX简介全名叫“面向对象空间特征提取模块—Feature Extraction”,基于影像空间以及影像光谱特征,即面向对象,从高分辨率全色或者多光谱数据中提取信息,该模块可以提取各种特征地物如车辆、建筑、道路、桥、河流、湖泊以及田地等。
遥感的面向对象分类法传统的基于像素的遥感影像处理方法都是基于遥感影像光谱信息极其丰富,地物间光谱差异较为明显的基础上进行的。
对于只含有较少波段的高分辨率遥感影像,传统的分类方法,就会造成分类精度降低,空间数据的大量冗余,并且其分类结果常常是椒盐图像,不利于进行空间分析。
为解决这一传统难题,模糊分类技术应运而生。
模糊分类是一种图像分类技术,它是把任意范围的特征值转换为 0 到 1 之间的模糊值,这个模糊值表明了隶属于一个指定类的程度。
通过把特征值翻译为模糊值,即使对于不同的范围和维数的特征值组合,模糊分类能够标准化特征值。
模糊分类也提供了一个清晰的和可调整的特征描述。
对于影像分类来说,基于像元的信息提取是根据地表一个像元范围内辐射平均值对每一个像元进行分类,这种分类原理使得高分辨率数据或具有明显纹理特征的数据中的单一像元没有很大的价值。
影像中地物类别特征不仅由光谱信息来刻画的,很多情况下(高分辨率或纹理影像数据)通过纹理特征来表示。
此外背景信息在影像分析中很重要,举例来说,城市绿地与某些湿地在光谱信息上十分相似,在面向对象的影像分析中只要明确城市绿地的背景为城市地区,就可以轻松地区分绿地与湿地,而在基于像元的分类中这种背景信息几乎不可利用。
面向对象的影像分析技术是在空间信息技术长期发展的过程中产生的,在遥感影像分析中具有巨大的潜力,要建立与现实世界真正相匹配的地表模型,面向对象的方法是目前为止较为理想的方法。
面向对象的处理方法中最重要的一部分是图像分割。
随着对地观测任务逐渐精细化,高分辨率遥感卫星影像的应用越来越广泛。
这对遥感影像分类方法提出了挑战。
已有的研究表明:基于像元的高分辨率遥感影像分类存在明显的限制。
近年来,面向对象影像分析(Object-Based ImageAnalysis,OBIA)在高分辨率遥感影像处理中渐露头角,被认为是遥感与地理信息科学发展的重要趋势。
本文针对面向对象影像分类(Object-Based Image Classification,OBIC)方法中的若干问题开展研究。
遥感影像分类方法比较研究一、本文概述随着遥感技术的迅速发展,遥感影像已成为地理信息系统、环境科学、城市规划等领域获取地表信息的重要手段。
遥感影像分类作为遥感技术应用的关键环节,其准确性和效率直接影响到后续的信息提取和应用。
研究遥感影像分类方法,对于提高遥感数据处理能力,促进遥感技术的广泛应用具有重要意义。
本文旨在比较研究不同遥感影像分类方法的特点、优势与局限性,以期在理论层面为遥感影像分类提供方法论的参考。
文章首先将对遥感影像分类的基本概念、分类体系进行阐述,为后续的比较研究奠定基础。
接着,文章将详细介绍几种主流的遥感影像分类方法,包括基于像元的分类方法、面向对象的分类方法、深度学习分类方法等,并对各方法的原理、实现步骤进行深入剖析。
在此基础上,文章将通过实验数据,对各分类方法的性能进行评估和比较,分析各方法的优劣和适用场景。
文章将总结遥感影像分类方法的发展趋势,展望未来的研究方向和应用前景。
通过本文的研究,旨在提高遥感影像分类的准确性和效率,推动遥感技术在各个领域的应用发展。
也为遥感领域的学者和实践者提供有益的参考和借鉴。
二、遥感影像分类方法概述遥感影像分类是遥感技术应用的重要领域之一,其目的在于通过对遥感影像的解译和分析,识别并区分地表上的不同特征和目标。
随着遥感技术的发展和进步,遥感影像分类方法也在不断更新和完善。
目前,遥感影像分类方法主要分为监督分类、非监督分类和深度学习分类等几种。
监督分类是基于已知训练样本进行分类的方法。
它通过选择具有代表性的训练样本,提取其特征并构建分类器,然后利用该分类器对整个遥感影像进行分类。
常见的监督分类方法包括最大似然分类、支持向量机分类、决策树分类等。
这些方法在遥感影像分类中具有较高的精度和稳定性,但需要大量的训练样本和先验知识。
非监督分类是基于影像内部像素之间的相似性进行分类的方法。
它不需要先验知识和训练样本,而是根据像素之间的统计特征或空间关系进行聚类分析,将具有相似性质的像素归为一类。
主题:遥感影像在面向对象分类中的应用文章内容:一、遥感影像的概念和特点1.1 遥感影像是指利用遥感技术获取的地面、海面、大气等物体的影像信息。
1.2 遥感影像具有多光谱、高分辨率、全天候、大范围等特点。
二、面向对象分类的基本原理2.1 面向对象分类是指将遥感影像中的像元根据其空间位置、光谱特征、纹理特征等属性进行分割和分类。
2.2 面向对象分类与传统的基于像元的分类相比,能够更好地保留地物的空间信息和形状特征。
三、遥感影像在面向对象分类中的应用3.1 遥感影像在土地利用/覆盖分类中的应用:可以利用遥感影像进行土地利用/覆盖的监测和分类,为土地管理、资源规划提供科学依据。
3.2 遥感影像在环境监测中的应用:可以利用遥感影像进行环境监测,如水体变化监测、植被覆盖度监测等,为环境保护和治理提供支持。
3.3 遥感影像在灾害监测中的应用:可以利用遥感影像进行灾害监测,如洪涝灾害、火灾等,为灾害的防范和救援提供帮助。
四、面向对象分类中的技术挑战和发展趋势4.1 技术挑战:遥感影像在面向对象分类中仍然面临着遥感影像分割、特征提取、分类算法等方面的技术挑战。
4.2 发展趋势:随着计算机视觉和人工智能技术的不断发展,面向对象分类技术将更加智能化、自动化,能够更好地适应各种复杂场景的分类需求。
结语:遥感影像在面向对象分类中有着广泛的应用前景,随着技术的不断发展和创新,相信遥感影像在面向对象分类中的应用将会变得更加广泛和深入。
五、面向对象分类的方法和技术5.1 基于规则的分类方法:基于人工定义的规则和特征进行分类,需要人工干预和指导,适用于简单场景的分类任务。
5.2 基于机器学习的分类方法:利用已知类别的样本数据训练分类器,从而实现自动分类,适用于复杂场景的分类任务。
5.3 深度学习方法:近年来,随着深度学习技术的发展,深度学习在遥感影像的面向对象分类中得到了广泛的应用。
通过构建深度卷积神经网络,可以自动学习遥感影像中的特征,实现高效准确的分类。